JP3923133B2 - Method for producing α, β-unsaturated aldehyde - Google Patents

Method for producing α, β-unsaturated aldehyde Download PDF

Info

Publication number
JP3923133B2
JP3923133B2 JP08347597A JP8347597A JP3923133B2 JP 3923133 B2 JP3923133 B2 JP 3923133B2 JP 08347597 A JP08347597 A JP 08347597A JP 8347597 A JP8347597 A JP 8347597A JP 3923133 B2 JP3923133 B2 JP 3923133B2
Authority
JP
Japan
Prior art keywords
anhydride
reaction
hydroxyaldehyde
product
unsaturated aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08347597A
Other languages
Japanese (ja)
Other versions
JPH10279514A (en
Inventor
由晴 安宅
准次 越野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP08347597A priority Critical patent/JP3923133B2/en
Publication of JPH10279514A publication Critical patent/JPH10279514A/en
Application granted granted Critical
Publication of JP3923133B2 publication Critical patent/JP3923133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はα,β−不飽和アルデヒドの製造方法に関し、詳しくは、β−ヒドロキシアルデヒドを原料として、α,β−不飽和アルデヒドを高収率かつ高選択的に製造する工業的に有利な製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
3−メチル−2−ブテナール(セネシオンアルデヒド)等のα,β−不飽和アルデヒドは、種々の合成中間体として、あるいは医薬品、農薬、香料、樹脂等の原料として工業的に非常に有用である。
【0003】
従来、このようなα、β−不飽和アルデヒドの代表的な化合物である3−メチル−2−ブテナールの製造方法としては、以下に示す方法が知られている。
(1) プレノールを銀結晶触媒存在下空気によって酸化する方法(例えば特開昭53−137906号公報)
(2) プレノールを過酸化ニッケルによって酸化しアルデヒドに導く方法(例えば特公昭55−27893 号公報)
(3) プレノールを酸化ルテニウムの存在下空気によって酸化する方法(例えばJ. Org. Chem., 1984, 49, 3435-3436)
(4) 3−ヒドロキシ−3−メチルブタナールを、硫酸又はその塩、p−トルエンスルホン酸等の酸性触媒、あるいはピリジン等の塩基性触媒の存在下に脱水反応する方法(特開平8−176054号公報)。
【0004】
しかしながら、上記(1) の方法は反応温度が高温であること、また空気酸化により爆発の危険性を有すること、また(2) の方法は、化学量論量の金属過酸化物触媒を必要とし、その貯蔵、廃棄に大きな問題があること、(3) の方法においては、(1) と同様の問題があるうえに高価な触媒を使用すること、(4) の方法においては、目的とするα, β−不飽和アルデヒド以外にその異性体であるβ, γ−不飽和アルデヒドがかなりの割合で得られ、このβ, γ−不飽和アルデヒドを分離したりあるいは異性化してα, β−不飽和アルデヒドとする工程が必要となり操作が煩雑であること等の問題点があり、工業的に有利に、高収率、高選択的にα, β−不飽和アルデヒドを得る方法が望まれている。
【0005】
従って、本発明の目的は、高価な試薬を使用せず、廃棄物の生成を抑えて、β−ヒドロキシアルデヒドからα,β−不飽和アルデヒドを高収率かつ高選択的に製造する工業的に有利な方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、鋭意検討した結果、芳香族多塩基性カルボン酸又はその無水物の存在下で、β−ヒドロキシアルデヒドを連続的に供給して反応させることで、高価な試薬を使うことなく、廃棄物の生成も少量で、高収率、高選択的にα,β−不飽和アルデヒドが得られることを見いだし本発明を完成した。
【0007】
即ち、本発明は、芳香族多塩基性カルボン酸又はその無水物の存在下に、一般式(I)
【0008】
【化4】

Figure 0003923133
【0009】
(式中、R1, R2, R3は、それぞれ水素原子又は炭素数1〜5の直鎖又は分岐のアルキル基を示す。ただしR1とR3は一緒になって環を形成してもよい。)
で表されるβ−ヒドロキシアルデヒドを 100〜300 ℃で反応系内に連続的に供給しつつ、且つ生成物を反応系外に除去しながら反応させることを特徴とする、一般式(II)で表されるα,β−不飽和アルデヒドの製造方法を提供するものである。
【0010】
【化5】
Figure 0003923133
【0011】
(式中、R1, R2及びR3は前記と同じ意味を示す。)
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0013】
本発明に用いられる芳香族多塩基性カルボン酸としては、容易に酸無水物を形成しやすく、かつ酸無水物の沸点が生成物の沸点より高いものであればいずれのものでも良いが、工業的に使用する観点から芳香族多塩基性カルボン酸およびその無水物の具体例としては、フタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等が好ましく、より好ましくは無水フタル酸、無水トリメリット酸である。
【0014】
芳香族多塩基性カルボン酸は反応中に無水物に変換されて脱水剤として作用していると考えられ、酸より無水物を直接使用する方が好ましい。尚、酸無水物の形成し難いテレフタル酸等を酸無水物と共存させると酸触媒ともなり、好ましい。これらは単独で、あるいは混合物として用いることができる。
【0015】
芳香族多塩基性カルボン酸又はその無水物の使用量は、原料β−ヒドロキシアルデヒドの総仕込量に対して、 0.1〜50モル%が好ましい。この範囲であれば、反応性が特に高く反応率も向上する。また、製造コストも低く、廃棄物の生成も抑えることができる。なかでも、1〜30モル%がより好ましく、5〜30モル%がさらに好ましい。
【0016】
本発明に用いられる一般式(I)で表されるβ−ヒドロキシアルデヒドとしては、生成物を連続的に反応系外に除去しながら反応を行う必要があるので、総炭素数15以下の比較的低沸点の化合物が好ましい。かかるβ−ヒドロキシアルデヒドの具体例としては、3−ヒドロキシブタナール、3−ヒドロキシ−3−メチルブタナール、3−ヒドロキシペンタナール、3−ヒドロキシヘキサナール、2−ヒドロキシシクロペンタンカルボアルデヒド、2−ヒドロキシシクロヘキサンカルボアルデヒド等を挙げることができる。特に下記式(III) で表される3−ヒドロキシ−3−メチルブタナールが好ましい。
【0017】
【化6】
Figure 0003923133
【0018】
本発明の反応は、芳香族多塩基性カルボン酸又はその無水物の存在下に、β−ヒドロキシアルデヒドを 100〜300 ℃で反応系内に連続的に供給しつつ、且つ生成物を速やかに反応系外に除去しながら行う。ここで、連続的とは、生成物が速やかに反応系外に除去される条件下で原料のβ−ヒドロキシアルデヒドを反応系に供給して反応を行わしめることを意味する。従って、単に原料を連続的に反応系に供給することや生成物を連続的に取得することのみを意味するものではない。それは、生成物であるα,β−不飽和アルデヒドを高温に放置すると分解反応、重合反応等が起こり収率が低下するので、これを回避することを目的として行う手法だからである。従って、例えば、生成物の沸点以上かつ酸無水物の沸点以下の温度で反応を行い、生成物が生成後速やかに反応系外に除去されるような条件の下で原料化合物を連続的に反応系に供給し、結果として生成物が連続的に反応系外へ除去されるような場合が本発明でいう「連続的」の典型例である。従って、原料化合物の供給の態様としては、所定の供給速度で継続的に供給してもよく、また断続的に供給してもよい。原料化合物の供給速度は、装置の能力に応じて適宜決めればよい。なお、装置を安定的に運転するには、連続的に一定速度で原料化合物を供給すると共に一定速度で生成物を取得するのが好ましい。また、生成物の留出を助ける意味で不活性ガスを系内に吹き込んでもよい。
【0019】
反応は無溶媒で行うこともできるが、反応条件で不活性な高沸点溶媒を用いて行うこともできる。不活性な高沸点溶媒としては、流動パラフィンや、アルキル置換ベンゼンのような炭化水素類、安息香酸アルキルエステル類、フタル酸アルキルエステル類、およびトリメリット酸アルキルエステル類等を挙げることができる。
【0020】
反応温度は、用いる反応原料により異なるが、 100〜300 ℃の範囲で適宜選択でき、好ましくは 150〜250 ℃である。また、用いる原料化合物により、反応を減圧下で行うこともでき、その場合の減圧度としては50〜500torr 、さらに好ましくは 100〜400torr を選択することができる。
【0021】
本発明の方法によれば、種々の合成中間体として工業的に有用なα,β−不飽和アルデヒドをβ−ヒドロキシアルデヒドから、高価な試薬を用いずに、廃棄物の生成も少量で、異性化反応等を行うことなく、高収率、高選択的に製造することが可能である。
【0022】
本発明においては、反応生成物は脱離水と共に得られるが、これらは常法により速やかに分離するのが好ましい。こうして、本発明の目的物であるα,β−不飽和アルデヒドを高純度にかつ高収率で製造することができる。
【0023】
【実施例】
以下、実施例および比較例により本発明をさらに詳しく説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0024】
実施例1
回転攪拌棒、内部温度計、クライゼン蒸留装置および定量滴下装置を付した100ml 4つ口フラスコに無水フタル酸(5.0g、33.8mmol)、3−ヒドロキシ−3−メチルブタナール(3.5g、33.8mmol)を仕込んだ。マントルヒーターにて 160℃まで昇温を行い、 400torrに減圧した。3−メチル−2−ブテナールおよび脱離水が留出し始めたら滴下装置より3−ヒドロキシ−3−メチルブタナールを2g/hrの流量で8時間滴下を行い、生成物を留出させた。滴下終了後さらに2時間減圧下で加熱を続け、系中に残存する生成物を留出させた。2時間毎に留分をGLCにより分析を行い、表1に示す結果が得られた。総仕込量23.5g、総留分量21.0g、回収率89.4%、反応率93〜96%、異性体選択率94〜95%、収率(=回収率×反応率×異性体選択率)80.7%であった。
【0025】
【表1】
Figure 0003923133
【0026】
実施例2
回転攪拌棒、内部温度計、クライゼン蒸留装置および定量滴下装置を付した300ml セパラブルフラスコに無水トリメリット酸(24.3g、126mmol)、3−ヒドロキシ−3−メチルブタナール(12.8g、126mmol )、および溶媒としてフタル酸ジ2−エチルヘキシルエステル(80g)を仕込んだ。マントルヒーターにて 160℃まで昇温を行い、 300torrに減圧した。3−メチル−2−ブテナールおよび脱離水が留出し始めたら、滴下装置より3−ヒドロキシ−3−メチルブタナールを5g/hrの流量で連続30時間滴下を行い、生成物を留出させた。滴下終了後さらに2時間減圧下で加熱を続け、系中に残存する生成物を留出させた。4時間毎の留分をGLCにより分析を行い、表2に示す結果が得られた。総仕込量 165.0g、総留分量 156.0g、回収率94.5%、反応率96〜98%、異性体選択率97〜98%、収率(=回収率×反応率×異性体選択率)89.8%であった。
【0027】
【表2】
Figure 0003923133
【0028】
比較例1〜3
回転攪拌子、内部温度計、滴下ロート、クライゼン蒸留装置を付した 200ml4つ口フラスコに流動パラフィン(20g)、および表3に示す触媒を表3に示す量仕込んだ。マントルヒーターを用いて、反応装置を160 ℃まで昇温し、400torr に減圧した。滴下ロートより3−ヒドロキシ−3−メチルブタナール(5g、49.0mmol)を30分かけてゆっくりと加え、生成物および脱離水を留出させた。留分中のGLC分析の結果を表3に示した。
【0029】
【表3】
Figure 0003923133
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an α, β-unsaturated aldehyde, and more specifically, industrially advantageous production for producing α, β-unsaturated aldehyde with high yield and high selectivity using β-hydroxyaldehyde as a raw material. It is about the method.
[0002]
