JPH05251739A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH05251739A
JPH05251739A JP4049590A JP4959092A JPH05251739A JP H05251739 A JPH05251739 A JP H05251739A JP 4049590 A JP4049590 A JP 4049590A JP 4959092 A JP4959092 A JP 4959092A JP H05251739 A JPH05251739 A JP H05251739A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
semiconductor light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4049590A
Other languages
Japanese (ja)
Inventor
Kazumi Unno
和美 海野
Hideki Nozaki
秀樹 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4049590A priority Critical patent/JPH05251739A/en
Publication of JPH05251739A publication Critical patent/JPH05251739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Abstract

PURPOSE:To achieve an LED in which the luminance of shortwave length light is 1cd or above, by using a eutectic alloy forming means for joining of LED wafers, semiconductor light emitting devices, together. CONSTITUTION:In a wafer 36 of GaAs red LED, a semiconductor light emitting device, a light emitting layer is made of an n-GaAsP epitaxial crystal growth layer 25 and a p-GaAsO epitaxial crystal growth layer 26 which are grown and laminated on an n-GaAsP epitaxial crystal growth layer 34. In a wafer 35 of Gap green LED, another semiconductor light emitting device, a light emitting layer is made of an n-GaP epitaxial crystal growth layer 29 and a p-GaAsP epitaxial crystal growth layer 30 which are formed and laminated on an n-GaP photo semiconductor epitaxial crystal growth layer 33. Then, the GaAsP red LED wafer 36 and the GaP green LED wafer 35 are forwardly joined together by the use of a eutectic alloy. The semiconductor light emitting device chip thus becomes an LED of an intermediate color between red and green.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、輝度を高く取れる構造
を有した半導体発光素子に関するもので、特に表示用光
源として、例えば、駅構内等の屋内用情報表示板、屋外
のビル広告板、道路表示板、自動車のストップランプ信
号機等に用いる目的で開発された高輝度の半導体発光素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device having a structure capable of obtaining high brightness, and particularly as a light source for display, for example, an indoor information display board such as in a station yard, an outdoor building advertisement board, The present invention relates to a high-brightness semiconductor light emitting device developed for use in road display boards, stop lamp traffic lights of automobiles, and the like.

【0002】[0002]

【従来の技術】半導体結晶を用いた半導体発光素子とし
ては、発光ダイオード(LightEmitting
Diode−LED),レザーダイオード(Laser
Diode−LD)の様に動作特性から電流で発光す
る注入型エレクトロ・ルミネッセンス(Electro
・Luminesence−EL)は、半導体結晶とし
てGaAs、GaP・pnJunction(pn接
合)であり、このpnJunctionに順方向に電圧
を印加することにより、少数キヤリヤを注入し,キヤリ
ヤの再結合によって生ずる自然放出光を取り出す素子で
ある.その材料特有な波長の発光を得る現象であり、赤
外領域の光通信用LEDとか可視領域の表示用LEDに
大別される.又真性エレクトロルミネッセンスは結晶体
に電界を加えた時に発光する現象であり、印加電圧とし
ては直流・交流のいずれも可能で直流駆動タイプではフ
ォーミングを必要とせず、注入電流制限用高抵抗層の利
用やGaAs単結晶上に発光層を形成し、ヘテロ接合に
よるキャリヤの注入効率の改良による.これら半導体発
光素子の中でも発光ダイオード特に高輝度のLEDは表
示用光源、例えば、屋内や駅構内用情報表示板と連結表
示用情報機、自動車のストップ・ランプ、信号機等に使
用されている。
2. Description of the Related Art As a semiconductor light emitting device using a semiconductor crystal, a light emitting diode (Light Emitting) is used.
Diode-LED, Laser diode (Laser)
Injection-type electroluminescence (Electrode) that emits light by current due to its operating characteristics such as diode-LD)
Luminescence-EL) is a semiconductor crystal such as GaAs and GaP pn Junction (pn junction), and by applying a voltage in the forward direction to this pn Junction, a small number of carriers are injected and spontaneous emission light generated by the recombination of carriers is generated. Is the element that takes out. This is a phenomenon of obtaining light emission of a wavelength peculiar to the material, and is roughly classified into an infrared communication LED and a visible display LED. In addition, intrinsic electroluminescence is a phenomenon in which light is emitted when an electric field is applied to the crystal. Either direct current or alternating current can be applied as the applied voltage, and the DC drive type does not require forming and uses a high resistance layer for injection current limitation. By forming a light emitting layer on a GaAs single crystal or GaAs and improving the carrier injection efficiency by a heterojunction. Among these semiconductor light emitting devices, light emitting diodes, particularly LEDs with high brightness, are used for display light sources, such as information display boards for indoors and in station yard and information display for connection display, stop lamps of automobiles, traffic lights and the like.

【0003】又、pnpFET(Field Effe
ct Transistor)を用いる事により低電流
でも、ある程度までは、高輝度が出せるため、従来より
も省エネルギー分野の表示用光源として用いられるLE
Dとして、まず赤色発光素子としては、ピーク波長(λ
=630nm程度)、輝度300mCd前後のGaAs
P赤色LED、ピーク波長(λ=660nm程度)、輝
度500mcdのシングルヘテロ(SH)構造GaAl
As 赤色LEDがあり、燈色発光素子としては、ピー
ク波長(λ=610nm程度)、輝度300mcd前後
のGaAsP燈色LED、黄色発光素子としてはピーク
波長(λ=590nm程度)の輝度300mcdのGa
AsP黄色LEDが有り、緑色発光素子としてはピーク
波長(λ=565nm程度)輝度500mcd前後Ga
P緑色LEDが用いられている。
Also, a pnpFET (Field Effe)
By using ct Transistor), it is possible to obtain high brightness up to a certain level even with a low current, so LE is used as a display light source in the field of energy saving more than before.
First, as the red light emitting element, the peak wavelength (λ
= About 630 nm), GaAs with a brightness of around 300 mCd
P red LED, peak wavelength (λ = about 660 nm), single hetero (SH) structure GaAl with a brightness of 500 mcd
There is an As red LED, a light emitting element has a peak wavelength (λ = 610 nm), a GaAsP LED having a brightness of about 300 mcd, and a yellow emitting element has a peak wavelength (λ = 590 nm) and a Ga having a brightness of 300 mcd.
There is an AsP yellow LED, and a green light emitting element has a peak wavelength (λ = 565 nm or so) and a brightness of around 500 mcd Ga
P green LEDs are used.

【0004】なお、半導体発光素子を形成する主な手段
として、結晶膜形成法としては、周知のエピタキシャル
結晶膜成長法である気相結晶膜成長法(VPE)や液相
結晶膜成長法(LPE)が知られており、VPEはGa
AsPの形成に、LPEはGaAlAs,GaP等の形
成に適している。
As a crystal film forming method as a main means for forming a semiconductor light emitting device, a vapor phase crystal film growing method (VPE) or a liquid phase crystal film growing method (LPE) which is a well-known epitaxial crystal film growing method. ) Is known and VPE is Ga
For forming AsP, LPE is suitable for forming GaAlAs, GaP and the like.

【0005】その他の結晶膜成長法として、有機金属を
原料に用いたVPE(MOVPE−metal ora
gnic Vapour Phase Epitax
y)等の方法が知られている。
As another crystal film growth method, VPE (MOVPE-metal ora) using an organic metal as a raw material is used.
gnic Vapor Phase Epitax
Methods such as y) are known.

【0006】[0006]

【発明が解決しようとする課題】屋外用の表示用電源の
場合、各々の発光色領域において、1cd以上の輝度が
必要である。
In the case of an outdoor display power source, a luminance of 1 cd or more is required in each emission color region.

【0007】赤色領域では直接遷移型であるGaAlA
s−LEDは1cd以上の輝度が容易に得られている
が、赤色より短波長領域の橙色から緑色のLEDでは間
接遷移型であるGaAsP−LEDやGaP−LEDを
使用している為、500mcd程度がほぼ限界とみら
れ、屋外用として十分に機能していないのが現状であ
る。したがって、屋外用に使用するLED発色光の場
合、GaAlAs赤色LEDなら1個ですむ所が、赤色
より短波長領域である燈色、黄色、緑色の場合は、従来
1個の発光素子を載置するリード上に複数個載置使用せ
ざるを得ないのでコストアップとなる。
GaAlA is a direct transition type in the red region
s-LEDs can easily obtain a brightness of 1 cd or more, but since orange to green LEDs in the wavelength range shorter than red use indirect transition type GaAsP-LEDs or GaP-LEDs, about 500 mcd Is considered to be almost the limit, and is currently not functioning sufficiently for outdoor use. Therefore, in the case of LED colored light used outdoors, only one GaAlAs red LED is required, but if it is light-colored, yellow, or green, which has a shorter wavelength range than red, one light-emitting element is conventionally mounted. Since there is no choice but to mount and use a plurality of them on the lead, the cost increases.

【0008】また、直接遷移型であるInGaAlP−
LEDにおいても、十分な輝度が得られない。
Further, InGaAlP- which is a direct transition type
Even with LEDs, sufficient brightness cannot be obtained.

【0009】この原因の一つに発光した活性層と光半導
体結晶基板との間の光を有効に活用していないことが挙
げられる。また、輝度を向上させる方法として、光反射
層及び電流拡散層を形成する事によって、発光効率を上
げることは出来るが、まだ橙色から緑色までの範囲の光
を1cd以上のLEDとして十分生かすことができない
のが現状である。
One of the causes is that light emitted between the active layer and the optical semiconductor crystal substrate is not effectively utilized. Further, as a method of improving the brightness, it is possible to increase the luminous efficiency by forming a light reflection layer and a current diffusion layer, but it is still possible to sufficiently utilize the light in the range from orange to green as an LED of 1 cd or more. The current situation is that it cannot be done.

【0010】又、発光層における活性層として、バンド
・ギャップの大きいInGaAlP系半導体結晶を用い
た半導体発光素子を使用すると、光半導体結晶基板がハ
ンド・ギャップの小さいGaAs等の材料の場合、発光
層は短波長の発光をするので発せられる光の多くは、こ
の光半導体結晶基板に吸収されてしまうのが現状であ
る。
When a semiconductor light emitting device using an InGaAlP semiconductor crystal having a large band gap is used as an active layer in the light emitting layer, when the optical semiconductor crystal substrate is a material such as GaAs having a small hand gap, the light emitting layer is used. At present, most of the emitted light is absorbed by the optical semiconductor crystal substrate because it emits light with a short wavelength.

【0011】したがって、発光により下方に向った光
は、外部に取り出し得ずじまいになってしまう。そこで
光半導体結晶基板を除去する提案は良いが、光半導体エ
ピタキシャル結晶成長層が薄いために、該光半導体結晶
基板を除去する方法もむずかしい。
Therefore, the light emitted downward due to the light emission cannot be taken out to the outside, which is a problem. Therefore, a proposal to remove the optical semiconductor crystal substrate is good, but a method for removing the optical semiconductor crystal substrate is difficult because the optical semiconductor epitaxial crystal growth layer is thin.

【0012】したがって、該光半導体結晶基板にその発
光波長光の吸収の少ないものを選択せねばならず、光半
導体結晶材料が限定されている状況である。
Therefore, it is necessary to select the optical semiconductor crystal substrate that absorbs less light of the emission wavelength, and the optical semiconductor crystal material is limited.

【0013】そこで従来例図2では、光半導体結晶基板
による光の吸収を防いで発光効率を上げると同時に光半
導体結晶基板材料の選択の範囲を広げるために、発光層
と光半導体結晶基板の間に化合物半導体材料からなる光
反射層を形成し、発光層から出た光は下方の光半導体結
晶基板1の方向に向かっても光反射層によって反射され
て光半導体結晶基板による光の吸収が防がれる。
Therefore, in FIG. 2 of the conventional example, in order to prevent the absorption of light by the optical semiconductor crystal substrate to improve the light emission efficiency and at the same time to expand the range of selection of the optical semiconductor crystal substrate material, the light emitting layer and the optical semiconductor crystal substrate are separated. A light-reflecting layer made of a compound semiconductor material is formed on the light-emitting layer, and the light emitted from the light-emitting layer is reflected by the light-reflecting layer toward the lower optical semiconductor crystal substrate 1 to prevent light absorption by the optical semiconductor crystal substrate. Get off.

【0014】しかし、前記光反射層はそれ自体の光吸収
及び反射率が50〜60%と低いため十分な効果が得ら
れない。
However, since the light reflection layer itself has a low light absorption and reflectance of 50 to 60%, a sufficient effect cannot be obtained.

【0015】一方、反射層を設けずに発光層から発光し
た光が下方に向っても光を外部に取り出す方法として、
その発光波長光に対し不透明であるGaAs光半導体結
晶基板の代りにその発光波長光に対し透明であるGaP
光半導体結晶基板を用いたIn1-v Gav P組成勾配層
又はIn1-v (Ga1-w Alw v Pの組成勾配層を有
するIn0.5 (Ga1-x Alx 0.5 PーLED(緑色
→赤色発光)が出来た。しかし、この場合は、GaP光
半導体結晶基板とIn0.5 (Ga1-x Alx 0.5 Pと
の格子不整合による格子欠陥が多発する為、内部発光効
率が低下し、結果的には輝度の高い1cd以上のLED
が得られなかった。
On the other hand, as a method of extracting the light to the outside even if the light emitted from the light emitting layer goes downward without providing the reflecting layer,
Instead of a GaAs optical semiconductor crystal substrate that is opaque to the emitted wavelength light, GaP that is transparent to the emitted wavelength light
In 0.5 (Ga 1-x Al x ) 0.5 P having an In 1-v Ga v P composition gradient layer or an In 1-v (Ga 1-w Al w ) v P composition gradient layer using an optical semiconductor crystal substrate -LED (green → red emission) was made. However, in this case, lattice defects due to lattice mismatch between the GaP optical semiconductor crystal substrate and In 0.5 (Ga 1-x Al x ) 0.5 P occur frequently, resulting in a decrease in internal light emission efficiency, resulting in a decrease in luminance. LED of high 1 cd or more
Was not obtained.

【0016】従来例図1,図2,図3に示したP−Ga
1-u Alu As電流拡散層3において、uが0.7の場
合を示したもので、この電流拡散層の存在によって活性
層全域で発光させることが出来るのであるが、その発光
輝度を十分生かすことが出来ない。
Conventional example P-Ga shown in FIGS. 1, 2 and 3
In the 1-u Al u As current diffusion layer 3, the case where u is 0.7 is shown. It is possible to emit light in the entire active layer due to the presence of this current diffusion layer. I can't make use of it.

【0017】そこで発光効率を上げて光の有効利用が可
能となる短波長の光を発する半導体発光素子InGaA
lPの四元素混晶材料で構成される活性層から得られる
輝度が1cd以上になるLEDを提供する事を目的とし
ている。
Therefore, a semiconductor light emitting device InGaA that emits light of a short wavelength that can increase the luminous efficiency and effectively use the light can be obtained.
It is an object of the present invention to provide an LED having a brightness of 1 cd or more obtained from an active layer composed of a four-element mixed crystal material of IP.

【0018】[0018]

【課題を解決するための手段】前記課題を解決し目的を
達成するため、第一の発明の半導体発光デバイスは光半
導体結晶基板上に少なくとも一つ以上の発光層で構成さ
れた半導体発光素子同志若しくは光半導体結晶基板上に
少なくとも一つ以上の発光層で構成された半導体発光素
子と光半導体結晶基板とを金属によって接合して成るこ
とを特徴とする。
In order to solve the above problems and achieve the object, a semiconductor light emitting device according to the first invention is a semiconductor light emitting device composed of at least one light emitting layer on an optical semiconductor crystal substrate. Alternatively, it is characterized in that a semiconductor light emitting element composed of at least one light emitting layer and an optical semiconductor crystal substrate are bonded on the optical semiconductor crystal substrate with a metal.

【0019】第二の発明の半導体発光デバイスは、少な
くとも一つ以上の発光層と光半導体厚膜エピタキシヤル
結晶成長層とで構成された半導体発光素子同志若しくは
少なくとも一つ以上の発光層と光半導体厚膜エピタキシ
ヤル結晶成長層とで構成された半導体発光素子と光半導
体結晶基板とを金属によって接合して成ることを特徴と
する。
The semiconductor light emitting device of the second invention is a semiconductor light emitting device composed of at least one or more light emitting layers and an optical semiconductor thick film epitaxial crystal growth layer, or at least one or more light emitting layers and optical semiconductors. It is characterized in that a semiconductor light emitting device composed of a thick film epitaxial crystal growth layer and an optical semiconductor crystal substrate are bonded by a metal.

【0020】第三の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、半導体発光素子の光半導体エピタキシャル結晶成長
層同志若しくは前記半導体発光素子の光半導体エピタキ
シャル結晶成長層と光半導体結晶基板の接合に用いた金
属が共晶合金であることを特徴とする半導体発光デバイ
ス。
A semiconductor light-emitting device according to a third aspect of the present invention is the semiconductor light-emitting device according to claim 1 or 2, wherein the semiconductor light-emitting device comprises optical semiconductor epitaxial crystal growth layers or the semiconductor light-emitting device includes optical semiconductor epitaxial crystal growth layers. A semiconductor light-emitting device, wherein the metal used for joining the layer and the optical semiconductor crystal substrate is a eutectic alloy.

【0021】第四の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、光半導体結晶基板若しくは光半導体エピタキシャル
結晶成長層が発光層により発する光のエネルギーよりも
大きなバンドギャップを有する光半導体結晶であること
を特徴とする。
A semiconductor light emitting device according to a fourth aspect of the present invention is the semiconductor light emitting device according to any one of claims 1 and 2, wherein the energy of light emitted from the light emitting layer of the photosemiconductor crystal substrate or the photosemiconductor epitaxial crystal growth layer is larger than the energy of light. It is characterized by being an optical semiconductor crystal having a band gap.

【0022】第五の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、少なくとも一つ以上の発光層で構成された半導体発
光素子を少なくとも二つ以上順方向に接合し、且つ該半
導体発光素子に順バイアスをそれぞれ印加して各発光層
から各々の発光輝度を制御可能にしたことを特徴とする
半導体発光デバイス。
A semiconductor light emitting device according to a fifth aspect of the present invention is the semiconductor light emitting device according to any one of claims 1 and 2, wherein at least two or more semiconductor light emitting elements each having at least one light emitting layer are formed in a forward direction. A semiconductor light emitting device characterized by being joined together and applying a forward bias to each of the semiconductor light emitting elements so that the light emission luminance of each light emitting layer can be controlled.

【0023】第六の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、少なくとも一つ以上の発光層で構成された半導体発
光素子を少なくとも二つ以上順方向に接合し、且つ該半
導体発光素子に順バイアスをそれぞれ印加して、各々の
発光層からの発光を任意に制御し半導体発光デバイスの
チップ1個で緑と赤若しくは赤と青又は緑と青の中間色
の発光を任意に制御可能にしたことを特徴とする。
A semiconductor light emitting device according to a sixth aspect of the present invention is the semiconductor light emitting device according to any one of claims 1 and 2, wherein at least two or more semiconductor light emitting elements each having at least one light emitting layer are formed in a forward direction. By bonding and applying a forward bias to each of the semiconductor light-emitting elements, light emission from each light-emitting layer is arbitrarily controlled, and one chip of the semiconductor light-emitting device is used for green and red or red and blue or an intermediate color between green and blue. It is characterized in that the emission of light can be controlled arbitrarily.

【0024】第七の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、半導体発光素子の光半導体エピタキシャル結晶成長
層上に形成したオーミック電極と光半導体結晶基板上に
形成したオーミック電極共晶合金化構築物とを所定の形
に同形形状化させ且つ、熱処理によって融着させ、該オ
ーミック電極同志を金属間結合により共晶合金接合させ
たことを特徴とする半導体発光デバイス。
A semiconductor light emitting device according to a seventh invention is the semiconductor light emitting device according to claim 1 or 2, wherein the ohmic electrode formed on the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting element and the optical semiconductor crystal substrate. The semiconductor light-emitting device characterized in that the ohmic electrode eutectic alloying structure formed in 1) is homomorphic to a predetermined shape and is fused by heat treatment, and the ohmic electrodes are eutectic alloy bonded by intermetallic bonding. device.

【0025】第八の発明の半導体発光デバイスは、請求
項1並びに請求項2に記載の半導体発光デバイスにおい
て、半導体発光素子の光半導体エピタキシャル結晶成長
層上に所定の形に形状化したオーミック電極形成面上全
面に金属若しくは合金反射層を形成し、光半導体結晶基
板上に形成したオーミック電極上を共晶合金化した構築
物が特定の形状を有する必要がなく、且つ前記オーミッ
ク電極形成面上全面に施された金属若しくは合金反射層
がAu及びAl及びAg又は反射率の高い金属並びに合
金であることを特徴とする。
The semiconductor light emitting device of the eighth invention is the semiconductor light emitting device according to claim 1 or 2, wherein the ohmic electrode formed into a predetermined shape is formed on the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting device. A metal or alloy reflective layer is formed on the entire surface, and it is not necessary for the structure obtained by eutectic alloying the ohmic electrode formed on the optical semiconductor crystal substrate to have a specific shape, and on the entire surface on which the ohmic electrode is formed. It is characterized in that the applied metal or alloy reflection layer is Au and Al and Ag or a metal and alloy having high reflectance.

【0026】[0026]

【作用】発光層を構成する半導体発光素子・LEDウェ
ーハーと、前記発光層から発せられる光のエネルギー以
上のエネルギーギャップをもつ透明な光半導体結晶基板
若しくは不透明な光半導体結晶基板上に光半導体エピタ
キシャル結晶成長層を形成した後、光吸収層となる光半
導体結晶基板を除去することにより光を有効に取り出す
ことができ、赤色より短波長領域である中間色例えば橙
色,黄色,緑色発光で1cd以上の輝度が容易に得られ
る。又半導体発光素子・LEDウェーハー同志の接合に
は共晶合金化手段を用いて電極形状に拘らず、効果的に
容易に接合できる。
The semiconductor light emitting device / LED wafer forming the light emitting layer, and the optical semiconductor epitaxial crystal on the transparent optical semiconductor crystal substrate or the opaque optical semiconductor crystal substrate having an energy gap larger than the energy of light emitted from the light emitting layer. After the growth layer is formed, light can be effectively extracted by removing the optical semiconductor crystal substrate that serves as the light absorption layer, and the intermediate color that is in the shorter wavelength region than red, for example, orange, yellow, and green emission, has a brightness of 1 cd or more. Is easily obtained. Further, eutectic alloying means is used for joining the semiconductor light emitting device and the LED wafer to each other effectively and easily regardless of the electrode shape.

【0027】[0027]

【実施例】図1,図2,図3に示した従来技術による半
導体発光素子の構造断面図の一例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a structural cross-sectional view of a semiconductor light emitting device according to the prior art shown in FIGS. 1, 2 and 3 will be described.

【0028】光半導体結晶基板1は不純物をドーピング
した濃度が3×1018cm-3程度のn−GaAs光半導体
結晶基板を用い、このn−GaAs光半導体結晶基板上
にMOVPE法で厚さ1μmで不純物をドーピングした
濃度5×1017cm-3のn−In0.5 (Ga1-x Alx
0.5 Pクラッド層21を成長させ、次に厚さ0.6μm
のアンドープIn0.5 (Ga1-y AIy 0.5 P活性層
20を形成し、さらに厚さ1μm不純物をドーピングし
た濃度5×1017cm-3のP−In0.5 (Ga1- z
0.5 Pクラッド層22を形成し、さらに厚さ7μ
m程度の不純物ドーピング濃度1×1018cm-3のP型G
1-u Alu As電流拡散層3を順次MOVPE法で成
長させ、次にn型GaAs光半導体結晶基板1の他の表
面には、Au−Ge等のn側電極とをオーミックコンタ
クトさせ、反対側の電流拡散層3上にはAu−Zn等の
P側電極5をオーミックコンタクトさせた従来の技術で
は、電流拡散層3であるGa1-u Alu As層はP側電
極5からの電流で半導体発光素子・LEDチップ全面に
拡散させるために設けられたものであり、半導体発光素
子として、必ずしも必要でなく、これを用いないものも
ある。
As the optical semiconductor crystal substrate 1, an n-GaAs optical semiconductor crystal substrate having an impurity concentration of about 3 × 10 18 cm -3 is used, and a thickness of 1 μm is formed on the n-GaAs optical semiconductor crystal substrate by MOVPE method. N-In 0.5 (Ga 1-x Al x ) with a concentration of 5 × 10 17 cm -3 doped with impurities
0.5 P clad layer 21 is grown, and then the thickness is 0.6 μm.
Undoped In 0.5 (Ga 1-y AI y ) 0.5 P active layer 20 is formed and further doped with an impurity of 1 μm in thickness to obtain a concentration of 5 × 10 17 cm -3 of P-In 0.5 (Ga 1- z A
1 z ) 0.5 P clad layer 22 is formed, and the thickness is 7 μm.
P-type G with an impurity doping concentration of about 1 × 10 18 cm -3
The a 1-u Al u As current diffusion layer 3 is sequentially grown by the MOVPE method, and then another surface of the n-type GaAs optical semiconductor crystal substrate 1 is ohmic-contacted with an n-side electrode such as Au—Ge. In the conventional technique in which the P-side electrode 5 made of Au—Zn or the like is ohmic-contacted on the current diffusion layer 3 on the opposite side, the Ga 1-u Al u As layer, which is the current diffusion layer 3, is formed from the P-side electrode 5. It is provided for diffusing the entire surface of the semiconductor light emitting element / LED chip with an electric current, and is not always necessary as a semiconductor light emitting element, and there are some which do not use it.

【0029】図2に示した従来方法として光半導体結晶
基板による光の吸収を防いで発光効率を上げると同時に
光半導体結晶基板材料の選択の範囲を広げるために発光
層と半導体基板の間に光反射層を形成したものや、図3
に示した従来方法ではあるが、基板GaAsの代りにG
aPを基板にしその上に形成した層であるInGaAl
P−LED・半導体発光素子の発光色(緑色−赤色)に
対して不透明なGaAs光半導体結晶基板と異なりGa
P光半導体結晶基板は透明であるため、反射層を設けな
くとも、下方に向った光を外部に取り出しえる方法もあ
る。
As a conventional method shown in FIG. 2, in order to prevent the absorption of light by the optical semiconductor crystal substrate to improve the light emission efficiency, and at the same time to expand the range of selection of the optical semiconductor crystal substrate material, the light is emitted between the light emitting layer and the semiconductor substrate. One with a reflective layer,
Although it is the conventional method shown in FIG.
InGaAl which is a layer formed on aP as a substrate
Ga, unlike the GaAs optical semiconductor crystal substrate, which is opaque to the emission color (green-red) of the P-LED / semiconductor light-emitting element
Since the P-optical semiconductor crystal substrate is transparent, there is also a method of extracting downward light to the outside without providing a reflective layer.

【0030】電流拡散層の元素構成において、図1の例
として、図ではuが0.7の場合を示した。
In the elemental constitution of the current diffusion layer, the case where u is 0.7 is shown in the figure as an example of FIG.

【0031】この層の存在によって、活性層全域で発光
させることが可能になるので、チップからの光取り出し
効率を例えばGa1-u Alu As層としての電流拡散層
の存在によって効率良く発光することができるが、その
光を十分生かすことができない現状であったため、大幅
に改善する余地がある。これらの各種成長層はGaAs
光半導体結晶基板と格子整合が取られている事及びダブ
ルヘテロ構造であること、活性層のyを0〜0.7まで
変化させると約660nmの赤色発光から約540nm
の緑色発光の範囲を直接遷移型バンド構造が得られるこ
と、およびダブルヘテロ構造を用いることなどにより高
い発光効率が得られ、更に光反射層を形成した方法を取
る事により、発光層2から出た光は下方の光半導体結晶
基板1の方向に向っても、該光反射層によって反射され
て光半導体結晶基板による光の吸収は防げた。
Due to the presence of this layer, it is possible to emit light in the entire active layer, so that the light extraction efficiency from the chip is efficiently emitted due to the presence of a current diffusion layer as a Ga 1 -u Al u As layer. However, there is room for significant improvement because the light could not be fully utilized. These various growth layers are GaAs
Lattice matching with the photo-semiconductor crystal substrate and double hetero structure, and when y of the active layer is changed from 0 to 0.7, red emission of about 660 nm to about 540 nm
In the green emission range, a high emission efficiency can be obtained by directly obtaining a transition band structure and by using a double hetero structure. Further, by adopting a method in which a light reflecting layer is formed, the emission from the light emitting layer 2 is increased. Even when the light was directed toward the optical semiconductor crystal substrate 1 below, the light was reflected by the light reflecting layer and the absorption of light by the optical semiconductor crystal substrate was prevented.

【0032】又この光反射層の構成は発光層の直下に屈
折率の異なる二種類以上の物質を光の波長の1/4倍相
当もしくはこれに比例した相当の厚さに交互に積層して
形成したものである。
The structure of this light reflecting layer is such that two or more kinds of substances having different refractive indexes are alternately laminated right below the light emitting layer to a thickness equivalent to 1/4 times the wavelength of light or a thickness proportional thereto. It was formed.

【0033】又、一方反射層を設けず下方に向った光を
外部に取り出す方法が可能であり、GaAs光半導体結
晶基板の代りにGaP光半導体結晶基板を使用したIn
GaAlP−LED・半導体発光素子を例とし、その機
構はGaP光半導体結晶基板がInGaAlP−LED
・半導体発光素子の発光色(緑色−赤色)に対して透明
なため反射層を設ける必要はないという理由であり、反
対側の下方へ向った光はn側電極側の面で反射され、上
方に光取出し側表面から外方へ出て、nー組成勾配層8
下方に向った光も有効に外部に取り出す。
On the other hand, it is possible to take out the downward light to the outside without providing a reflection layer, and In using a GaP optical semiconductor crystal substrate instead of the GaAs optical semiconductor crystal substrate.
Taking GaAlP-LED / semiconductor light-emitting device as an example, the mechanism is that the GaP optical semiconductor crystal substrate is InGaAlP-LED.
The reason is that it is not necessary to provide a reflective layer because it is transparent to the emission color (green-red) of the semiconductor light emitting element, and the light directed downward on the opposite side is reflected by the surface on the n-side electrode side, To the outside from the surface on the light extraction side, and the n-composition gradient layer 8
The light directed downward is also effectively extracted to the outside.

【0034】又、pn接合がダブルヘテロ構造は言うま
でもなく、又、シングルヘテロやホモ接合等の他の構造
の素子の場合でも発光に直接寄与する部分を発光層2と
ここでは定義し、Ga1-u Alu Asの電流拡散層3は
P側電極からの電流を半導体発光素子・LEDチップ全
面に拡散させるためのもので発光素子としては必ずしも
必要でない。
Not to mention that the pn junction has a double hetero structure, and even in the case of an element having another structure such as a single hetero or homo junction, the portion directly contributing to light emission is defined as the light emitting layer 2 here, and Ga 1 -u Al u as current diffusion layer 3 is not necessarily required as a light emitting element intended for diffusing current from P-side electrode in the semiconductor light emitting element · LED chips entirely.

【0035】又、輝度を高く取るためには、発光層の光
の発光機構が発光に直接寄与する部分は、活性層20と
この活性層を挟む一対のクラット層21,22であるの
で、pn接合がダブルヘテロ構造では電流拡散層3側か
ら光が取り出されるのでP側電極5が光を取り出す側の
電極となり、光取出し側電極は通常ボンディングパッド
によって外部配線と接続されている。
Further, in order to obtain high brightness, the portion of the light emitting layer where the light emitting mechanism directly contributes to light emission is the active layer 20 and the pair of clat layers 21 and 22 sandwiching the active layer. When the junction is a double hetero structure, light is extracted from the side of the current diffusion layer 3, so the P-side electrode 5 serves as an electrode on the side of extracting light, and the light-extraction side electrode is usually connected to an external wiring by a bonding pad.

【0036】内分けはGa1-u Alu As電流拡散層3
を設けることにより、P側電極からの電流を半導体発光
素子・LEDチップ全面に拡散させるためのものでP側
電極から光を取り出す事になる。
The internal division is Ga 1 -u Al u As current diffusion layer 3
By providing the element, the current from the P-side electrode is diffused over the entire surface of the semiconductor light emitting element / LED chip, and light is extracted from the P-side electrode.

【0037】そこで図4,図5は本発明図で、電流拡散
層3側から光が取り出されるには、P側電極が光取り出
し側電極となる。
Therefore, FIGS. 4 and 5 are diagrams of the present invention. In order to extract light from the side of the current diffusion layer 3, the P-side electrode serves as a light-extraction-side electrode.

【0038】光取り出し側電極は、通常ボンディングパ
ッドによって外部配線と接続されている。
The light extraction side electrode is usually connected to an external wiring by a bonding pad.

【0039】なお、この種の発光素子において、発光に
直接寄与する部分は活性層20と、この活性層を挟む1
対のクラッド層21,22であるので、ここではこれら
の層をまとめて発光層と定義する。この半導体発光素子
の発光層であるpn接合部がダブルヘテロ構造である
が、シングルヘテロ接合やホモ接合などの他の構造の半
導体発光素子の場合でも発光に直接寄与するものは発光
層と称する。
In this type of light emitting device, the portion that directly contributes to light emission is the active layer 20 and the portion sandwiching this active layer 1
Since these are the pair of cladding layers 21 and 22, these layers are collectively defined as a light emitting layer here. Although the pn junction portion which is the light emitting layer of this semiconductor light emitting element has a double hetero structure, even in the case of a semiconductor light emitting element having another structure such as a single hetero junction or a homo junction, one that directly contributes to light emission is called a light emitting layer.

【0040】電流拡散層としては、Ga1-u Alu As
層が良く知られている材料である。一方、反射層を設け
ずに下方に向った光を外部に取り出す方法としては、例
えば光に不透明なGaAs光半導体結晶基板の代りに光
に透明なGaP光半導体結晶基板を使用したInGaA
lP−LED・半導体発光素子がある。GaP光半導体
結晶基板はInGaAlP−LED・半導体発光素子の
発光色(緑色〜赤色)に対して透明なため反射層を設け
る必要はない。
As the current spreading layer, Ga 1-u Al u As
Layers are well known materials. On the other hand, as a method for extracting downward light to the outside without providing a reflective layer, for example, InGaA using a transparent GaP optical semiconductor crystal substrate instead of the opaque GaAs optical semiconductor crystal substrate is used.
There are 1P-LEDs and semiconductor light emitting devices. Since the GaP optical semiconductor crystal substrate is transparent to the emission color (green to red) of the InGaAlP-LED / semiconductor light emitting element, it is not necessary to provide a reflective layer.

【0041】図4,図5は、yが1〜0.5の範囲であ
る場合を示した。この層の存在によって活性層で発光さ
せることが可能となるので半導体発光素子・チップから
の光取出し効率を電流拡散層の存在によって効率良く発
光することができるが、その光を十分に生かすことがで
きない。発光層2からの発光は一部はそのまま光取り出
し側の裏面から外部へ出、一方半導体基板が透明な場
合、反対側の下方へ向った光は、n側電極側の面で反射
され、上方の光取り出し側表面から外部へ出て下方に向
った光も有効に取り出すことができる。
4 and 5 show the case where y is in the range of 1 to 0.5. The presence of this layer enables the active layer to emit light, and therefore the light extraction efficiency from the semiconductor light emitting device / chip can be efficiently emitted due to the presence of the current diffusion layer, but the light can be fully utilized. Can not. A part of the light emitted from the light emitting layer 2 goes out from the back surface on the light extraction side as it is, while when the semiconductor substrate is transparent, the light directed downward on the opposite side is reflected by the surface on the n side electrode side, It is possible to effectively extract the light that has gone out from the surface of the light extraction side of the and is directed downward.

【0042】またこれら課題を解決するための対策とし
てIn0.5 (Ga1-x Alx 0.5 P・グラッド層を成
長させる前に先ず、GaP光半導体結晶基板上にIn
1-v Gav P組成勾配層(v=1→0.5)を成長させ
ることによりGaP光半導体結晶基板とIn0.5 (Ga
1-x Alx 0.5 P・グラッド層との間の格子定数の違
いを吸収させる方法がとられている。
As a measure for solving these problems, before growing an In 0.5 (Ga 1-x Al x ) 0.5 P.grad layer, first, In is deposited on a GaP optical semiconductor crystal substrate.
By growing a 1-v Ga v P composition gradient layer (v = 1 → 0.5), a GaP optical semiconductor crystal substrate and In 0.5 (Ga
A method of absorbing a difference in lattice constant between the 1-x Al x ) 0.5 P-grad layer and the lattice constant is adopted.

【0043】nーGaP光半導体結晶基板・nー厚膜層
10側にオーミック電極11(水玉電極)を、更にnー
GaP光半導体結晶基板14側上にオーミック電極13
(水玉電極)を設け、熱融合で(GaP)緑色LEDウ
ェーハーである光半導体発光素子とnーGaP光半導体
結晶基板14とを共晶金属接合させて半導体発光デバイ
スを構成する。又、In 1-vGav P組成勾配の代りに
In 1−v (Ga1-wAlw v ・P組成勾配層(v=
1→0.5)としても良い。
An ohmic electrode 11 (polka dot electrode) is provided on the n-GaP optical semiconductor crystal substrate / n-thick film layer 10 side, and an ohmic electrode 13 is further provided on the n-GaP optical semiconductor crystal substrate 14 side.
A (polka dot electrode) is provided, and the semiconductor light emitting device is formed by thermally fusing the optical semiconductor light emitting element, which is a (GaP) green LED wafer, and the n-GaP optical semiconductor crystal substrate 14 by eutectic metal bonding. Further, instead of the In 1-v Ga v P composition gradient, an In 1-v (Ga 1-w Al w ) v · P composition gradient layer (v =
1 → 0.5).

【0044】次に本発明の実施例1を図面を参照して説
明する。図4は本発明の実施例1に係る半導体発光素子
である発光ダイオードの概略構造を示す断面図である。
図4に示すように基本的構造は一方の電極を有する化合
物半導体結晶14と、この結晶の他方の面上にオーミッ
ク電極13、更にそのオーミック電極13の上の共晶合
金12及び発光層2の両側に電流拡散層3、厚膜層10
を有する光半導体ウェーバ15の厚膜層10側にオーミ
ック電極11と電流拡散層側3にオーミック電極5が存
在し、前記化合物半導体結晶14と光半導体結晶15と
が前記共晶合金によって機械的にも電気的にも結合され
ている。結合側のオーミック電極11と13は電気的特
性に問題がなく、また結合後の機械的強度に問題がない
限り、電極の面積は小さい方が光の吸収が小さいので光
取出しの効率が良い。また前記半導体結晶14は光の吸
収を極力少なくするためそのバンドギャップの大きさは
光のエネルギーよりも大きいものとし、もう一方の電極
9も電気的特性に問題がない限り電極面積は小さい方が
良い。図4の例では電極5がワイヤボンディングするた
めの電極パッドである。
Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a sectional view showing a schematic structure of a light emitting diode which is a semiconductor light emitting element according to the first embodiment of the present invention.
As shown in FIG. 4, the basic structure includes a compound semiconductor crystal 14 having one electrode, an ohmic electrode 13 on the other surface of the crystal, and a eutectic alloy 12 and a light emitting layer 2 on the ohmic electrode 13. Current spreading layer 3 and thick film layer 10 on both sides
An ohmic electrode 11 on the side of the thick film layer 10 and an ohmic electrode 5 on the side of the current diffusion layer 3 of the optical semiconductor web 15 having the compound semiconductor crystal 14 and the optical semiconductor crystal 15 mechanically formed by the eutectic alloy. Are also electrically coupled. The ohmic electrodes 11 and 13 on the coupling side have no problem in electrical characteristics, and unless there is a problem in mechanical strength after coupling, the smaller the area of the electrode, the smaller the light absorption and the better the light extraction efficiency. The semiconductor crystal 14 has a band gap larger than the energy of light in order to reduce light absorption as much as possible, and the other electrode 9 has a smaller electrode area unless there is a problem in electrical characteristics. good. In the example of FIG. 4, the electrode 5 is an electrode pad for wire bonding.

【0045】次に上記半導体発光素子の製造方法につい
て具体的に説明する。
Next, a method for manufacturing the above semiconductor light emitting device will be specifically described.

【0046】各半導体層は有機金属気相成長法(MOV
PE法)により成長させた。
Each semiconductor layer is formed by metalorganic vapor phase epitaxy (MOV).
It was grown by PE method).

【0047】原料にはトリメチルインジウム(TM
I)、トリメチルガリウム(TMG)、トリメチルアル
ミニウム(TMA)をIII 族元素のソースとして、アル
シン(AsH3 )とフォスフィン(PH3 )をV族元素
のソースとして用いた。
Trimethyl indium (TM) is used as a raw material.
I), trimethylgallium (TMG) and trimethylaluminum (TMA) were used as the source of the group III element, and arsine (AsH 3 ) and phosphine (PH 3 ) were used as the source of the group V element.

【0048】またP型ドーパントとしてZn 、n型ドー
パントとしてSiを用いたが、これらはそれぞれジメチ
ル亜鉛(DMZ)、シラン(SiH4 )をソースとして
ドープした。
Zn was used as the P-type dopant and Si was used as the n-type dopant, and these were doped with dimethylzinc (DMZ) and silane (SiH 4 ) as sources.

【0049】これらの反応性ガスを水素をキャリアガス
として石英製反応管に輸送して、SiCコーティングし
たグラファイトサセプタ上に設置したp−GaAs光半
導体結晶基板にエピタキシャル結晶成長をさせた。
These reactive gases were transported to a quartz reaction tube using hydrogen as a carrier gas, and epitaxial crystal growth was performed on a p-GaAs optical semiconductor crystal substrate placed on a SiC-coated graphite susceptor.

【0050】反応管内部の圧力は30〜100Torrであ
り、基板は800℃程度に加熱される。
The pressure inside the reaction tube is 30 to 100 Torr, and the substrate is heated to about 800.degree.

【0051】p−GaAs基板にはZnをドープした、
キャリア濃度が1×1019cm-3程度のものを用いた。基
板の面方位は(100)である。初めにp−GaAs基
板の上にp−GaAs(Znドープ、3×1018cm-3
バッファ層を0.5μm程度成長させる。この上に順次
p−In0.5 Ga0.2 Al0.3 P保護膜層(Znドー
プ、5×1017cm-3)を0.15μm、p−GaAsコ
ンタクト層(Znドープ、3×1018cm-3)を0.1μ
m,p−Ga0.2 Al0.8 As電流拡散層(Znドープ
4×1018cm-3)3を7μm程度、p−In0.5 Al
0.5 P)、クラッド層(Znドープ、5×1017cm-3
22を1μm程度、アンドープIn0.5 Ga0.21Al
0.29P活性層20を0.6μm程度、n−In0.5 Al
0.5 Pクラッド層(Siドープ、5×1017cm-3)を1
μm程、n−Ga0.2 Al0.8 As厚膜層(Siドー
プ、4×1018cm-3)を7μ程度、n−GaAsコンタ
クト層(Siドープ 4×1018cm-3)を0.1μm成
長させ、最後にn−In0.5 Ga0.2 Al0.3 P保護膜
層(Siドープ、4×1018cm-3)を0.15μm成長
させる。
The p-GaAs substrate was doped with Zn,
A carrier having a carrier concentration of about 1 × 10 19 cm −3 was used. The plane orientation of the substrate is (100). First, p-GaAs (Zn-doped, 3 × 10 18 cm −3 ) was formed on the p-GaAs substrate.
The buffer layer is grown to about 0.5 μm. A p-In 0.5 Ga 0.2 Al 0.3 P protective film layer (Zn-doped, 5 × 10 17 cm −3 ) of 0.15 μm and a p-GaAs contact layer (Zn-doped, 3 × 10 18 cm −3 ) were sequentially formed on this. 0.1μ
m, p-Ga 0.2 Al 0.8 As current diffusion layer (Zn-doped 4 × 10 18 cm −3 ) 3 of about 7 μm, p-In 0.5 Al
0.5 P), clad layer (Zn-doped, 5 × 10 17 cm -3 ).
22 of about 1 μm, undoped In 0.5 Ga 0.21 Al
0.29 P active layer 20 of about 0.6 μm, n-In 0.5 Al
0.5 P clad layer (Si doped, 5 × 10 17 cm -3 ) 1
About 7 μm of n-Ga 0.2 Al 0.8 As thick film layer (Si-doped, 4 × 10 18 cm −3 ) and n-GaAs contact layer (Si-doped 4 × 10 18 cm −3 ) of 0.1 μm. Finally, an n-In 0.5 Ga 0.2 Al 0.3 P protective film layer (Si-doped, 4 × 10 18 cm −3 ) is grown to 0.15 μm.

【0052】次にこのようにして得られたInGaAl
P緑色LED用光半導体結晶15のn−In0.5 Ga
0.2 Al0.3 P保護膜層(オーミック電極形成を容易に
するためのn−GaAsコンタクト層の面を清浄に保つ
ために設けている)をリン酸で70℃30秒エッチング
して除去し(リン酸はGaAsをエッチングしないので
制御良くInGaAlP保護膜層のみエッチ・オフでき
る)、真空蒸着法によりn−GaAsコンタクト層にA
uGe合金層(Ge濃度0.5wt%)11を0.5μ
m蒸着した後に480℃10分間Ar雰囲気中でシンタ
リングしてオーミックコンタクトを形成する。
Next, the InGaAl thus obtained was obtained.
N-In 0.5 Ga of optical semiconductor crystal 15 for P green LED
The 0.2 Al 0.3 P protective film layer (which is provided to keep the surface of the n-GaAs contact layer for facilitating the formation of the ohmic electrode clean) is removed by etching with phosphoric acid at 70 ° C. for 30 seconds (phosphoric acid Does not etch GaAs, so only the InGaAlP protective film layer can be etched off with good control).
uGe alloy layer (Ge concentration 0.5 wt%) 11 0.5μ
After vapor deposition, sintering is performed in an Ar atmosphere at 480 ° C. for 10 minutes to form an ohmic contact.

【0053】ついでこれを写真触刻法により所定の形状
(例えば直径70μm,ピッチが180μmの電極パタ
ーン)にエッチングして電極11を形成する。また、電
極11以外の露出しているn−GaAsコンタクト層を
アンモニア水と過酸化水素水からなるエッチング液で除
去する。
Then, this is etched into a predetermined shape (for example, an electrode pattern having a diameter of 70 μm and a pitch of 180 μm) by photolithography to form the electrode 11. Further, the exposed n-GaAs contact layer other than the electrode 11 is removed with an etching solution composed of aqueous ammonia and aqueous hydrogen peroxide.

【0054】一方、厚さ250μm程度のn−GaP結
晶(Sドープ 3×1017cm-3)の両面にAuGe合金
層(Ge濃度0.5wt%)9,13を0.5μm蒸着
した後500℃20分間Ar雰囲気中でシンタリングし
てオーミックコンタクトを形成する。そして一方のAu
Ge合金層13の上に真空蒸着法によりAuGe共晶合
金12(Ge濃度12wt%)を1μm程度蒸着する。
ついで両面のAuGe合金を写真触刻法により前記電極
11と同じパターンに成形する。
On the other hand, AuGe alloy layers (Ge concentration: 0.5 wt%) 9, 13 were deposited by 0.5 μm on both surfaces of an n-GaP crystal (S-doped 3 × 10 17 cm −3 ) having a thickness of about 250 μm, and then 500. An ohmic contact is formed by sintering in an Ar atmosphere at 20 ° C. for 20 minutes. And one Au
An AuGe eutectic alloy 12 (Ge concentration: 12 wt%) is vapor-deposited on the Ge alloy layer 13 by a vacuum vapor deposition method to a thickness of about 1 μm.
Then, the AuGe alloy on both surfaces is formed into the same pattern as the electrode 11 by photolithography.

【0055】このようにして電極形成された光半導体結
晶15のn側電極11とGaP半導体結晶14の共晶合
金12を密着させた後、水素雰囲気中で400℃5分熱
処理をする。この処理によりAuGe共晶合金12が溶
け(共晶温度356℃)電極11と融着する。
After the n-side electrode 11 of the optical semiconductor crystal 15 thus formed and the eutectic alloy 12 of the GaP semiconductor crystal 14 are brought into close contact with each other, heat treatment is performed at 400 ° C. for 5 minutes in a hydrogen atmosphere. By this treatment, the AuGe eutectic alloy 12 is melted (eutectic temperature 356 ° C.) and fused with the electrode 11.

【0056】次にこのAuGe合金の融着により接着一
体化したウェーハをアンモニア水と過酸化水素水のエッ
チング液によりp−GaAs半導体結晶基板のみを除去
する。更にリン酸で70℃30秒エッチングしてp−I
0.5 Ga0.2 Al0.3 P保護膜層を除去し、真空蒸着
法によりp−GaAsコンタクト層にAuBe合金層を
0.3μm蒸着した後、480℃10分間Ar雰囲気中
でシンタリングしてオーミックコンタクトを形成する。
更にワイヤポンディングが容易にならしめるためにAu
Be合金層の上にAuを1μm程度蒸着した後、所定の
形状にエッチングしてP側電極5を形成する。
Next, only the p-GaAs semiconductor crystal substrate is removed from the wafer integrally bonded by fusion of the AuGe alloy with an etching solution of ammonia water and hydrogen peroxide solution. Further, it was etched with phosphoric acid at 70 ° C for 30 seconds to give p
After removing the n 0.5 Ga 0.2 Al 0.3 P protective film layer and depositing 0.3 μm of AuBe alloy layer on the p-GaAs contact layer by vacuum deposition, sintering was performed in an Ar atmosphere at 480 ° C. for 10 minutes to form an ohmic contact. Form.
Furthermore, Au is used to facilitate wire bonding.
Au is vapor-deposited to a thickness of about 1 μm on the Be alloy layer and then etched into a predetermined shape to form the P-side electrode 5.

【0057】また電極5以外の露出しているp−GaA
sコンタクト層はアンモニア水と過酸化水素水からなる
エッチング液で除去する。しかる後に所定のピッチでダ
イシングして個々のペレットに分離する。
Exposed p-GaA other than the electrode 5
The s contact layer is removed with an etching solution composed of aqueous ammonia and aqueous hydrogen peroxide. Then, the pellets are diced at a predetermined pitch to be separated into individual pellets.

【0058】このようにしてGaAs基板を除去してな
る高効率InGaAlP緑色LED・半導体発光素子が
完成する。このLEDではダブルヘテロ構造部の活性層
で発生した光はP側電極5側、n−厚膜層10側及び側
面に向うことになる。n−厚膜層10側に向かった光は
n−厚膜層10と空気との界面で1部が反射され、残り
は半導体結晶14に向う。半導体結晶14に入射した光
も半導体結晶が透明であるので有効に外に放射される。
この効果は電極11,13、及び9の面積が小さい程有
効となる(電極は光を吸収するので)。これにより輝度
が著しく向上し、2cd程度の緑色LEDが実現する。
In this way, the high-efficiency InGaAlP green LED / semiconductor light-emitting device obtained by removing the GaAs substrate is completed. In this LED, the light generated in the active layer of the double hetero structure is directed to the P-side electrode 5 side, the n-thick film layer 10 side and the side surface. The light traveling toward the n-thick film layer 10 side is partially reflected at the interface between the n-thick film layer 10 and air, and the rest is directed to the semiconductor crystal 14. The light incident on the semiconductor crystal 14 is also effectively emitted to the outside because the semiconductor crystal is transparent.
This effect becomes more effective as the areas of the electrodes 11, 13, and 9 are smaller (because the electrodes absorb light). As a result, the brightness is significantly improved, and a green LED of about 2 cd is realized.

【0059】なお、上記実施例において、InGaAl
P保護膜層、GaAsコンタクト層を形成してあるが、
これらの層は本発明においては本質的な事項ではなく、
これらの層がなくても特性上問題ない。また半導体結晶
としてn−GaPを採用しているが、p−GaPを使用
しても良い。この場合は図4に示されている導電型はす
べて逆になる。またn型電極としてはAuGeの他にA
uSi、AuSn等としても良く、P型電極としてはA
uBeの他にAuZnがある。共晶合金としてはAuG
e以外にAuSiがある。またAu系以外の金属や合金
のうち適切なものを使用しても本発明の効果を阻害する
ものではない。更にGaAlAs厚膜層についても同様
でなくても良い。
In the above embodiment, InGaAl
Although the P protective film layer and the GaAs contact layer are formed,
These layers are not essential to the present invention,
There is no problem in terms of characteristics without these layers. Although n-GaP is used as the semiconductor crystal, p-GaP may be used. In this case, the conductivity types shown in FIG. 4 are all reversed. As the n-type electrode, in addition to AuGe, A
uSi, AuSn, or the like may be used, and A may be used as the P-type electrode.
In addition to uBe, there is AuZn. AuG as a eutectic alloy
In addition to e, there is AuSi. Further, the use of an appropriate metal or alloy other than Au does not impair the effects of the present invention. Further, the same may not be applied to the GaAlAs thick film layer.

【0060】実施例では緑色LEDについて説明した
が、InGaAlP活性層の組成を適宜変えることによ
り容易に黄色、橙色、赤色、赤外LED等にも適用可能
になる。
Although the green LED has been described in the embodiment, it can be easily applied to yellow, orange, red, infrared LED and the like by appropriately changing the composition of the InGaAlP active layer.

【0061】つぎに図5を参照して本発明の実施例2を
説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0062】これは金属反射層18を設けるという点が
先に説明した図4の実施例1とは基本的に異なるが、効
果は同様である。光半導体発光素子15の光半導体結晶
であるnー厚膜層10側に本発明の実施例1で記載した
通りの方法で所定の形状をもった電極11を形成した
後、真空蒸着法にてAgを1μm程度蒸着し、このAg
を光の反射そうとして利用する。一方、半導体結晶14
には実施例1での説明したのと同様に、オーミック電極
14と16とを共晶合金12で接合構造を形成するが、
この場合は発光層2から放射された光が金属反射層18
で反射するので特定の形状にする必要はなく、写真触刻
法にてパターニングしない。
This is basically the same as the first embodiment of FIG. 4 described above in that the metal reflection layer 18 is provided, but the effect is the same. An electrode 11 having a predetermined shape is formed on the n-thick film layer 10 side which is an optical semiconductor crystal of the optical semiconductor light emitting device 15 by the method as described in Example 1 of the present invention, and then the vacuum evaporation method is used. Ag is vapor-deposited to about 1 μm.
Is used to reflect light. On the other hand, the semiconductor crystal 14
In the same manner as described in Example 1, the ohmic electrodes 14 and 16 are formed by the eutectic alloy 12 to form a junction structure.
In this case, the light emitted from the light emitting layer 2 is reflected by the metal reflection layer 18
Since it is reflected by, it is not necessary to form a specific shape, and patterning is not performed by photolithography.

【0063】それ以外の工程は本発明の実施例1と同様
である。
The other steps are the same as in Example 1 of the present invention.

【0064】本発明の実施例2の特徴は従来例2で説明
した半導体反射層と同じ効果を金属反射層18により出
現させるという点で、半導体反射層よりも製造バラツキ
を少なくさせることが出来ることが優れている。
The feature of the second embodiment of the present invention is that the metal reflection layer 18 has the same effect as the semiconductor reflection layer described in the second conventional example, and therefore the manufacturing variation can be made smaller than that of the semiconductor reflection layer. Is excellent.

【0065】金属反射層18の材料としては前記のAg
の他にAu Al Ni等の他に金属を用いても良いが
Agは反射率の点で優れており、Auは化学的安定性で
優れている。
As the material of the metal reflection layer 18, the above-mentioned Ag is used.
Alternatively, a metal other than Au Al Ni or the like may be used, but Ag is excellent in reflectance and Au is excellent in chemical stability.

【0066】In0.5 (Ga1-x Alx 0.5 P・グラ
ッド層を成長させる前に先ず、GaP光半導体結晶基板
上にIn1-v Gav P組成勾配層(v=1→0.5)を
成長させることにより、GaP光半導体結晶基板とIn
0.5 (Ga1-x Alx 0.5P・グラッド層との間の格
子定数の違いを吸収させる方法がとられている。
Before growing an In 0.5 (Ga 1-x Al x ) 0.5 P-grad layer, first, an In 1-v Ga v P composition gradient layer (v = 1 → 0.5) is formed on a GaP optical semiconductor crystal substrate. ) Is grown on the GaP optical semiconductor crystal substrate and In
A method of absorbing a difference in lattice constant between the 0.5 (Ga 1-x Al x ) 0.5 P-grad layer and the lattice constant is adopted.

【0067】nーGaP光半導体結晶基板28側にオー
ミック電極11(水玉電極)を、更にnーGaP光半導
体結晶基板24上に積層したpーGaAsPエピタキシ
ャル層26側にオーミック電極13(水玉電極)を設
け、熱融合で(GaP)緑色LEDウェーハーである光
半導体発光素子と(GaAsP)赤色LEDウェーハー
である光半導体発光素子とを共晶金属接合させて半導体
発光デバイスを構成する。又、In 1-vGav P組成勾
配の代りにIn 1−v (Ga1-w Alw v ・P組成勾
配層(v=1→0.5)としても良い。
The ohmic electrode 11 (polka dot electrode) is provided on the n-GaP optical semiconductor crystal substrate 28 side, and the ohmic electrode 13 (polka dot electrode) is further provided on the p-GaAsP epitaxial layer 26 layered on the n-GaP optical semiconductor crystal substrate 24. And a photo-semiconductor light-emitting device which is a (GaP) green LED wafer and a photo-semiconductor light-emitting device which is a (GaAsP) red LED wafer are eutectic metal bonded by thermal fusion to form a semiconductor light-emitting device. Further, In 1-v Ga v P instead of the gradient composition In 1-v (Ga 1- w Al w) v · P compositional gradient layer (v = 1 → 0.5) may be.

【0068】そこで図5に示す発明実施例2によって構
成された半導体発光デバイスは、一方を光半導体結晶基
板14例えばn−GaPと、もう一方をnー厚膜層10
例えばn−GaP結晶若しくは、光半導体エピタキシャ
ル結晶成長層・p−GaPエピタキシャル層の上にnー
In0.5 (Ga1-x Alx 0.5 P・グラッド層21,
pーIn0.5 (Ga1-x Alx 0.5 P・グラッド層2
2を成長させ、活性層20とにより発光層を形成する。
更にpー電流拡散層を構築した、光半導体発光素子(L
EDウェーハー)15とで、半導体発光デバイスを構成
するわけであるが、nー厚膜層10に、所定の形に形状
化したオーミック電極11(水玉電極)を形成し、該オ
ーミック電極面上全面に金属若しくは合金から成る金属
反射層18を形成、更に、この金属反射層18と光半導
体結晶基板14上に形成したオーミック電極・全面電極
17とを合金熱溶融により共晶合金化したオーミック電
極上構築物が形成される。そこでnー厚膜層10例えば
光半導体エピタキシャル結晶成長層上に形成された前記
オーミック電極の形状は、前記共晶合金化したオーミッ
ク電極上構築物が特定の形状を有する必要がなく、且つ
前記オーミック電極形成面上全面に施された金属若しく
は合金から成る反射層がAu,Al,Ag又は、反射率
の高い金属並びに合金であることを特徴とする半導体発
光デバイスである。
Therefore, in the semiconductor light emitting device constructed according to the second embodiment of the invention shown in FIG. 5, one side is the optical semiconductor crystal substrate 14, for example, n-GaP, and the other side is the n-thick film layer 10.
For example, n-In 0.5 (Ga 1-x Al x ) 0.5 P-grad layer 21, on the n-GaP crystal or optical semiconductor epitaxial crystal growth layer / p-GaP epitaxial layer,
p-In 0.5 (Ga 1-x Al x ) 0.5 P-grad layer 2
2 is grown to form a light emitting layer with the active layer 20.
Further, an optical semiconductor light emitting device (L
A semiconductor light emitting device is composed of the ED wafer 15 and the ohmic electrode 11 (polka dot electrode) formed into a predetermined shape is formed on the n-thick film layer 10 and the entire surface of the ohmic electrode is formed. On the ohmic electrode in which a metal reflection layer 18 made of a metal or an alloy is formed, and the metal reflection layer 18 and the ohmic electrode / full surface electrode 17 formed on the optical semiconductor crystal substrate 14 are eutectic alloyed by alloy heat melting. A construct is formed. Therefore, the shape of the ohmic electrode formed on the n-thick film layer 10, for example, the optical semiconductor epitaxial crystal growth layer does not require that the eutectic alloyed ohmic electrode structure has a specific shape, and The semiconductor light emitting device is characterized in that the reflective layer made of a metal or an alloy applied over the entire formation surface is Au, Al, Ag, or a metal or an alloy having a high reflectance.

【0069】第三の発明は少なくとも一つ以上の発光層
を構成する半導体エピタキシャル結晶成長層を有する半
導体発光素子同志若しくは少なくとも一つ以上の発光層
を構成する半導体エピタキシャル結晶成長層発光層を有
する半導体発光素子と光半導体結晶基板をベースとした
半導体発光素子との接合を金属によって共晶合金接合に
よって成る半導体発デバイスの各発光層により中間色を
発光するものである。そこで、次に図6を参照して発明
実施例3ついて説明する。
A third invention is a semiconductor light emitting device having a semiconductor epitaxial crystal growth layer forming at least one light emitting layer or a semiconductor having a semiconductor epitaxial crystal growth layer light emitting layer forming at least one light emitting layer. The light emitting element and the semiconductor light emitting element based on the optical semiconductor crystal substrate are joined together by eutectic alloy bonding with a metal, and each light emitting layer of the semiconductor light emitting device emits an intermediate color. Therefore, a third embodiment of the invention will be described with reference to FIG.

【0070】これは図4の光半導体結晶14のかわり
に、GaAsP赤色LED(ピーク波長650nm程
度)ウェーハ・半導体発光素子23を接合するという点
が先に説明した図4の実施例とは基本的に異なってい
る。
This is basically the point that the GaAsP red LED (peak wavelength of about 650 nm) wafer / semiconductor light emitting device 23 is bonded instead of the optical semiconductor crystal 14 of FIG. 4 to the embodiment of FIG. 4 described above. Is different.

【0071】このGaAsP赤色LED(ピーク波長6
50nm程度)ウェーハ・半導体発光素子23は例えば
図6で示すように、このGaAsP赤色LEDウェーハ
・半導体発光素子23を構成するベースとなるn−Ga
P光半導体結晶基板24上に図6−25n−GaAsP
エピ層と図6−26のp−GaAsPエピ層を積層成長
させ、図6−25n−GaAsPエピ層と図6−26の
p−GaAsPエピ層とで発光層を形成する。
This GaAsP red LED (peak wavelength 6
The wafer / semiconductor light-emitting element 23 is, for example, as shown in FIG. 6, an n-Ga substrate serving as a base of the GaAsP red LED wafer / semiconductor light-emitting element 23.
6-25n-GaAsP on the P optical semiconductor crystal substrate 24.
The epi layer and the p-GaAsP epi layer of FIG. 6-26 are grown in layers, and the light emitting layer is formed by the n-GaAsP epi layer of FIG. 6-25 and the p-GaAsP epi layer of FIG. 6-26.

【0072】このGaAsP赤色LEDウェハー・半導
体発光素子23は図4で先に説明した方法によりGaP
緑色LED(ピーク波長565nm程度)ウェハー・半
導体発光素子27と接合される。
This GaAsP red LED wafer / semiconductor light-emitting element 23 was GaP manufactured by the method previously described with reference to FIG.
A green LED (peak wavelength of about 565 nm) is bonded to the wafer / semiconductor light emitting element 27.

【0073】一方、図6−28はGaP緑色LEDウェ
ハー・半導体発光素子27を構成する為のベースとなる
n−GaP基板28上に、図6のn−GaPエピ層29
と図6のp−GaPエピ層30とで発光層を形成する。
このようにして得られた図6の半導体発光デバイス・チ
ップは赤と緑の中間色を発光するLEDとなる。そして
接合面から第3の電極を取り出すことにより1個のチッ
プで赤から緑色までの光を任意に取り出すことができる
という特徴を持つ。
On the other hand, FIG. 6-28 shows the n-GaP epilayer 29 of FIG. 6 on the n-GaP substrate 28 which is the base for constructing the GaP green LED wafer / semiconductor light-emitting element 27.
And the p-GaP epilayer 30 of FIG. 6 form a light emitting layer.
The thus obtained semiconductor light emitting device chip of FIG. 6 becomes an LED which emits an intermediate color between red and green. Then, by extracting the third electrode from the joint surface, it is possible to arbitrarily extract light from red to green with one chip.

【0074】次に図7を参照して本発明実施例4につい
て説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIG.

【0075】これは図4の半導体結晶14のかわりに、
n−GaAsPエピ層光半導体エピタキシャル結晶成長
層34をGaAs半導体結晶上に成長させた後エッチン
グによりGaAs半導体結晶を除去し、n−GaAsP
エピ層光半導体エピタキシャル結晶成長層34上にn−
GaAsPエピ層光半導体エピタキシャル結晶成長層2
5とp−GaAsPエピ層光半導体エピタキシャル結晶
成長層26とを積層させ発光層を形成させる。これによ
りGaAsP赤色LEDウエーハー36を形成する点
が、先に説明した図4の本発明実施例1とは、基本的に
異なっており、もう1方のn−GaPエピ層・光半導体
エピタキシャル結晶成長層33をベースとしてなるGa
P緑色LEDウエーハー(ピーク波長565nm程度)
35は、図6の本発明実施例3でのn−GaP結晶基板
28から構成された(GaP)緑色LEDウエーハー2
7とは基本的にn−GaP結晶基板28とn−GaPエ
ピ層光半導体エピタキシャル結晶成長層33並びにn−
GaP結晶基板24とn−GaAsPエピ層光半導体エ
ピタキシャル結晶成長層34との対比点で異なってい
る。
Instead of the semiconductor crystal 14 shown in FIG.
The n-GaAsP epitaxial layer optical semiconductor epitaxial crystal growth layer 34 is grown on the GaAs semiconductor crystal, and then the GaAs semiconductor crystal is removed by etching.
N− on the epitaxial layer optical semiconductor epitaxial crystal growth layer 34
GaAsP epitaxial layer optical semiconductor epitaxial crystal growth layer 2
5 and the p-GaAsP epitaxial layer optical semiconductor epitaxial crystal growth layer 26 are stacked to form a light emitting layer. The GaAsP red LED wafer 36 is thereby formed, which is basically different from the above-described first embodiment of the present invention shown in FIG. 4, and the other n-GaP epilayer / optical semiconductor epitaxial crystal growth is performed. Ga based on layer 33
P green LED wafer (peak wavelength of about 565 nm)
Reference numeral 35 is a (GaP) green LED wafer 2 composed of the n-GaP crystal substrate 28 in the third embodiment of the present invention shown in FIG.
7 is basically an n-GaP crystal substrate 28, an n-GaP epilayer optical semiconductor epitaxial crystal growth layer 33, and an n-
The GaP crystal substrate 24 and the n-GaAsP epilayer optical semiconductor epitaxial crystal growth layer 34 are different in comparison point.

【0076】そこで、図7の本発明実施例4でのGaA
sP赤色LED(ピーク波長650nm程度)ウェーハ
36はn−GaPエピタキシャル結晶成長層34からな
り、図6の実施例3でのn−GaP結晶基板24から構
成されたGaAsP赤色LED(ピーク波長650nm
程度)ウェーハ23とは基本的に特性も異なっくる。
Therefore, GaA in the fourth embodiment of the present invention shown in FIG.
The sP red LED (peak wavelength of about 650 nm) wafer 36 is composed of the n-GaP epitaxial crystal growth layer 34, and is composed of the n-GaP crystal substrate 24 of Example 3 in FIG.
The characteristics are basically different from those of the wafer 23.

【0077】図7の本発明実施例4での半導体発光素子
・GaAsP赤色LED(ピーク波長650nm程度)
ウェーハ36は、n−GaAsPエピタキシャル結晶成
長層34上に成長・積層構成された図7−25のn−G
aAsPエピタキシャル結晶成長層と図7−26のp−
GaAsPエピタキシャル結晶成長層とで発光層を形成
する。
Semiconductor light emitting device and GaAsP red LED (peak wavelength of about 650 nm) in Embodiment 4 of the present invention shown in FIG.
The wafer 36 is grown and laminated on the n-GaAsP epitaxial crystal growth layer 34 to form the n-G of FIG. 7-25.
aAsP epitaxial crystal growth layer and p- in FIG.
A light emitting layer is formed with the GaAsP epitaxial crystal growth layer.

【0078】又このGaAsP赤色LEDウェハー36
である半導体発光素子ともう1方の半導体発光素子・
(GaP)緑色LED(ピーク波長565nm程度)ウ
ェーハ35はn−GaP光半導体エピタキシャル結晶成
長層33上に積層で構成された図7のn−GaPエピタ
キシャル結晶成長層29と図7のp−GaAsPエピタ
キシャル結晶成長層30とで発光層を形成する。
Further, this GaAsP red LED wafer 36
Semiconductor light emitting device and another semiconductor light emitting device
The (GaP) green LED (peak wavelength of about 565 nm) wafer 35 is formed by stacking on n-GaP optical semiconductor epitaxial crystal growth layer 33, and n-GaP epitaxial crystal growth layer 29 of FIG. 7 and p-GaAsP epitaxial growth layer of FIG. A light emitting layer is formed with the crystal growth layer 30.

【0079】この様にして構成したGaAsP赤色LE
Dウェハー36(ピーク波長650nm程度)である半
導体発光素子とGaP緑色LEDウエ−ハー(ピーク波
長565nm程度)35である半導体発光素子とを金属
間結合による共晶合金接合で半導体発光素子同志の結合
を行なつた半導体発光デバイスを製造した。
GaAsP red LE thus constructed
The semiconductor light emitting device, which is the D wafer 36 (peak wavelength of about 650 nm) and the GaP green LED wafer (peak wavelength of about 565 nm) 35, are bonded together by eutectic alloy bonding by intermetallic bonding. A semiconductor light emitting device was manufactured.

【0080】該半導体発光デバイス製造方法は第7の発
明である前記半導体発光素子の光半導体エピタキシャル
結晶成長層33上に形成したオーミック電極ともう一方
の前記半導体発光素子の光半導体エピタキシャル結晶成
長層・p−GaAsPエピタキシャル層26上にオーミ
ック電極を形成し、更に各オーミック電極上に共晶合金
化構築物を形成するため、該共晶合金化構築物と同形に
形状化させたp−GaAsPエピタキシャル層26とn
ーGaPエピタキシャル層33のオーミック電極とを熱
処理によって融着させることになる。
The semiconductor light-emitting device manufacturing method is the seventh invention, wherein the ohmic electrode formed on the optical semiconductor epitaxial crystal growth layer 33 of the semiconductor light-emitting device and the other optical semiconductor epitaxial crystal growth layer of the semiconductor light-emitting device are provided. An ohmic electrode is formed on the p-GaAsP epitaxial layer 26, and a eutectic alloyed structure is further formed on each ohmic electrode. Therefore, a p-GaAsP epitaxial layer 26 shaped in the same shape as the eutectic alloyed structure is formed. n
-The ohmic electrode of the GaP epitaxial layer 33 is fused by heat treatment.

【0081】これによって該オーミック電極同志を金属
間結合により共晶合金接合させ成る半導体発光デバイス
製造方法である。図4,図6,図7の11,12,13
の共晶合金化構築物の形成方法がこれである。
This is a method for manufacturing a semiconductor light emitting device in which the ohmic electrodes are joined together by eutectic alloy bonding by intermetallic bonding. 11, 12, 13 of FIGS.
This is the method of forming the eutectic alloyed constructs of.

【0082】図7で先に説明した方法によりGaP緑色
LED(ピーク波長565nm程度)ウェハーである光
半導体発光素子(LEDウェーハー)35は、図7の光
半導体エピタキシャル結晶成長層・p−GaPエピタキ
シャル層33上にn−GaPエピタキチャル結晶成長層
29,p−GaPエピタキチャル結晶成長層30で挟ん
だいわゆる薄い光導波路であるN/GaP発光層を形成
する。
The optical semiconductor light emitting device (LED wafer) 35 which is a GaP green LED (peak wavelength of about 565 nm) wafer by the method described above with reference to FIG. 7 is the optical semiconductor epitaxial crystal growth layer / p-GaP epitaxial layer of FIG. An N / GaP light emitting layer which is a so-called thin optical waveguide sandwiched between the n-GaP epitaxial crystal growth layer 29 and the p-GaP epitaxial crystal growth layer 30 is formed on 33.

【0083】このようにして得られた半導体発光デバイ
ス・チップは赤と緑の中間色のLEDとなる。そして接
合面から第3の電極を取り出すことにより1個のチップ
で赤から緑色までの光を任意に取り出すことができると
いう特徴を持つ。又 青色LEDではGaN,SiCエ
ピタキチャル結晶成長層を使用する。
The semiconductor light emitting device chip thus obtained becomes an LED having an intermediate color between red and green. Then, by extracting the third electrode from the joint surface, it is possible to arbitrarily extract light from red to green with one chip. In addition, a blue LED uses a GaN, SiC epitaxial crystal growth layer.

【0084】[0084]

【発明の効果】各半導体発光素子に順バイアスをそれぞ
れ印加して、各々の発光層から所定の波長光の発光を任
意に制御し半導体発光デバイス・チップ1個で緑と赤若
しくは赤と青又は緑と青の中間色の発光を任意に制御可
能にしたことを特徴とする半導体発光デバイス。
EFFECTS OF THE INVENTION A forward bias is applied to each semiconductor light emitting element to arbitrarily control the emission of light of a predetermined wavelength from each light emitting layer, and one semiconductor light emitting device chip can be used for green and red or red and blue, or A semiconductor light emitting device characterized in that it is possible to arbitrarily control the emission of the intermediate color between green and blue.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術による半導体発光素子の構造断面図の
一実施例。
FIG. 1 is an example of a structural cross-sectional view of a semiconductor light emitting device according to a conventional technique.

【図2】従来技術による半導体発光素子の構造断面図の
一実施例。
FIG. 2 is an example of a structural cross-sectional view of a semiconductor light emitting device according to a conventional technique.

【図3】従来技術による半導体発光素子の構造断面図の
一実施例。
FIG. 3 is an example of a structural cross-sectional view of a semiconductor light emitting device according to a conventional technique.

【図4】本発明による半導体発光デバイスの構造断面図
の発明実施例1。
FIG. 4 is an embodiment 1 of a structural sectional view of a semiconductor light emitting device according to the present invention.

【図5】本発明による半導体発光デバイスの構造断面図
の発明実施例2。
FIG. 5 is an embodiment 2 of the structural sectional view of the semiconductor light emitting device according to the present invention.

【図6】本発明による半導体発光デバイスの構造断面図
の発明実施例3。
FIG. 6 is an embodiment 3 of the structural sectional view of the semiconductor light emitting device according to the present invention.

【図7】本発明による半導体発光デバイスの構造断面図
の発明実施例4。
FIG. 7 is an embodiment 4 of a structural sectional view of a semiconductor light emitting device according to the present invention.

【符号の説明】[Explanation of symbols]

1 n−半導体基板 2 発光層 3 p−電流拡散層 4 n側電極 5 p側電極 6 反射層 7 n−Gap基板 8 n−組成勾配層 9 n側水玉電極 10 n−厚膜層(n−半導体膜厚エピタキシャル結晶
成長層) 11 n水玉電極 12 共晶合金 13 n−水玉電極 14 半導体結晶 15 LEDウェーハー・半導体発光素子 16 全面電極 17 全面電極 18 金属反射層 20 活性層 21 n−クラッド層 22 p−クラッド層 23 (GaAsP)赤色LEDウェーハー・半導体発
光素子 24 n−Gap基板 25 n−Gapエピ(エピタキシャル)層 26 p−GaAsPエピ(エピタキシャル)層 27 (GaP)緑色LEDウェーハー・半導体発光素
子 28 n−Gap基板 29 n−Gapエピ(エピタキシャル)層 30 p−Gapエピ(エピタキシャル)層 31 バイアス電圧 32 バイアス電圧 33 n−Gapエピ層(n−半導体膜厚エピタキシャ
ル結晶成長層) 34 n−Gapエピ層(n−半導体膜厚エピタキシャ
ル結晶成長層)
1 n-semiconductor substrate 2 light emitting layer 3 p-current diffusion layer 4 n-side electrode 5 p-side electrode 6 reflective layer 7 n-Gap substrate 8 n-composition gradient layer 9 n-side polka dot electrode 10 n-thick film layer (n- Semiconductor film Epitaxial crystal growth layer) 11 n Polka dot electrode 12 Eutectic alloy 13 n-Polka dot electrode 14 Semiconductor crystal 15 LED wafer / semiconductor light emitting device 16 Full surface electrode 17 Full surface electrode 18 Metal reflective layer 20 Active layer 21 n-Clad layer 22 p-clad layer 23 (GaAsP) red LED wafer / semiconductor light emitting device 24 n-Gap substrate 25 n-Gap epi (epitaxial) layer 26 p-GaAsP epi (epitaxial) layer 27 (GaP) green LED wafer / semiconductor light emitting device 28 n-Gap substrate 29 n-Gap epi (epitaxial) layer 30 p-Gap epi (epi) Kisharu) layer 31 bias voltage 32 bias voltage 33 n-Gap, epi layer (n- semiconductor film thickness epitaxial crystal growth layer) 34 n-Gap, epi layer (n- semiconductor film thickness epitaxial crystal growth layer)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光半導体結晶基板上に少なくとも一つ以
上の発光層を構成する半導体発光素子同志若しくは光半
導体結晶基板上に少なくとも一つ以上の発光層を構成す
る半導体発光素子と光半導体結晶基板とを金属によって
接合して成ることを特徴とする半導体発光デバイス。
1. A semiconductor light emitting device having at least one light emitting layer on an optical semiconductor crystal substrate, or a semiconductor light emitting device having at least one light emitting layer on an optical semiconductor crystal substrate, and an optical semiconductor crystal substrate. A semiconductor light-emitting device characterized by being formed by joining and with a metal.
【請求項2】 少なくとも一つ以上の発光層と光半導体
厚膜エピタキシヤル結晶成長層とで構成された半導体発
光素子同志若しくは少なくとも一つ以上の発光層と光半
導体厚膜エピタキシヤル結晶成長層とで構成された半導
体発光素子と光半導体結晶基板とを金属によって接合し
て成ることを特徴とする半導体発光デバイス。
2. A semiconductor light emitting device composed of at least one light emitting layer and an optical semiconductor thick film epitaxial crystal growth layer, or at least one light emitting layer and an optical semiconductor thick film epitaxial crystal growth layer. 2. A semiconductor light emitting device comprising a semiconductor light emitting element composed of and an optical semiconductor crystal substrate joined together by a metal.
【請求項3】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、半導体発光素子の光半導体エピ
タキシャル結晶成長層同志若しくは半導体発光素子の光
半導体エピタキシャル結晶成長層と光半導体結晶基板の
接合に用いた金属が共晶合金であることを特徴とする半
導体発光デバイス。
3. The semiconductor light emitting device according to claim 1 or 2, wherein the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting device is the same or the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting device is joined to the optical semiconductor crystal substrate. A semiconductor light-emitting device, wherein the metal used is a eutectic alloy.
【請求項4】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、光半導体結晶基板若しくは光半
導体エピタキシャル結晶成長層が発光層により発する光
のエネルギーよりも大きなバンドギャップを有する半導
体結晶であることを特徴とする半導体発光デバイス。
4. The semiconductor light emitting device according to claim 1 or 2, wherein the optical semiconductor crystal substrate or the optical semiconductor epitaxial crystal growth layer is a semiconductor crystal having a band gap larger than the energy of light emitted by the light emitting layer. A semiconductor light-emitting device characterized by the above.
【請求項5】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、少なくとも一つ以上の発光層で
構成された半導体発光素子を少なくとも二つ以上順方向
に接合し、且つ該半導体発光素子に順バイアスをそれぞ
れ印加して各発光層から各々の発光輝度を制御可能にし
たことを特徴とする半導体発光デバイス。
5. The semiconductor light emitting device according to claim 1 or 2, wherein at least two semiconductor light emitting elements each including at least one light emitting layer are joined in a forward direction, and the semiconductor light emitting elements are joined together. A semiconductor light-emitting device characterized in that a forward bias is applied to each of the light-emitting layers to control the emission brightness of each light-emitting layer.
【請求項6】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、少なくとも一つ以上の発光層で
構成された半導体発光素子を少なくとも二つ以上順方向
に接合し、且つ該半導体発光素子に順バイアスをそれぞ
れ印加して、各々の発光層からの発光を任意に制御し半
導体発光デバイスのチップ1個で緑と赤若しくは赤と青
又は緑と青の中間色の発光を任意に制御可能にしたこと
を特徴とする半導体発光デバイス。
6. The semiconductor light emitting device according to claim 1 or 2, wherein at least two or more semiconductor light emitting elements each including at least one light emitting layer are joined in a forward direction, and the semiconductor light emitting elements are joined together. A forward bias is applied to each to arbitrarily control the light emission from each light emitting layer, and one semiconductor light emitting device chip can arbitrarily control the light emission of green and red or red and blue or intermediate colors of green and blue. A semiconductor light emitting device characterized by the above.
【請求項7】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、半導体発光素子の光半導体エピ
タキシャル結晶成長層上に形成したオーミック電極と光
半導体結晶基板上に形成したオーミック電極共晶合金化
構築物とを所定の形に同形形状化させ且つ、熱処理によ
って融着させ、該オーミック電極同志を金属間結合によ
り共晶合金接合させたことを特徴とする半導体発光デバ
イス。
7. The semiconductor light emitting device according to claim 1, wherein the ohmic electrode formed on the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting element and the ohmic electrode eutectic alloy formed on the optical semiconductor crystal substrate. A semiconductor light-emitting device, which has the same shape as a chemical structure and is fused by heat treatment to bond the ohmic electrodes to each other by eutectic alloy bonding by intermetallic bonding.
【請求項8】 請求項1並びに請求項2に記載の半導体
発光デバイスにおいて、半導体発光素子の光半導体エピ
タキシャル結晶成長層上に所定の形に形状化したオーミ
ック電極形成面上全面に金属若しくは合金反射層で光半
導体結晶基板上に形成したオーミック電極上を共晶合金
化した構築物が特定の形状を有する必要がなく、且つ前
記オーミック電極形成面上全面に施された金属若しくは
合金反射層がAu,Al,Ag又は反射率の高い金属並
びに合金であることを特徴とする半導体発光デバイス。
8. The semiconductor light emitting device according to claim 1 or 2, wherein a metal or alloy reflection is formed on the entire surface of the ohmic electrode formation surface formed into a predetermined shape on the optical semiconductor epitaxial crystal growth layer of the semiconductor light emitting element. The structure in which the eutectic alloy is formed on the ohmic electrode formed on the optical semiconductor crystal substrate in a layer does not need to have a specific shape, and the metal or alloy reflective layer applied on the entire surface on which the ohmic electrode is formed is Au, A semiconductor light emitting device, which is made of Al, Ag, or a metal or alloy having a high reflectance.
JP4049590A 1992-03-06 1992-03-06 Semiconductor light emitting device Pending JPH05251739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4049590A JPH05251739A (en) 1992-03-06 1992-03-06 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4049590A JPH05251739A (en) 1992-03-06 1992-03-06 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH05251739A true JPH05251739A (en) 1993-09-28

Family

ID=12835449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4049590A Pending JPH05251739A (en) 1992-03-06 1992-03-06 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH05251739A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054764A1 (en) * 1997-05-27 1998-12-03 Osram Opto Semiconductors Gmbh & Co. Ohg Method for producing a light-emitting component
JP2000277804A (en) * 1995-06-15 2000-10-06 Nichia Chem Ind Ltd Nitride semiconductor device and manufacture thereof, and light emitting element
EP1189283A1 (en) * 2000-09-08 2002-03-20 Unity Opto Technology Co., Ltd. Stacking-type colour-mixing LED
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
JP2002203987A (en) * 2000-10-31 2002-07-19 Toshiba Corp Semiconductor light emitting element and its fabricating method
WO2004051758A1 (en) * 2002-11-29 2004-06-17 Sanken Electric Co., Ltd. Semiconductor light-emitting device and method for manufacturing same
WO2004077579A1 (en) * 2003-02-28 2004-09-10 Shin-Etsu Handotai Co.,Ltd. Light emitting element and process for fabricating the same
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
EP1469516A1 (en) * 2003-04-14 2004-10-20 Epitech Corporation, Ltd. White-light emitting semiconductor device using a plurality of light emitting diode chips
WO2005020337A1 (en) * 2003-08-26 2005-03-03 Sumitomo Electric Industries, Ltd. Light-emitting device
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
JP2005101610A (en) * 2003-09-23 2005-04-14 Kokuren Koden Kagi Kofun Yugenkoshi Light emitting diode and its manufacturing method
JP2005236303A (en) * 2004-02-20 2005-09-02 Shogen Koden Kofun Yugenkoshi Organic adhesion light emitting element with ohmic metal bulge
JP2005340836A (en) * 2004-05-28 2005-12-08 Osram Opto Semiconductors Gmbh Optoelectronics constituent element and its manufacturing method
JP2006032857A (en) * 2004-07-21 2006-02-02 Koha Co Ltd Light emitting device
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
WO2007094516A1 (en) * 2006-02-16 2007-08-23 Showa Denko K.K. GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR THE FABRICATION THEREOF
JP2008130663A (en) * 2006-11-17 2008-06-05 Sharp Corp Semiconductor light-emitting element, and manufacturing method therefore
JP2008193006A (en) * 2007-02-07 2008-08-21 Mitsubishi Chemicals Corp GaN-BASED LED CHIP
US7429754B2 (en) 2004-09-14 2008-09-30 Stanley Electric Co., Ltd. Semiconductor device, its manufacture method and electronic component unit
US7566576B2 (en) 2002-11-29 2009-07-28 Sanken Electric Co., Ltd. Gallium-containing light-emitting semiconductor device and method of fabrication
JP2009277815A (en) * 2008-05-14 2009-11-26 Sony Corp Semiconductor light emitting element
JP2010062201A (en) * 2008-09-01 2010-03-18 Sony Corp Semiconductor light emitting element and method of manufacturing the same
JP2012532438A (en) * 2009-06-30 2012-12-13 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー P contact layer of III-P semiconductor light emitting device
US8860065B2 (en) 2005-01-18 2014-10-14 Epistar Corporation Optoelectronic semiconductor device
JP2018056586A (en) * 2010-02-09 2018-04-05 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric element and method of manufacturing the same
US10672945B2 (en) 2017-09-01 2020-06-02 Nichia Corporation Method for manufacturing light emitting device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277804A (en) * 1995-06-15 2000-10-06 Nichia Chem Ind Ltd Nitride semiconductor device and manufacture thereof, and light emitting element
US6221683B1 (en) 1997-05-27 2001-04-24 Osram Opto Semiconductor Gmbh & Co. Ohg Method for producing a light-emitting component
WO1998054764A1 (en) * 1997-05-27 1998-12-03 Osram Opto Semiconductors Gmbh & Co. Ohg Method for producing a light-emitting component
JP2007201516A (en) * 1997-05-27 2007-08-09 Osram Opto Semiconductors Gmbh Light emitting device
EP1189283A1 (en) * 2000-09-08 2002-03-20 Unity Opto Technology Co., Ltd. Stacking-type colour-mixing LED
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
JP2002203987A (en) * 2000-10-31 2002-07-19 Toshiba Corp Semiconductor light emitting element and its fabricating method
US7566576B2 (en) 2002-11-29 2009-07-28 Sanken Electric Co., Ltd. Gallium-containing light-emitting semiconductor device and method of fabrication
WO2004051758A1 (en) * 2002-11-29 2004-06-17 Sanken Electric Co., Ltd. Semiconductor light-emitting device and method for manufacturing same
WO2004077579A1 (en) * 2003-02-28 2004-09-10 Shin-Etsu Handotai Co.,Ltd. Light emitting element and process for fabricating the same
JP2004281445A (en) * 2003-03-12 2004-10-07 Sanyo Electric Co Ltd Laminated light emitting diode element
EP1469516A1 (en) * 2003-04-14 2004-10-20 Epitech Corporation, Ltd. White-light emitting semiconductor device using a plurality of light emitting diode chips
WO2005020337A1 (en) * 2003-08-26 2005-03-03 Sumitomo Electric Industries, Ltd. Light-emitting device
CN100414724C (en) * 2003-08-26 2008-08-27 住友电气工业株式会社 Light emitting device
US7202509B2 (en) 2003-08-26 2007-04-10 Sumitomo Electric Industries, Ltd. Light emitting apparatus
US7687822B2 (en) 2003-08-26 2010-03-30 Sumitomo Electric Industries, Ltd. Light emitting apparatus
JP4697650B2 (en) * 2003-08-29 2011-06-08 信越半導体株式会社 Light emitting element
JP2005079264A (en) * 2003-08-29 2005-03-24 Shin Etsu Handotai Co Ltd Light emitting element
JP2005101610A (en) * 2003-09-23 2005-04-14 Kokuren Koden Kagi Kofun Yugenkoshi Light emitting diode and its manufacturing method
US7190004B2 (en) 2003-12-03 2007-03-13 Sumitomo Electric Industries, Ltd. Light emitting device
US8237182B2 (en) 2004-02-20 2012-08-07 Epistar Corporation Organic adhesive light-emitting device with ohmic metal bulge
JP2005236303A (en) * 2004-02-20 2005-09-02 Shogen Koden Kofun Yugenkoshi Organic adhesion light emitting element with ohmic metal bulge
JP4648031B2 (en) * 2004-02-20 2011-03-09 晶元光電股▲ふん▼有限公司 Organic adhesive light emitting device with metal bulge
JP2005340836A (en) * 2004-05-28 2005-12-08 Osram Opto Semiconductors Gmbh Optoelectronics constituent element and its manufacturing method
JP2006032857A (en) * 2004-07-21 2006-02-02 Koha Co Ltd Light emitting device
US7429754B2 (en) 2004-09-14 2008-09-30 Stanley Electric Co., Ltd. Semiconductor device, its manufacture method and electronic component unit
US7666692B2 (en) 2004-09-14 2010-02-23 Stanley Electric Co., Ltd. Semiconductor device, its manufacture method and electronic component unit
US8860065B2 (en) 2005-01-18 2014-10-14 Epistar Corporation Optoelectronic semiconductor device
JP2007251112A (en) * 2006-02-16 2007-09-27 Showa Denko Kk Gallium nitride semiconductor light emitting element, and its manufacture
US7821018B2 (en) 2006-02-16 2010-10-26 Showa Denko K.K. GaN-based semiconductor light-emitting device and method for the fabrication thereof
WO2007094516A1 (en) * 2006-02-16 2007-08-23 Showa Denko K.K. GaN-BASED SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR THE FABRICATION THEREOF
JP2008130663A (en) * 2006-11-17 2008-06-05 Sharp Corp Semiconductor light-emitting element, and manufacturing method therefore
JP2008193006A (en) * 2007-02-07 2008-08-21 Mitsubishi Chemicals Corp GaN-BASED LED CHIP
US11245060B2 (en) 2007-08-27 2022-02-08 Epistar Corporation Optoelectronic semiconductor device
US8102890B2 (en) 2008-05-14 2012-01-24 Sony Corporation Semiconductor light emitting device
US7965750B2 (en) 2008-05-14 2011-06-21 Sony Corporation Semiconductor light emitting device
JP4656183B2 (en) * 2008-05-14 2011-03-23 ソニー株式会社 Semiconductor light emitting device
JP2009277815A (en) * 2008-05-14 2009-11-26 Sony Corp Semiconductor light emitting element
JP2010062201A (en) * 2008-09-01 2010-03-18 Sony Corp Semiconductor light emitting element and method of manufacturing the same
JP2012532438A (en) * 2009-06-30 2012-12-13 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー P contact layer of III-P semiconductor light emitting device
US8816368B2 (en) 2009-06-30 2014-08-26 Koninklijke Philips N.V. P-contact layer for a III-P semiconductor light emitting device
JP2018056586A (en) * 2010-02-09 2018-04-05 晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric element and method of manufacturing the same
US10672945B2 (en) 2017-09-01 2020-06-02 Nichia Corporation Method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JPH05251739A (en) Semiconductor light emitting device
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7714343B2 (en) Light emitting device
RU2491683C2 (en) Contact for semiconductor light-emitting device
JP4507594B2 (en) Semiconductor light emitting device
US20020068373A1 (en) Method for fabricating light emitting diodes
JPH0936431A (en) Semiconductor light emitting element
JP2008288248A (en) Semiconductor light-emitting element
US20100258826A1 (en) Light emitting diode and method for manufacturing the same
KR20040010419A (en) Semiconductor light emitting element
US8729598B2 (en) Light-emitting diode, method for manufacturing the same, and light-emitting diode lamp
JP2016092411A (en) Light emitting element
JP7432024B2 (en) infrared light emitting diode
JP3152708B2 (en) Semiconductor light emitting device
US20120146067A1 (en) Light emitting device
JP2001144322A (en) Method of manufacturing semiconductor device and semiconductor light-emitting device
KR101011757B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
JPH04361572A (en) Semiconductor light emitting element
JP3691202B2 (en) Semiconductor light emitting device
JP3633018B2 (en) Semiconductor light emitting device
JP2000174341A (en) Gallium nitride based compound semiconductor light- emitting element
JPH09172198A (en) Light emitting diode and its manufacture
JP2004281825A (en) Method of manufacturing light emitting diode
JP3777869B2 (en) Gallium nitride compound semiconductor light emitting device
JP2004221356A (en) Light emitting diode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees