JPH05252000A - Signal processing unit - Google Patents

Signal processing unit

Info

Publication number
JPH05252000A
JPH05252000A JP4823892A JP4823892A JPH05252000A JP H05252000 A JPH05252000 A JP H05252000A JP 4823892 A JP4823892 A JP 4823892A JP 4823892 A JP4823892 A JP 4823892A JP H05252000 A JPH05252000 A JP H05252000A
Authority
JP
Japan
Prior art keywords
adder
output
filter
coefficient
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4823892A
Other languages
Japanese (ja)
Inventor
Koji Kojima
浩嗣 小島
Hideki Miyasaka
秀樹 宮坂
Hiromi Matsushige
博実 松重
Yutaka Okada
豊 岡田
Satoshi Tanaka
聡 田中
Shoji Hanamura
昭次 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4823892A priority Critical patent/JPH05252000A/en
Publication of JPH05252000A publication Critical patent/JPH05252000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To obtain an adaptive equalizer with a small circuit scale by using an infinite impulse response filter (IIR filter) having a low pass filter characteristic (cut-off frequency) of the same degree to that of a moving mean circuit. CONSTITUTION:A coefficient C of an adaptive filter comprising a finite impulse response filter (FIR filter) 8 is used for a control variable. A square mean value of an error e (=Y-a) between an output Y of the FIR filter 8 and a value (a) of an output expected value 3 is used for an evaluation quantity. The evaluation quantity is partially differentiated by using the coefficient C and the revision quantity of the coefficient C is obtained. In the case of calculating the coefficient revision quantity, an IIR filter 7 is used to obtain a mean value equivalently. When the IIR filter 7 is expressed by a transfer function, the transfer function has at least one pole. Then the circuit scale is reduced by selecting the coefficient to decide the cut-off frequency of the IIR filter 7 to be one over 2's power or at most the sum or the difference of them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、制御のための信号処理
装置に係り、特に、適応等化器に適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal processing device for control, and particularly to an adaptive equalizer.

【0002】[0002]

【従来の技術】従来、適応等化器は、特開昭59−134927
号公報に示された回路で実現されていた。これは、山登
り法のなかの、特に、ADA(Amplitude Dependent Al
gorithms)法と呼ばれる適応アルゴリズムを、応用した
ものである。このアルゴリズムは、制御変数C1,C
2,…Cnによって挙動を決定される系を仮定したと
き、その系の評価関数を極に導くように制御変数を、逐
次、更新するもので、評価関数として誤差の2乗平均を
用いている。
2. Description of the Related Art A conventional adaptive equalizer is disclosed in Japanese Patent Laid-Open No. 59-134927.
It was realized by the circuit shown in the publication. This is the ADA (Amplitude Dependent Al
gorithms) method is an application of an adaptive algorithm. This algorithm uses control variables C1 and C
2, ... Assuming a system whose behavior is determined by Cn, the control variables are sequentially updated so that the evaluation function of the system is led to a pole, and the mean square of the error is used as the evaluation function. ..

【0003】この従来例は、平均化回路によって誤差の
2乗平均を求めている。この平均化回路を実現しようと
すれば、図2に示す移動平均回路1になる。図2の回路
は、基本的な適応フィルタの構成を示したものである。
有限インパルス応答フィルタ(Finite Impulse Respons
e Filter;以後これをFIRフィルタと呼ぶ)で構成さ
れた適応フィルタの係数を制御変数C−2,C−1,…
C2としたものである。等化出力2と出力期待値3との
差から得られた誤差信号4と入力データの積は、誤差の
自乗をフィルタの係数で偏微分したものに相当し、フィ
ルタ係数をベクトルとして扱う場合の最大傾斜方向を表
わすベクトルとなる。これにフィードバック・ゲインα
を掛けたものの平均値をフィルタ係数の更新に用いるこ
とにより、2乗平均誤差を最小とする適応等化器とな
る。
In this conventional example, the mean square of the error is calculated by an averaging circuit. In order to realize this averaging circuit, the moving average circuit 1 shown in FIG. 2 is obtained. The circuit of FIG. 2 shows the configuration of a basic adaptive filter.
Finite Impulse Respons
e Filter; hereinafter referred to as FIR filter), the coefficients of the adaptive filter configured by the control variables C-2, C-1, ...
It is C2. The product of the error signal 4 obtained from the difference between the equalized output 2 and the expected output value 3 and the input data corresponds to the square of the error partially differentiated by the coefficient of the filter, and when the filter coefficient is treated as a vector, It is a vector representing the maximum tilt direction. Feedback gain α
By using the average value of those multiplied by for updating the filter coefficient, an adaptive equalizer that minimizes the root mean square error is obtained.

【0004】[0004]

【発明が解決しようとする課題】上記従来回路は、移動
平均回路1が、多数の遅延素子5と多入力加算器61に
よって構成され、回路規模の増大を招くという問題が生
じることがわかった。図2では、簡略化のため、各係数
ごとに備えた係数更新回路を1係数についてのみ示して
ある。1係数のための移動平均回路1は、4個の遅延素
子5と、5入力加算器61よりなる。5入力加算器61
は、通常の2入力加算器4個で構成することができ、回
路規模もそれと同等になる。
In the above-mentioned conventional circuit, it has been found that the moving average circuit 1 is composed of a large number of delay elements 5 and a multi-input adder 61, which causes a problem that the circuit scale is increased. In FIG. 2, for simplification, the coefficient updating circuit provided for each coefficient is shown only for one coefficient. The moving average circuit 1 for 1 coefficient includes four delay elements 5 and a 5-input adder 61. 5-input adder 61
Can be composed of four ordinary 2-input adders, and the circuit scale becomes equivalent to that.

【0005】[0005]

【課題を解決するための手段】図1に示すように、移動
平均回路1を、それと同程度の低域濾波特性(遮断周波
数)を持つ無限インパルス応答フィルタ(Infinite Impu
lse Response Filter;以後これをIIRフィルタと呼
ぶ)で置換することによって解決される。
As shown in FIG. 1, a moving average circuit 1 is provided with an infinite impulse response filter (Infinite Impu Response Filter) having a low-pass filtering characteristic (cutoff frequency) equivalent to that of the moving average circuit 1.
lse Response Filter; hereinafter referred to as IIR filter).

【0006】[0006]

【作用】従来の移動平均回路は、外乱等によって想定し
ない入力が系に加えられた場合に、係数の差分が急激に
変化し等化器の動作が安定点からずれることを防止する
ための、低域濾波特性を示すFIRフィルタとみなすこ
とが可能である。通常、遮断周波数は、顕著な外来要因
を除去するように決められる。従って、遮断周波数は厳
密な精度を要求されないため、同程度の遮断周波数を有
するIIRフィルタで代用することが可能であることが
わかった。
In the conventional moving average circuit, when an unexpected input is applied to the system due to a disturbance or the like, the difference between the coefficients is suddenly changed to prevent the operation of the equalizer from deviating from the stable point. It can be regarded as an FIR filter showing a low-pass filtering characteristic. The cutoff frequency is usually determined to eliminate significant extraneous factors. Therefore, it has been found that the cutoff frequency does not require strict accuracy, and thus an IIR filter having the same cutoff frequency can be used as a substitute.

【0007】[0007]

【実施例】本発明の第1の実施例を図1に示す。本実施
例はFIRフィルタ8の出力Yと出力期待値aの誤差e
=Y−aの自乗平均値を評価量Jとし、この評価量Jを
最小にする適応フィルタである。ここでJ=E(e2)。
ただし、Eは平均値を求める演算。山登り法では、Jを
係数Cで偏微分し、その量より係数の更新量を求める。
FIG. 1 shows a first embodiment of the present invention. In this embodiment, the error e between the output Y of the FIR filter 8 and the expected output value a
= Y-a is the mean square value of the evaluation amount J, and the evaluation amount J is an adaptive filter that is minimized. Where J = E (e 2 ).
However, E is a calculation for obtaining an average value. In the hill climbing method, J is partially differentiated by the coefficient C, and the updated amount of the coefficient is obtained from the amount.

【0008】本実施例の特徴は、係数更新量を算出する
際、等価的に平均値を求めるためにIIRフィルタを用
いる点にある。このIIRフィルタは伝達関数で表現す
ると、少なくとも一つの極を有するものである。
The feature of this embodiment is that an IIR filter is used to equivalently obtain an average value when calculating the coefficient update amount. This IIR filter has at least one pole when expressed by a transfer function.

【0009】本発明の第1の実施例のより具体的な実施
例を図3に示す。等化を行なうFIRフィルタ8と、等
化出力2から出力期待値3を引いて等化誤差4を求め、
係数の更新を行なう回路よりなる適応等化器である。こ
こでIIRフィルタ71は、図2の移動平均回路と同程
度の遮断特性を有するものである。ここでa,bは、フ
ィルタの遮断周波数を決める係数である。係数値を2の
冪乗分の1若しくはせいぜいその中の二つの和若しくは
差に選べば、回路規模は極めて小さくなる。
A more specific embodiment of the first embodiment of the present invention is shown in FIG. An equalization error 4 is obtained by subtracting the expected output value 3 from the equalization output 2 and the FIR filter 8 for equalization.
The adaptive equalizer is composed of a circuit for updating coefficients. Here, the IIR filter 71 has a cutoff characteristic similar to that of the moving average circuit of FIG. Here, a and b are coefficients that determine the cutoff frequency of the filter. If the coefficient value is selected to be a power of 2 or at most two sums or differences thereof, the circuit scale becomes extremely small.

【0010】図4に、図2に示した5入力の移動平均回
路1と係数a=0.25,b=0.5とした図3のII
Rフィルタ71の周波数特性を示す。横軸は標本化周波
数で規格化した周波数、縦軸は直流利得を1に規格化し
た振幅利得である。両者はほぼ同等の遮断周波数を有す
ることがわかる。
In FIG. 4, the moving average circuit 1 of 5 inputs shown in FIG. 2 and the coefficient a = 0.25, b = 0.5 are used, and II of FIG.
The frequency characteristic of the R filter 71 is shown. The horizontal axis represents the frequency normalized by the sampling frequency, and the vertical axis represents the amplitude gain in which the DC gain is normalized to 1. It can be seen that both have almost the same cutoff frequency.

【0011】遮断周波数を上記の実施例よりも低く設定
したい場合には、移動平均回路1をIIRフィルタ71
に置き換えたことによる回路規模の削減効果は、更に大
きくなる。移動平均回路1を用いて遮断周波数を下げる
ためには、多数の遅延素子と多入力加算器を備えて、平
均するデータの数を増やす必要がある。一方、IIRフ
ィルタ71を用いれば、係数bの値を1に近づけること
によって回路規模のわずかな増加で遮断周波数を下げる
ことができる。
When it is desired to set the cutoff frequency lower than that of the above embodiment, the moving average circuit 1 is connected to the IIR filter 71.
The effect of reducing the circuit scale due to the replacement by In order to reduce the cutoff frequency using the moving average circuit 1, it is necessary to increase the number of data to be averaged by providing a large number of delay elements and a multi-input adder. On the other hand, if the IIR filter 71 is used, the cutoff frequency can be lowered by slightly increasing the circuit scale by bringing the value of the coefficient b closer to 1.

【0012】図5に示した周波数特性は、係数を調節し
て遮断周波数の低いIIRフィルタを実現した例であ
る。b=3/4,7/8,15/16とするには、b=
1/2の場合に比べて、減算器を1個だけ増やせば良
い。それぞれ、b=1−1/4,1−1/8,1−1/
16のように、2の冪乗数の差で表現されるためであ
る。
The frequency characteristic shown in FIG. 5 is an example of realizing an IIR filter having a low cutoff frequency by adjusting the coefficient. To set b = 3/4, 7/8, 15/16, b =
Only one subtractor needs to be added as compared with the case of 1/2. B = 1-1 / 4, 1-1 / 8, 1-1 /
This is because it is represented by the difference of powers of 2 as in 16.

【0013】本発明の第2の実施例を図6に示す。図6
は、FIRフィルタで構成した等化フィルタのタップ数
と同じ回数だけ演算器を多重使用して実現したIIRフ
ィルタ回路である。係数a,bは、それぞれ2の冪乗、
1−2の冪乗で与えており、3個の加算器6と5個の遅
延素子5と6個のラッチ回路9で構成できる。2の冪乗
の演算10は単に配線のシフトで良く、回路素子を必要
としない。遅延素子5は、FIRフィルタで構成した等
化フィルタのタップ数と同じ数だけの記憶素子を備え、
前段の加算器の出力を順次格納し、二つの出力ポートに
別のタイミングで順次出力する。遅延素子5の出力は、
フィードフォワード側とフィードバック側に別のタイミ
ングで信号を供給する必要があるため、2個の出力ポー
トを持つ。
A second embodiment of the present invention is shown in FIG. Figure 6
Is an IIR filter circuit that is realized by multiple use of arithmetic units as many times as the number of taps of the equalization filter configured by the FIR filter. Coefficients a and b are powers of 2 respectively,
It is given by a power of 1-2, and can be composed of three adders 6, five delay elements 5 and six latch circuits 9. The power of 2 operation 10 is simply a wiring shift and does not require a circuit element. The delay element 5 includes as many storage elements as the number of taps of the equalization filter configured by the FIR filter,
The outputs of the adders in the preceding stages are sequentially stored and are sequentially output to the two output ports at different timings. The output of the delay element 5 is
Since it is necessary to supply signals to the feedforward side and the feedback side at different timings, it has two output ports.

【0014】このフィルタの回路規模は、1290ゲー
トになる。一方、図2に示した5入力の移動平均回路
は、4個の加算器と25個の遅延素子と10個のラッチ
回路で構成される。回路規模は3380ゲートになる。
以上のように、移動平均回路の代わりにIIRフィルタ
を用いることにより、この部分の回路規模を約1/3に
することができる。遮断周波数をより低く設定したい場
合には、回路の削減効果はさらに大きくなる。IIRフ
ィルタでは、係数値を調整するだけで特に回路の追加は
必要ない。移動平均回路では、入力数を増やすことで遮
断周波数の低減に対応しているため、この入力数に比例
して回路規模を増やす必要が生じる。移動平均回路も演
算器の多重使用により構成することが可能であるが、演
算速度が高く、高い多重度で動作させても、遅延素子は
削減できない。そのため、元来多数の遅延を必要とする
移動平均回路では、演算器多重使用の効果が、あまり期
待できない。
The circuit scale of this filter is 1290 gates. On the other hand, the 5-input moving average circuit shown in FIG. 2 is composed of 4 adders, 25 delay elements, and 10 latch circuits. The circuit scale is 3380 gates.
As described above, by using the IIR filter instead of the moving average circuit, the circuit scale of this portion can be reduced to about 1/3. When it is desired to set the cutoff frequency lower, the reduction effect of the circuit is further increased. The IIR filter only adjusts the coefficient value and does not require any additional circuit. In the moving average circuit, since the cutoff frequency is reduced by increasing the number of inputs, it is necessary to increase the circuit scale in proportion to the number of inputs. The moving average circuit can also be configured by using multiple arithmetic units, but the calculation speed is high, and the delay elements cannot be reduced even when operated with high multiplicity. Therefore, in a moving average circuit which originally requires a large number of delays, the effect of using multiple arithmetic units cannot be expected so much.

【0015】以上は、遮断周波数を厳密に規定する必要
のない場合について記載した。遮断周数を厳密に規定し
たりノッチ特性を持たせたい場合には、高次のIIRフ
ィルタを採用すると有効である。
The case where it is not necessary to strictly specify the cutoff frequency has been described above. It is effective to employ a high-order IIR filter in order to strictly define the cutoff frequency and to have a notch characteristic.

【0016】[0016]

【発明の効果】本発明によれば、係数差分の平滑回路の
規模を1/2以下にすることができる。削減効果は、演
算器の多重化を行うとさらに大きい。また、遮断周波数
の変動に対して回路規模の増加なく対応できる。
According to the present invention, the scale of the coefficient difference smoothing circuit can be reduced to 1/2 or less. The reduction effect is even greater when the arithmetic units are multiplexed. Further, it is possible to deal with the fluctuation of the cutoff frequency without increasing the circuit scale.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の回路図。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】従来例の回路図。FIG. 2 is a circuit diagram of a conventional example.

【図3】本発明の第1の実施例のより具体的な実施例の
回路図。
FIG. 3 is a circuit diagram of a more specific embodiment of the first embodiment of the present invention.

【図4】本発明の回路特性を従来例と比較した説明図。FIG. 4 is an explanatory diagram comparing the circuit characteristics of the present invention with a conventional example.

【図5】本発明の回路特性の説明図。FIG. 5 is an explanatory diagram of circuit characteristics of the present invention.

【図6】本発明の第2の実施例の回路図。FIG. 6 is a circuit diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…移動平均回路、2…等化出力、3…出力期待値、4
…等化誤差、5…遅延回路、6…加算器、7…IIRフ
ィルタ、8…FIRフィルタ。
1 ... Moving average circuit, 2 ... Equalized output, 3 ... Output expected value, 4
... Equalization error, 5 ... Delay circuit, 6 ... Adder, 7 ... IIR filter, 8 ... FIR filter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 豊 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田中 聡 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 花村 昭次 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体設計開発センタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Okada 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Satoshi Tanaka 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory (72) Inventor Shoji Hanamura 5-20-1 Kamimizuhoncho, Kodaira-shi, Tokyo Hitachi Ltd. Semiconductor Design Development Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1つ以上の制御変数で挙動を変
える系と、前記系の挙動を評価関数で評価し、その結果
によって前記制御変数を変更する系よりなる信号処理装
置において、前記評価関数を前記制御変数で偏微分もし
くは差分して得られた関数を伝達関数として表現したと
きに、少なくとも一つの極を有するように、前記評価関
数を選んだことを特徴とする信号処理装置。
1. A signal processing device comprising a system that changes behavior with at least one or more control variables, and a system that evaluates the behavior of the system with an evaluation function and changes the control variable according to the result. The signal processing device is characterized in that the evaluation function is selected so as to have at least one pole when a function obtained by performing partial differentiation or difference with the control variable is expressed as a transfer function.
【請求項2】請求項1において、標本化された信号を入
力し係数値を増減できる有限インパルス応答フィルタ
と、前記有限インパルス応答フィルタの出力値から前記
出力に期待される値を減じて得られた誤差信号をもとに
して前記係数値を増減するための差分信号を求める信号
処理装置において、前記差分信号の急激な変動を抑制す
る無限インパルス応答フィルタを備えた信号処理装置。
2. A finite impulse response filter capable of increasing or decreasing a coefficient value by inputting a sampled signal, and a value obtained by subtracting an expected value of the output from an output value of the finite impulse response filter. A signal processing device for obtaining a differential signal for increasing or decreasing the coefficient value based on the error signal, the signal processing device comprising an infinite impulse response filter for suppressing abrupt fluctuation of the differential signal.
【請求項3】請求項2において、前記無限インパルス応
答フィルタを、前記差分信号を第1の入力端子に入力す
る第1の加算器と、前記第1の加算器の出力に1タイム
・スロットの遅延を与える遅延回路と、前記遅延回路の
出力に第1の定数を乗じて第1の加算器の第2の入力端
子に与える回路と、前記第1の加算器の出力に前記遅延
回路の出力を加える第2の加算器と、前記第2の加算器
の出力に第2の定数を乗じる回路によって構成した信号
処理装置。
3. The infinite impulse response filter according to claim 2, wherein a first adder for inputting the differential signal to a first input terminal and an output of the first adder for one time slot are provided. A delay circuit for giving a delay, a circuit for multiplying the output of the delay circuit by a first constant and applying it to the second input terminal of the first adder, and an output of the first adder for the output of the delay circuit And a circuit for multiplying the output of the second adder by a second constant.
【請求項4】請求項2において、前記入力信号を第1の
入力端子に与えた第1の加算器と、前記第1の加算器の
出力を第1の入力端子に与えられた第2の加算器と、前
記第1の加算器の出力を格納できる遅延回路群と、前記
遅延回路群の第1の出力信号を第1の定数倍して前記第
1の加算器の第2の入力端子に与える回路手段と、前記
遅延回路群の第2の出力信号を前記第1の加算器の第2
の入力端子に与える回路手段と、前記第2の加算器の出
力を第2の定数倍して出力する回路手段とにより構成し
た信号処理装置。
4. The first adder according to claim 2, wherein the input signal is applied to the first input terminal, and the second adder according to which the output of the first adder is applied to the first input terminal. An adder, a delay circuit group capable of storing the output of the first adder, and a second input terminal of the first adder by multiplying a first output signal of the delay circuit group by a first constant. And a second output signal of the delay circuit group to the second adder of the first adder.
And a circuit means for outputting the output of the second adder by multiplying it by a second constant.
JP4823892A 1992-03-05 1992-03-05 Signal processing unit Pending JPH05252000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4823892A JPH05252000A (en) 1992-03-05 1992-03-05 Signal processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4823892A JPH05252000A (en) 1992-03-05 1992-03-05 Signal processing unit

Publications (1)

Publication Number Publication Date
JPH05252000A true JPH05252000A (en) 1993-09-28

Family

ID=12797869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4823892A Pending JPH05252000A (en) 1992-03-05 1992-03-05 Signal processing unit

Country Status (1)

Country Link
JP (1) JPH05252000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070755A1 (en) * 2008-12-18 2010-06-24 株式会社島津製作所 Tft array inspecting method, and tft array inspecting device
WO2013128783A1 (en) * 2012-03-01 2013-09-06 日本電気株式会社 Digital-signal processing device, reception device, and signal transmission/reception system
JP6388754B1 (en) * 2017-09-15 2018-09-12 三菱電機株式会社 Signal processing device, sensor device, and signal processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070755A1 (en) * 2008-12-18 2010-06-24 株式会社島津製作所 Tft array inspecting method, and tft array inspecting device
JP5182595B2 (en) * 2008-12-18 2013-04-17 株式会社島津製作所 TFT array inspection method and TFT array inspection apparatus
WO2013128783A1 (en) * 2012-03-01 2013-09-06 日本電気株式会社 Digital-signal processing device, reception device, and signal transmission/reception system
JPWO2013128783A1 (en) * 2012-03-01 2015-07-30 日本電気株式会社 Digital signal processing device, receiving device, and signal transmission / reception system
US9385766B2 (en) 2012-03-01 2016-07-05 Nec Corporation Digital signal processing device, receiving device, and signal transmitting and receiving system
JP6388754B1 (en) * 2017-09-15 2018-09-12 三菱電機株式会社 Signal processing device, sensor device, and signal processing method
WO2019053896A1 (en) * 2017-09-15 2019-03-21 三菱電機株式会社 Signal processing device, sensor device, and signal processing method
US10458789B2 (en) 2017-09-15 2019-10-29 Mitsubishi Electric Corporation Signal processing device, sensor device, and signal processing method

Similar Documents

Publication Publication Date Title
US6856191B2 (en) Nonlinear filter
US5978417A (en) Adaptive cable equalizer
JPH06188838A (en) Sampling rate converter
JPH04259111A (en) Adaptive equalizer
US6430220B1 (en) Distortion reduction method and apparatus for linearization of digital pulse width modulation by efficient calculation
JP3068996B2 (en) Adaptive filter device and method for generating step gain
JPH05252000A (en) Signal processing unit
JPH06138906A (en) Digital-servo control system
KR100752258B1 (en) Vector magnitude control of a comb filter
Boukis et al. A novel algorithm for the adaptation of the pole of Laguerre filters
JPH05346803A (en) Device for executing transfer function
JPH0895577A (en) Noise controller
US7697646B2 (en) Discrete state-space filter and method for processing asynchronously sampled data
JPS63248218A (en) Adaptive control filter
Jou Design of real FIR filters with arbitrary magnitude and phase specifications using a neural-based approach
JP2516940B2 (en) Waveform equalization circuit
Lim New adaptive filtering algorithms based on an orthogonal projection of gradient vectors
JP4258045B2 (en) Noise reduction apparatus, noise reduction method, and recording medium
JP3146609B2 (en) Automatic equalization circuit
JP2538633B2 (en) Adaptive filter
US7352225B1 (en) DC offset reduction circuit and method
JPH06318846A (en) Coefficient update method for adaptive filter device
Fouad et al. A MODIFIED TWO DIMENSIONAL ADAPTIVE DIGITAL FILTER
JPH04180305A (en) Adaptive equalizer device for digital communication
JPH0624397B2 (en) DC compensation circuit