[Prior art and problems to be solved by the invention]
Α, β-Unsaturated aldehydes such as 3-methyl-2-butenal (senesionaldehyde) are industrially very useful as various synthetic intermediates or as raw materials for pharmaceuticals, agricultural chemicals, fragrances, resins and the like. .
[0003]
Conventionally, as a method for producing 3-methyl-2-butenal, which is a typical compound of such α, β-unsaturated aldehydes, the following methods are known.
(1) A method of oxidizing prenole with air in the presence of a silver crystal catalyst (for example, JP-A-53-137906)
(2) A method in which prenol is oxidized with nickel peroxide to lead to an aldehyde (for example, Japanese Patent Publication No. 55-27893)
(3) A method of oxidizing prenol with air in the presence of ruthenium oxide (for example, J. Org. Chem., 1984, 49, 3435-3436)
(4) A method of subjecting 3-hydroxy-3-methylbutanal to a dehydration reaction in the presence of an acidic catalyst such as sulfuric acid or a salt thereof, p-toluenesulfonic acid or the like, or a basic catalyst such as pyridine (Japanese Patent Laid-Open No. 8-176054). Issue gazette).
[0004]
However, the method (1) above has a high reaction temperature, and there is a risk of explosion due to air oxidation, and the method (2) requires a stoichiometric amount of a metal peroxide catalyst. There is a big problem in storage and disposal, the method (3) has the same problem as (1) and uses an expensive catalyst, and the method (4) In addition to the α, β-unsaturated aldehyde, the isomer β, γ-unsaturated aldehyde is obtained in a considerable proportion, and this β, γ-unsaturated aldehyde is separated or isomerized to obtain α, β-unsaturated aldehyde. There is a problem that a process for making a saturated aldehyde is required and the operation is complicated, and an industrially advantageous method for obtaining an α, β-unsaturated aldehyde with high yield and high selectivity is desired. .
[0005]
Accordingly, an object of the present invention is to industrially produce an α, β-unsaturated aldehyde from β-hydroxyaldehyde with high yield and high selectivity without using an expensive reagent and suppressing generation of waste. It is to provide an advantageous method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors continuously fed β-hydroxyaldehyde in the presence of an aromatic polybasic carboxylic acid or its anhydride to cause a reaction. The present invention was completed by finding that α, β-unsaturated aldehyde can be obtained in high yield and high selectivity without using an expensive reagent and in a small amount of waste.
[0007]
That is, the present invention provides a compound of the general formula (I) in the presence of an aromatic polybasic carboxylic acid or an anhydride thereof.
[0008]
[Formula 4]
Figure 0003923133
[0009]
(In the formula, R 1 , R 2 and R 3 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms. However, R 1 and R 3 together form a ring. May be good.)
In the general formula (II), the reaction is carried out while continuously supplying β-hydroxyaldehyde represented by the formula at 100 to 300 ° C. while removing the product from the reaction system. The manufacturing method of the (alpha), (beta)-unsaturated aldehyde represented is provided.
[0010]
[Chemical formula 5]
Figure 0003923133
[0011]
(Wherein R 1 , R 2 and R 3 have the same meaning as described above.)
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
The aromatic polybasic carboxylic acid used in the present invention may be any one as long as it easily forms an acid anhydride and the boiling point of the acid anhydride is higher than the boiling point of the product. Specific examples of aromatic polybasic carboxylic acids and their anhydrides from the viewpoint of general use include phthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride Etc. are preferred, and phthalic anhydride and trimellitic anhydride are more preferred.
[0014]
It is considered that the aromatic polybasic carboxylic acid is converted to an anhydride during the reaction and acts as a dehydrating agent, and it is preferable to use the anhydride directly rather than the acid. In addition, it is preferable that terephthalic acid or the like, which is difficult to form an acid anhydride, coexists with an acid anhydride because it becomes an acid catalyst. These can be used alone or as a mixture.
[0015]
The amount of the aromatic polybasic carboxylic acid or its anhydride used is preferably 0.1 to 50 mol% with respect to the total amount of raw material β-hydroxyaldehyde. Within this range, the reactivity is particularly high and the reaction rate is improved. Further, the manufacturing cost is low, and the generation of waste can be suppressed. Especially, 1-30 mol% is more preferable, and 5-30 mol% is further more preferable.
[0016]
As β-hydroxyaldehyde represented by the general formula (I) used in the present invention, it is necessary to carry out the reaction while continuously removing the product out of the reaction system. Low boiling compounds are preferred. Specific examples of such β-hydroxyaldehyde include 3-hydroxybutanal, 3-hydroxy-3-methylbutanal, 3-hydroxypentanal, 3-hydroxyhexanal, 2-hydroxycyclopentanecarbaldehyde, 2-hydroxycyclohexane. And carbaldehyde. Particularly preferred is 3-hydroxy-3-methylbutanal represented by the following formula (III).
[0017]
[Chemical 6]
Figure 0003923133
[0018]
In the reaction of the present invention, β-hydroxyaldehyde is continuously fed into the reaction system at 100 to 300 ° C. in the presence of an aromatic polybasic carboxylic acid or its anhydride, and the product is reacted rapidly. Perform while removing out of the system. Here, “continuous” means that the reaction is carried out by supplying the raw material β-hydroxyaldehyde to the reaction system under the condition that the product is quickly removed from the reaction system. Therefore, it does not simply mean that the raw material is continuously supplied to the reaction system or the product is continuously obtained. This is because if the product α, β-unsaturated aldehyde is allowed to stand at a high temperature, a decomposition reaction, a polymerization reaction, etc. occur and the yield decreases, and this is a technique for the purpose of avoiding this. Therefore, for example, the reaction is carried out at a temperature not lower than the boiling point of the product and not higher than the boiling point of the acid anhydride, and the raw material compounds are continuously reacted under conditions such that the product is quickly removed from the reaction system after generation. The case where the product is fed to the system and the product is continuously removed from the reaction system is a typical example of “continuous” in the present invention. Therefore, as a supply mode of the raw material compound, it may be continuously supplied at a predetermined supply rate or may be supplied intermittently. What is necessary is just to determine the supply rate of a raw material compound suitably according to the capability of an apparatus. In order to stably operate the apparatus, it is preferable to continuously supply the raw material compound at a constant rate and obtain the product at a constant rate. In addition, an inert gas may be blown into the system to help distill the product.
[0019]
Although the reaction can be carried out without a solvent, it can also be carried out using a high-boiling solvent which is inert under the reaction conditions. Examples of the inert high-boiling solvent include liquid paraffin, hydrocarbons such as alkyl-substituted benzene, benzoic acid alkyl esters, phthalic acid alkyl esters, trimellitic acid alkyl esters, and the like.
[0020]
The reaction temperature varies depending on the reaction raw materials to be used, but can be appropriately selected within a range of 100 to 300 ° C, and preferably 150 to 250 ° C. The reaction can also be carried out under reduced pressure, depending on the starting compound used, and the degree of reduced pressure in that case can be selected from 50 to 500 torr, more preferably from 100 to 400 torr.
[0021]
According to the method of the present invention, α, β-unsaturated aldehyde, which is industrially useful as various synthetic intermediates, can be produced from β-hydroxyaldehyde without using an expensive reagent, producing a small amount of waste, and isomeric. High-yield and high-selectivity production is possible without performing a crystallization reaction or the like.
[0022]
In the present invention, the reaction product is obtained together with the desorbed water, but these are preferably separated promptly by a conventional method. Thus, the α, β-unsaturated aldehyde which is the object of the present invention can be produced with high purity and high yield.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these Examples.
[0024]
Example 1
Into a 100 ml four-necked flask equipped with a rotary stirring bar, internal thermometer, Claisen distillation apparatus and quantitative dropping apparatus, phthalic anhydride (5.0 g, 33.8 mmol), 3-hydroxy-3-methylbutanal (3.5 g, 33.8 mmol) ). The temperature was raised to 160 ° C with a mantle heater, and the pressure was reduced to 400 torr. When 3-methyl-2-butenal and desorbed water began to distill, 3-hydroxy-3-methylbutanal was dropped from the dropping device at a flow rate of 2 g / hr for 8 hours to distill the product. After completion of the dropwise addition, heating was continued under reduced pressure for 2 hours to distill off the product remaining in the system. The fraction was analyzed by GLC every 2 hours, and the results shown in Table 1 were obtained. Total charge 23.5g, total fraction 21.0g, recovery rate 89.4%, reaction rate 93-96%, isomer selectivity 94-95%, yield (= recovery rate x reaction rate x isomer selectivity) 80.7% Met.
[0025]
[Table 1]
Figure 0003923133
[0026]
Example 2
In a 300 ml separable flask equipped with a rotary stirring bar, internal thermometer, Claisen distillation apparatus and quantitative dropping apparatus, trimellitic anhydride (24.3 g, 126 mmol), 3-hydroxy-3-methylbutanal (12.8 g, 126 mmol), And di-2-ethylhexyl phthalate (80 g) was charged as a solvent. The temperature was raised to 160 ° C with a mantle heater, and the pressure was reduced to 300 torr. When 3-methyl-2-butenal and desorbed water began to distill, 3-hydroxy-3-methylbutanal was dropped from the dropping device continuously at a flow rate of 5 g / hr for 30 hours to distill the product. After completion of the dropwise addition, heating was continued under reduced pressure for 2 hours to distill off the product remaining in the system. The fractions every 4 hours were analyzed by GLC, and the results shown in Table 2 were obtained. Total charge 165.0g, total fraction 156.0g, recovery rate 94.5%, reaction rate 96-98%, isomer selectivity 97-98%, yield (= recovery rate x reaction rate x isomer selectivity) 89.8% Met.
[0027]
[Table 2]
Figure 0003923133
[0028]
Comparative Examples 1-3
A 200 ml four-necked flask equipped with a rotary stirrer, an internal thermometer, a dropping funnel, and a Claisen distillation apparatus was charged with liquid paraffin (20 g) and the catalyst shown in Table 3 in the amounts shown in Table 3. Using a mantle heater, the reactor was heated to 160 ° C. and depressurized to 400 torr. From the dropping funnel, 3-hydroxy-3-methylbutanal (5 g, 49.0 mmol) was slowly added over 30 minutes to distill off the product and desorbed water. The results of GLC analysis in the fraction are shown in Table 3.
[0029]
[Table 3]
Figure 0003923133

Claims (4)

芳香族多塩基性カルボン酸又はその無水物の存在下に、一般式(I)
Figure 0003923133
(式中、R1, R2, R3は、それぞれ水素原子又は炭素数1〜5の直鎖又は分岐のアルキル基を示す。ただしR1とR3は一緒になって環を形成してもよい。)
で表されるβ−ヒドロキシアルデヒドを 100〜300 ℃で反応系内に連続的に供給しつつ、且つ生成物を反応系外に除去しながら反応させることを特徴とする、一般式(II)で表されるα,β−不飽和アルデヒドの製造方法。
Figure 0003923133
(式中、R1, R2及びR3は前記と同じ意味を示す。)
In the presence of an aromatic polybasic carboxylic acid or anhydride thereof, a compound of the general formula (I)
Figure 0003923133
(In the formula, R 1 , R 2 and R 3 each represent a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, provided that R 1 and R 3 together form a ring. May be good.)
In the general formula (II), the reaction is carried out while continuously supplying β-hydroxyaldehyde represented by the formula at 100 to 300 ° C. while removing the product from the reaction system. A method for producing an α, β-unsaturated aldehyde represented.
Figure 0003923133
(Wherein R 1 , R 2 and R 3 have the same meaning as described above.)
芳香族多塩基性カルボン酸又はその無水物の使用量が、β−ヒドロキアルデヒドの総仕込量に対し 0.1〜50モル%である請求項1記載の製造方法。The production method according to claim 1, wherein the amount of the aromatic polybasic carboxylic acid or its anhydride used is 0.1 to 50 mol% with respect to the total amount of β-hydroxyaldehyde. 芳香族多塩基性カルボン酸又はその無水物が、無水フタル酸、無水トリメリット酸又はこれらの混合物である請求項1又は2記載の製造方法。The production method according to claim 1 or 2, wherein the aromatic polybasic carboxylic acid or anhydride thereof is phthalic anhydride, trimellitic anhydride or a mixture thereof. β−ヒドロキシアルデヒドが、下記式(III) で表される3−ヒドロキシ−3−メチルブタナールである請求項1〜3のいずれか一項に記載の製造方法。
Figure 0003923133
The production method according to any one of claims 1 to 3, wherein the β-hydroxyaldehyde is 3-hydroxy-3-methylbutanal represented by the following formula (III).
Figure 0003923133
JP08347597A 1997-04-02 1997-04-02 Method for producing α, β-unsaturated aldehyde Expired - Fee Related JP3923133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08347597A JP3923133B2 (en) 1997-04-02 1997-04-02 Method for producing α, β-unsaturated aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08347597A JP3923133B2 (en) 1997-04-02 1997-04-02 Method for producing α, β-unsaturated aldehyde

Publications (2)

Publication Number Publication Date
JPH10279514A JPH10279514A (en) 1998-10-20
JP3923133B2 true JP3923133B2 (en) 2007-05-30

Family

ID=13803501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08347597A Expired - Fee Related JP3923133B2 (en) 1997-04-02 1997-04-02 Method for producing α, β-unsaturated aldehyde

Country Status (1)

Country Link
JP (1) JP3923133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078983A (en) * 2007-09-25 2009-04-16 Nippon Zeon Co Ltd Continuous preparation method for 2-alkylidene cycloalkanone
JP2011219395A (en) * 2010-04-07 2011-11-04 Kuraray Co Ltd METHOD FOR PRODUCING α,β-UNSATURATED ALDEHYDE
IL311865A (en) * 2021-10-12 2024-06-01 Kao Corp Compound producing method including step for isomerizing α,β-unsaturated ketone

Also Published As

Publication number Publication date
JPH10279514A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
Takaya et al. Rhodium-catalyzed asymmetric 1, 4-addition of 2-alkenyl-1, 3, 2-benzodioxaboroles to α, β-unsaturated ketones
Wright et al. Vinyl triflates: a mechanistic study on their formation from carbonyl compounds and triflic anhydride
JP3923133B2 (en) Method for producing α, β-unsaturated aldehyde
FR2658187A1 (en) NOVEL ALPHA-HYDROXYL ACIDS, PREPARATION METHOD AND USE THEREOF
Zhang et al. The cleavage of p-nitrophenylhydrazones and semicarbazones with ammonium chlorochromate adsorbed on alumina under non-aqueous conditions
JP2844178B2 (en) Method for producing α, β-unsaturated carboxylic acid ester
DE2041563C3 (en) Process for the vinylation of aromatic compounds
JP5297036B2 (en) Process for producing a mixture of 2- (1-hydroxyalkyl) cycloalkanone and its dehydrated product
JPS5946932B2 (en) Production method of p-cresol
JP2517304B2 (en) Method for producing bromoacetonitrile
JP4464274B2 (en) Process for producing alkylidene-substituted 1,4-dione derivatives
GB1561464A (en) Oxidation of alkaryl compounds
US4239702A (en) Process for preparing aromatic aldehydes and alcohols
JPH05286902A (en) Production of alpha-chloro-beta-ketoester derivative
KR820001844B1 (en) Method for preparation of benzaldehyde
JP4611737B2 (en) Process for producing macrocyclic ketones by Dieckmann condensation in the gas phase
JP3655540B2 (en) Process for producing carbocyclic aromatic carboxylic acids
JP4464275B2 (en) Process for producing alkylidene-substituted 1,4-dione derivatives
JP4349678B2 (en) Method for producing dihydrocitral
EP0362309B1 (en) (ethylenedioxo-3,3 cyclohexyl)-4 acetophenone and derivatives thereof, processes for preparing them and use of these compounds
JPH09509965A (en) Improved method for producing beta-diketones
JPH0417171B2 (en)
CN116143598A (en) Method for synthesizing alpha, beta-unsaturated ketone through palladium-catalyzed carbonylation Suzuki reaction
JP2005533867A (en) Method for hydroxylating aromatic compounds containing dioxa-heterocyclic systems
JPS6121946B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees