JP3633018B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3633018B2
JP3633018B2 JP2828395A JP2828395A JP3633018B2 JP 3633018 B2 JP3633018 B2 JP 3633018B2 JP 2828395 A JP2828395 A JP 2828395A JP 2828395 A JP2828395 A JP 2828395A JP 3633018 B2 JP3633018 B2 JP 3633018B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
electrode
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2828395A
Other languages
Japanese (ja)
Other versions
JPH08222761A (en
Inventor
茂隆 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2828395A priority Critical patent/JP3633018B2/en
Publication of JPH08222761A publication Critical patent/JPH08222761A/en
Application granted granted Critical
Publication of JP3633018B2 publication Critical patent/JP3633018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は化合物半導体発光素子に係わり、特に外部発光効率の高い素子の構造に関するものである。
【0002】
【従来の技術】
化合物半導体基板上に形成したエピタキシャル成長層を利用した半導体発光素子(LED)は消費電力が低く長寿命で、発光効率が高く高信頼性が得られるので、各種表示装置用の光源として広く利用されている。通常、LEDでは基板の上に何層かのエピタキシャル成長層を載置させ、最表面のエピタキシャル成長層と半導体基板の表面に、オーミック性を有する金属を蒸着等の手段を用いて付着させ、図4に示すような上下方向に電極を有するLEDが一般的である。図4のような構造では発光は上部から外へ取出すので上部電極はなるべく小さくして、電極に依る光の遮蔽を少くしている。図4の構造のLEDでは基板も半導体で構成されているので、電流は上部電極から下部電極まで貫通して流れることが可能である。
【0003】
LEDにおいて使用する半導体基板が発光に対して吸収体として作用する場合には、発光効率の向上を目的として、組成の異なる複数の半導体層を周期的に積層して、光を光波干渉に依って反射させる半導体多層反射膜を基板と発光層との間に設ける手段が採用されている。たとえば、図4においては、化合物半導体の多層反射膜6はバンドギャップエネルギーの異なる2種の半導体結晶6a,6bを交互に積層した構造となっている。
【0004】
【発明が解決しようとする課題】
上述のようなバンドギャップエネルギーの異なる結晶を積層した構造の多層反射膜では、両層の境界面におけるバンドの不連続に起因して電気抵抗が高くなるという欠点がある。特にp型の多層反射膜では電荷の移動は電子に比べて移動度の小さいホールに依って行われるため、一層電気抵抗が高くなる。多層反射膜の電気抵抗が高いと発光部に印加される電圧が低くなり、期待した発光強度が得られない。また発光部に必要な電圧を印加しようとすると、LEDとしての作動電圧を高くせねばならず、用途が限定されてしまう欠点がある。
【0005】
多層反射膜の高電気抵抗の影響を回避する手段としては多層反射膜に電流を流さない手段を採用すれば良い。このような例としては図5に示すようなサファイア基板を使用した例がある(特開平05−190903等参照)。この場合は発光層となるGaNの成長に1000℃以上の高温を要するので、高温に耐える基板として半導体ではないサファイア(α−Al )を使用せざるを得ないからである。サファイア基板を使用する場合は、GaNとの格子整合をはかるためにサファイア基板上にGaN系のバッファ層を載置した上に、発光部分を形成する手段を採用しなければならない。サファイア基板を使用する場合はサファイア基板が絶縁性であるため、基板裏面に電極を設けるわけにはいかない、必然的に半導電性であるバッファ層または発光層の一部に電極を設けざるを得ないのである。
【0006】
本発明は半導体基板上に形成した多層反射膜を使用したLEDにおいて、多層反射膜部の高電気抵抗の影響を回避したLED構造を提供し、発光効率の高いLEDを提供することを目的とする。本発明に依り緑色ないし赤外領域のLEDについても、従来にない高い外部発光効率を有し、低い作動電圧で使用できるLEDを提供することが可能となる。
【0007】
【課題を解決するための手段】
本発明の一つは III−V族化合物半導体基板上に多層反射膜を配置し、その上に第1導電型及び第2導電型の接合体を含む発光部を配置し、該第1導電型と第2導電型半導体の一部にそれぞれ第1電極と第2電極を設置することを特徴とするものである。本発明のもう一つは III−V族化合物半導体基板上に多層反射膜を配置し、その上に発光層よりもバンドギャップエネルギーが大きく、かつ導電性不純物濃度が2×1017cm−3以上である透明電導層を設け、該第1導電型半導体の一部に第1電極を、該透明電導層の一部に第2電極を設置することを特徴とするものである。
本発明では多層反射膜の役割りを光の反射のみに限定して電流は流さないこととし、電流は反射膜以外の部位を通して発光部に供給することとした。
【0008】
本発明で使用する基板としてはGaP,GaAs,InP等通常入手容易なIII−V族化合物半導体単結晶基板を使用する。結晶の種類は発光部分の結晶となるべく格子整合するものを選択すれば良い。基板上に結晶性の良いエピタキシャル成長層を得るためには、バッファ層を使用したり、組成勾配層を用いると良い。
【0009】
基板上部には発光部よりもバンドギャップエネルギーが大きく、互いにバンドギャップエネルギーの異なる2種類の III−V族化合物半導体膜を交互に積層して構成する。たとえば発光層が第1導電型のAl0.65Ga0.3 As層と第2導電型のAl0.35Ga0.65As層からなる場合は、Al0.4Ga0.6As層とAl0.95Ga0.05As層とからなる多層反射膜を採用する。また、発光部に(Al0.2Ga0.80.5In0.5Pを使用した場合にも、上記のAlGaAsからなる多層反射膜が使用できる。多層反射膜を構成する各層の厚さは20〜50nm、積層数は各層15〜30層あれば良い。
【0010】
多層反射膜の上部には第1導電型及び第2導電型の III−V族化合物半導体接合部を含む発光部を載置する。この発光部はホモ接合、ヘテロ接合あるいはダブルヘテロ接合のいずれであっても良い。発光部の結晶の種類や組成は目的とする発光波長を有するもので外部発光効率のなるべく高いものを選択するのは当然である。
【0011】
このようにして作成した第1導電型及び第2導電型半導体層の一部にオーミック電極を形成してLED素子とする。エピタキシャル成長層の最表面層には、従来一般に使用されていたマスキング法やフォトリソグラフやエッチング法を使用して電極を形成すれば良い。一方、下層のエピタキシャル成長層に電極を形成する場合はフォトリソグラフとエッチング法を駆使して、エピタキシャル成長層の一部を除去し、下部層を露出させてその上に電極を形成する。電極を形成する層は互いに導電型の異なるものであれば、どちらが上部に来ても支障はない。
【0012】
本発明においては、第1電極と第2電極との間に流れる電流によって発光するが、電流は半導体多層反射膜を流れることはなく、多層反射膜における高抵抗の問題を回避することができ、低電圧で作動させるとともに充分な発光強度を得ることが可能となる。
【0013】
本発明では多層反射膜と発光構造部の間に発光に対して透明でかつ電気伝導性の高い化合物半導体からなる透明拡散層を挿入することができる。このような機能を有する透明拡散層は発光層よりもバンドギャップエネルギーが高く、しかも導電性不純物濃度が2×1017cm−3以上、好ましくは5×1017〜5×1018cm−3程度の III−V族化合物のエピタキシャル成長層である。不純物濃度が上記範囲以下では電気抵抗が高く、電流拡散層としての機能を発揮しない。
【0014】
【作用】
本発明では多層反射膜を使用した III−V族化合物半導体LEDにおいて、電流の取付位置を限定して多層反射膜に電流を流すことを避け、作動電圧が低くても発光に必要な電圧が発光部に印加されるようにしたものである。本発明における電極形成部位は発光部位の一部または発光部位に隣接して設けられた、透明拡散層である。透明拡散層を使用する場合にあっては電極のオーム特性の向上及び電極より注入された電流を発光層全域に拡散させるのに有効である。
【0015】
【実施例】
次に実施例を挙げて本発明を具体的に説明する。
(実施例1)
Znドープでキャリア濃度が2×1018cm−3、面方位が(100)のGaAs単結晶基板7の上に、Znドープで厚さが48.1nmのAl0.4Ga0.6As結晶の反射層I 6aと、同じく厚さが57.0nmのAl0.95Ga0.05As結晶の反射層II 6bとを各25層交互に積層した多層反射膜6をMO−CVDに依り連続して成長させた。引続きこの多層反射膜6の上にAl0.35Ga0.65Asからなる厚さ15μmの第2導電型層24と、Al0.65Ga0.35Asからなる厚さ25μmの第1導電型層25を成長させた。
【0016】
次いで、通常のフォトリソグラフとエッチング技術を用いて第1導電型層25の一部をエッチング除去し、第2導電型層24の表面24aの一部を露出させた。さらに第1導電型層25の表面25aの一部と第2導電型層24の表面24aの一部にAu合金を厚さ1
.0μmに蒸着した後、450℃でアニーリングしてオーミック電極とし、第1電極8と第2電極9を形成してLED素子とした。このLEDの断面構造を図1に示す。
【0017】
このようにして得られたLEDの特性を評価したところ、発光波長は655nm、輝度(If=20mA)は10mcd 、順方向電圧(If=20mA)は1.7Vであった。
比較のため積層構造は本発明と同一で、電極取付部位を図4に示すように素子の上下に設けたLEDの特性を評価したところ、発光波長は655nm、輝度(If=20mA)は6mcd 、順方向電圧(If=20mA)は2.6Vであった。
この結果、本発明に依る場合は従来のLEDに比較して高い発光効率(輝度)と低い順方向電圧を示すことが判明した。
【0018】
(実施例2)
Znドープでキャリア濃度が2×1018cm−3、面方位が(100)のGaAs単結晶基板7の上に、Znドープで厚さが45.5nmのAl0.4Ga0.6Asの反射層I 6aと、厚さが54.0nmのAl0.95Ga0.05Asの反射層II 6bとを各25層積層した多層反射膜6を形成した。その上にダブルヘテロ構造(DH構造)の発光構造を積層した。DH構造の下部クラッド層5は第2導電型で組成が(Al0.65Ga0.350.5In0.5P、厚さが1.5μm、発光層4は組成が(Al0.2Ga0.80.5In0.5Pで厚さが10μm、上部クラッド層3は第1導電型で組成は下部クラッド層5と同じとし、厚さは4μmとした。上部クラッド層3の上にはAl0.6Ga0.4As層からなる厚さ0.3μmのコンタクト層1を形成した。これら各層はMO−CVDを用いて連続して成長させた。
【0019】
次いで、通常のフォトリソグラフとエッチング技術を使用してコンタクト層1、上部クラッド層3及び発光層4の一部をエッチング除去し、下部クラッド層5の表面5aの一部を露出させた。さらにコンタクト層1と下部クラッド層5の表面5aの一部にAuGe合金を厚さ1.0μmに蒸着した後、450℃でアニーリングしてオーミック電極とし、第1電極8と第2電極9を形成してLED素子とした。このLEDの断面構造を図2に示す。
【0020】
このようにして得られたLEDの特性を評価したところ、発光波長は620nm、輝度(If=20mA)は40mcd 、順方向電圧(If=20mA)は1.9Vであった。
比較のため積層構造は本発明例と全く同じで、電極設置部位が図4に示すように素子の上下に配置したLEDの特性を評価したところ、発光波長は620nm、輝度(If=20mA)は30mcd 、順方向電圧(If=20mA)は2.8Vであった。
この結果、本発明に依る場合は高い輝度と低い順方向電圧となることが判明した。
【0021】
(実施例3)
実施例2と同様にしてGaAs基板7上に多層反射膜6を形成した。さらに多層反射膜6の上に、Znドープでキャリア濃度が5×1017cm−3、厚さが6μmのAl0.4Ga0.6Asからなる透明拡散層2を配置した。さらに透明拡散層2の上に実施例2と同じDH構造の発光構造を載置した。DH構造の上部クラッド層3の上部には実施例2と同様のコンタクト層1を形成した。これら各層はMO−CVDを使用して連続して成長させた。
【0022】
次いで実施例2と同様にしてコンタクト層1、上部クラッド層3、発光層4及び下部クラッド層5の一部をエッチング除去し、透明拡散層2の表面2aの一部を露出させた。さらに実施例2と同様にしてコンタクト層1と透明拡散層2の表面2aに第1電極8と第2電極9を形成してLED素子とした。断面構造を図3に示す。
【0023】
このようにして得られたLEDの特性を評価したところ、発光波長は620nm、輝度50mcd 、順方向電圧は1.7Vであった。実施例2に比べてさらに輝度が向上しているのが認められた。
【0024】
【発明の効果】
本発明に依れば、多層反射膜及び基板に電流を流さないため、基板としては第1導電型でも第2導電型でも半絶縁性でも良く、多層反射膜を用いても高抵抗に起因する電圧損失の問題は起こらず、反射膜機能を充分発揮させることができる。このため従来に比し20%以上の輝度向上が達成される。
【図面の簡単な説明】
【図1】実施例1に依るLEDの断面構造を示す図である。
【図2】実施例2に依るLEDの断面構造を示す図である。
【図3】実施例3に依るLEDの断面構造を示す図である。
【図4】従来の一般的なLEDの断面構造を示す図である。
【図5】従来の絶縁基板を使用したLEDの断面構造を示す図である。
【符号の説明】
1 コンタクト層
2 電流拡散層
3 上部クラッド層
4 活性層
5 下部クラッド層
6 多層反射膜
6a 反射膜I
6b 反射膜II
7 基板
8 第1電極
9 第2電極
10 サファイア基板
11 多結晶GaN
12 単結晶n型GaN
13 単結晶p型GaN
14,15 オーミック電極
24 第2導電型層
25 第1導電型層
[0001]
[Industrial application fields]
The present invention relates to a compound semiconductor light emitting device, and more particularly to a structure of a device having high external light emission efficiency.
[0002]
[Prior art]
Semiconductor light-emitting devices (LEDs) that use epitaxially grown layers formed on compound semiconductor substrates have low power consumption, long life, high luminous efficiency, and high reliability, so they are widely used as light sources for various display devices. Yes. Usually, in an LED, several epitaxial growth layers are placed on a substrate, and an ohmic metal is attached to the outermost epitaxial growth layer and the surface of the semiconductor substrate by means of vapor deposition or the like. An LED having electrodes in the vertical direction as shown is common. In the structure as shown in FIG. 4, since light emission is extracted from the upper part, the upper electrode is made as small as possible to reduce the light shielding by the electrode. In the LED having the structure of FIG. 4, since the substrate is also made of a semiconductor, current can flow through from the upper electrode to the lower electrode.
[0003]
When a semiconductor substrate used in an LED acts as an absorber for light emission, a plurality of semiconductor layers having different compositions are periodically stacked for the purpose of improving light emission efficiency, and light is transmitted by light wave interference. A means for providing a semiconductor multilayer reflective film to be reflected between the substrate and the light emitting layer is employed. For example, in FIG. 4, the compound semiconductor multilayer reflective film 6 has a structure in which two types of semiconductor crystals 6a and 6b having different band gap energies are alternately stacked.
[0004]
[Problems to be solved by the invention]
The multilayer reflective film having a structure in which crystals having different band gap energies as described above are stacked has a drawback that the electrical resistance is increased due to the discontinuity of the band at the interface between the two layers. In particular, in a p-type multilayer reflective film, electric charges are moved by holes having a lower mobility than electrons, so that the electric resistance is further increased. If the electric resistance of the multilayer reflective film is high, the voltage applied to the light emitting portion is low, and the expected light emission intensity cannot be obtained. In addition, if a voltage required for the light emitting unit is applied, the operating voltage of the LED must be increased, and there is a drawback that the application is limited.
[0005]
As a means for avoiding the influence of the high electrical resistance of the multilayer reflective film, a means for preventing current from flowing through the multilayer reflective film may be employed. As such an example, there is an example using a sapphire substrate as shown in FIG. 5 (see Japanese Patent Laid-Open No. 05-190903, etc.). In this case, the growth of GaN serving as the light emitting layer requires a high temperature of 1000 ° C. or more, and thus sapphire (α-Al 2 O 3 ) that is not a semiconductor must be used as a substrate that can withstand the high temperature. When a sapphire substrate is used, in order to achieve lattice matching with GaN, a means for forming a light emitting portion on a GaN-based buffer layer must be employed on the sapphire substrate. When using a sapphire substrate, the sapphire substrate is insulative, so it is not possible to provide an electrode on the back side of the substrate. There is no.
[0006]
An object of the present invention is to provide an LED structure that avoids the influence of the high electrical resistance of the multilayer reflective film portion in an LED using the multilayer reflective film formed on the semiconductor substrate, and to provide an LED having high luminous efficiency. . According to the present invention, it is possible to provide an LED having a high external light emission efficiency that is unprecedented and that can be used at a low operating voltage for green and infrared LEDs.
[0007]
[Means for Solving the Problems]
One aspect of the present invention is that a multilayer reflective film is disposed on a group III-V compound semiconductor substrate, and a light-emitting portion including a joined body of the first conductivity type and the second conductivity type is disposed thereon, and the first conductivity type The first electrode and the second electrode are respectively disposed on a part of the second conductive type semiconductor. Another aspect of the present invention is that a multilayer reflective film is disposed on a group III-V compound semiconductor substrate, on which a band gap energy is larger than that of the light emitting layer, and a conductive impurity concentration is 2 × 10 17 cm −3 or more. The transparent conductive layer is provided, the first electrode is provided on a part of the first conductive semiconductor, and the second electrode is provided on a part of the transparent conductive layer.
In the present invention, the role of the multilayer reflective film is limited only to the reflection of light, and no current flows, and the current is supplied to the light emitting part through a portion other than the reflective film.
[0008]
As the substrate used in the present invention, a generally available III-V compound semiconductor single crystal substrate such as GaP, GaAs or InP is used. The type of crystal may be selected so as to match the crystal of the light emitting portion as much as possible. In order to obtain an epitaxially grown layer with good crystallinity on the substrate, it is preferable to use a buffer layer or a composition gradient layer.
[0009]
Two types of III-V group compound semiconductor films having a band gap energy larger than that of the light emitting portion and having different band gap energies are alternately stacked on the substrate. For example, when the light emitting layer is composed of a first conductivity type Al 0.65 Ga 0.3 As layer and a second conductivity type Al 0.35 Ga 0.65 As layer, an Al 0.4 Ga 0.6 As layer And a multilayer reflective film composed of Al 0.95 Ga 0.05 As layer. Also, when (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P is used for the light emitting portion, the above-described multilayer reflective film made of AlGaAs can be used. The thickness of each layer constituting the multilayer reflective film may be 20 to 50 nm and the number of stacked layers may be 15 to 30 layers.
[0010]
A light emitting unit including a first conductive type and a second conductive type III-V group compound semiconductor junction is placed on the multilayer reflective film. This light emitting part may be either a homojunction, a heterojunction, or a double heterojunction. Naturally, the type and composition of the crystal of the light emitting part has a target light emission wavelength, and one having as high an external light emission efficiency as possible is naturally selected.
[0011]
An ohmic electrode is formed on part of the first conductivity type and the second conductivity type semiconductor layer thus created to obtain an LED element. An electrode may be formed on the outermost surface layer of the epitaxial growth layer by using a masking method, a photolithograph, or an etching method that is generally used conventionally. On the other hand, when forming an electrode in the lower epitaxial growth layer, a part of the epitaxial growth layer is removed by using photolithography and an etching method, and the lower layer is exposed to form an electrode thereon. As long as the layers forming the electrodes have different conductivity types, there is no problem regardless of which layer is on top.
[0012]
In the present invention, light is emitted by the current flowing between the first electrode and the second electrode, but the current does not flow through the semiconductor multilayer reflective film, and the problem of high resistance in the multilayer reflective film can be avoided, It is possible to obtain a sufficient emission intensity while operating at a low voltage.
[0013]
In the present invention, a transparent diffusion layer made of a compound semiconductor that is transparent to light emission and has high electrical conductivity can be inserted between the multilayer reflective film and the light emitting structure. The transparent diffusion layer having such a function has a band gap energy higher than that of the light emitting layer and has a conductive impurity concentration of 2 × 10 17 cm −3 or more, preferably about 5 × 10 17 to 5 × 10 18 cm −3. This is an epitaxially grown layer of a III-V group compound. When the impurity concentration is below the above range, the electric resistance is high and the function as a current diffusion layer is not exhibited.
[0014]
[Action]
In the present invention, in a group III-V compound semiconductor LED using a multilayer reflective film, a current mounting position is limited so as to avoid passing an electric current through the multilayer reflective film, and a voltage necessary for light emission is emitted even when the operating voltage is low. This is applied to the part. The electrode formation site in the present invention is a transparent diffusion layer provided partly or adjacent to the light emission site. When a transparent diffusion layer is used, it is effective to improve the ohmic characteristics of the electrode and diffuse the current injected from the electrode throughout the light emitting layer.
[0015]
【Example】
Next, an Example is given and this invention is demonstrated concretely.
(Example 1)
A Zn-doped Al 0.4 Ga 0.6 As crystal having a thickness of 48.1 nm on a GaAs single crystal substrate 7 having a carrier concentration of 2 × 10 18 cm −3 and a plane orientation of (100). The multilayer reflective film 6 in which 25 layers of the reflective layer I 6a and the reflective layer II 6b of Al 0.95 Ga 0.05 As crystal having a thickness of 57.0 nm are alternately laminated is continuously formed by MO-CVD. And grew up. Subsequently, the second conductive type layer 24 made of Al 0.35 Ga 0.65 As and having a thickness of 15 μm, and the first conductive material made of Al 0.65 Ga 0.35 As and made of 25 μm on the multilayer reflective film 6. A mold layer 25 was grown.
[0016]
Next, a part of the first conductivity type layer 25 was removed by etching using a normal photolithography and etching technique, and a part of the surface 24a of the second conductivity type layer 24 was exposed. Further, an Au alloy is formed to a thickness of 1 on a part of the surface 25a of the first conductivity type layer 25 and a part of the surface 24a of the second conductivity type layer 24.
. After vapor deposition to 0 μm, annealing was performed at 450 ° C. to form an ohmic electrode, and the first electrode 8 and the second electrode 9 were formed to form an LED element. The cross-sectional structure of this LED is shown in FIG.
[0017]
When the characteristics of the LED thus obtained were evaluated, the emission wavelength was 655 nm, the luminance (If = 20 mA) was 10 mcd, and the forward voltage (If = 20 mA) was 1.7V.
For comparison, the laminated structure is the same as that of the present invention, and the characteristics of the LEDs provided with the electrode attachment portions at the top and bottom of the element as shown in FIG. 4 are evaluated. The emission wavelength is 655 nm, the luminance (If = 20 mA) is 6 mcd, The forward voltage (If = 20 mA) was 2.6V.
As a result, it has been found that the present invention exhibits higher luminous efficiency (brightness) and lower forward voltage than the conventional LED.
[0018]
(Example 2)
On a GaAs single crystal substrate 7 having a carrier concentration of 2 × 10 18 cm −3 and a plane orientation of (100) with Zn doping, Al 0.4 Ga 0.6 As having a thickness of 45.5 nm with Zn doping. The multilayer reflective film 6 was formed by laminating the reflective layer I 6a and the reflective layer II 6b of Al 0.95 Ga 0.05 As having a thickness of 54.0 nm. A light emitting structure having a double hetero structure (DH structure) was stacked thereon. The lower cladding layer 5 having a DH structure is of the second conductivity type and has a composition of (Al 0.65 Ga 0.35 ) 0.5 In 0.5 P, a thickness of 1.5 μm, and the light emitting layer 4 has a composition of (Al 0 .2 Ga 0.8 ) 0.5 In 0.5 P with a thickness of 10 μm, the upper cladding layer 3 is of the first conductivity type, the composition is the same as that of the lower cladding layer 5, and the thickness is 4 μm. On the upper clad layer 3, a contact layer 1 having a thickness of 0.3 μm made of an Al 0.6 Ga 0.4 As layer was formed. Each of these layers was grown continuously using MO-CVD.
[0019]
Next, a part of the contact layer 1, the upper cladding layer 3 and the light emitting layer 4 was removed by etching using a normal photolithography and etching technique, and a part of the surface 5 a of the lower cladding layer 5 was exposed. Further, an AuGe alloy is deposited on a part of the surface 5a of the contact layer 1 and the lower cladding layer 5 to a thickness of 1.0 μm, and then annealed at 450 ° C. to form ohmic electrodes, thereby forming the first electrode 8 and the second electrode 9. Thus, an LED element was obtained. The cross-sectional structure of this LED is shown in FIG.
[0020]
When the characteristics of the LED thus obtained were evaluated, the emission wavelength was 620 nm, the luminance (If = 20 mA) was 40 mcd, and the forward voltage (If = 20 mA) was 1.9V.
For comparison, the laminated structure is exactly the same as the example of the present invention, and the characteristics of the LEDs in which the electrode installation sites are arranged above and below the element as shown in FIG. 4 are evaluated. The emission wavelength is 620 nm and the luminance (If = 20 mA) is The forward voltage (If = 20 mA) was 30 mcd and 2.8V.
As a result, it has been found that high luminance and low forward voltage are obtained in accordance with the present invention.
[0021]
(Example 3)
In the same manner as in Example 2, the multilayer reflective film 6 was formed on the GaAs substrate 7. Further, on the multilayer reflective film 6, a transparent diffusion layer 2 made of Al 0.4 Ga 0.6 As having a carrier concentration of 5 × 10 17 cm −3 and a thickness of 6 μm was disposed. Further, the light emitting structure having the same DH structure as in Example 2 was placed on the transparent diffusion layer 2. A contact layer 1 similar to that in Example 2 was formed on the upper cladding layer 3 having a DH structure. Each of these layers was grown continuously using MO-CVD.
[0022]
Next, in the same manner as in Example 2, a part of the contact layer 1, the upper cladding layer 3, the light emitting layer 4 and the lower cladding layer 5 was removed by etching to expose a part of the surface 2 a of the transparent diffusion layer 2. Further, the first electrode 8 and the second electrode 9 were formed on the surface 2a of the contact layer 1 and the transparent diffusion layer 2 in the same manner as in Example 2 to obtain an LED element. A cross-sectional structure is shown in FIG.
[0023]
When the characteristics of the LED thus obtained were evaluated, the emission wavelength was 620 nm, the luminance was 50 mcd, and the forward voltage was 1.7V. It was recognized that the luminance was further improved as compared with Example 2.
[0024]
【The invention's effect】
According to the present invention, since no current flows through the multilayer reflective film and the substrate, the substrate may be the first conductive type, the second conductive type, or semi-insulating. The problem of voltage loss does not occur, and the reflective film function can be sufficiently exerted. For this reason, the brightness improvement of 20% or more is achieved compared with the past.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional structure of an LED according to Example 1. FIG.
2 is a diagram showing a cross-sectional structure of an LED according to Example 2. FIG.
3 is a diagram showing a cross-sectional structure of an LED according to Example 3. FIG.
FIG. 4 is a diagram showing a cross-sectional structure of a conventional general LED.
FIG. 5 is a diagram showing a cross-sectional structure of an LED using a conventional insulating substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contact layer 2 Current spreading layer 3 Upper clad layer 4 Active layer 5 Lower clad layer 6 Multilayer reflective film 6a Reflective film I
6b Reflective film II
7 Substrate 8 First electrode 9 Second electrode 10 Sapphire substrate 11 Polycrystalline GaN
12 Single crystal n-type GaN
13 Single crystal p-type GaN
14, 15 Ohmic electrode 24 Second conductivity type layer 25 First conductivity type layer

Claims (2)

III−V族化合物半導体基板上に形成された複数のエピタキシャル成長層からなる発光ダイオードにおいて、III−V族化合物半導体基板上に互いにバンドギャップエネルギーの異なるIII−V族化合物半導体の多層積層体からなる反射層を具備し、該反射層の上に発光層よりもバンドギャップエネルギーが大きくかつ導電性不純物濃度が2×1017cm-3以上である透明電導層を有し、該透明電導層の上に第1導電型半導体と第2導電型半導体からなる発光構造部を有し、該第1導電型半導体と透明電導膜の一部にそれぞれ第1電極と第2電極とを設け、第1導電型半導体と第2導電型半導体からなる発光構造部がともにAlGaAsからなるシングルヘテロ構造であることを特徴とする発光ダイオード。In a light-emitting diode comprising a plurality of epitaxially grown layers formed on a III-V compound semiconductor substrate, a reflection comprising a multilayer stack of III-V compound semiconductors having different band gap energies on the III-V compound semiconductor substrate. A transparent conductive layer having a band gap energy larger than that of the light emitting layer and having a conductive impurity concentration of 2 × 10 17 cm −3 or more on the reflective layer, and on the transparent conductive layer A light emitting structure composed of a first conductive type semiconductor and a second conductive type semiconductor; a first electrode and a second electrode provided on a part of the first conductive type semiconductor and the transparent conductive film, respectively; A light-emitting diode characterized in that both of the light-emitting structure portion made of a semiconductor and a second conductivity type semiconductor have a single heterostructure made of AlGaAs. III−V族化合物半導体基板上に形成された複数のエピタキシャル成長層からなる発光ダイオードにおいて、III−V族化合物半導体基板上に互いにバンドギャップエネルギーの異なるIII−V族化合物半導体の多層積層体からなる反射層を具備し、該反射層の上に発光層よりもバンドギャップエネルギーが大きくかつ導電性不純物濃度が2×1017cm-3以上である透明電導層を有し、該透明電導層の上に第1導電型半導体と第2導電型半導体からなる発光構造部を有し、該第1導電型半導体と透明電導膜の一部にそれぞれ第1電極と第2電極とを設け、発光構造部がAlGaInPからなり、透明電導層がAlGaAsからなることを特徴とする発光ダイオード。In a light-emitting diode comprising a plurality of epitaxially grown layers formed on a III-V compound semiconductor substrate, a reflection comprising a multilayer stack of III-V compound semiconductors having different band gap energies on the III-V compound semiconductor substrate. A transparent conductive layer having a band gap energy larger than that of the light emitting layer and having a conductive impurity concentration of 2 × 10 17 cm −3 or more on the reflective layer, and on the transparent conductive layer A light emitting structure comprising a first conductivity type semiconductor and a second conductivity type semiconductor; a first electrode and a second electrode provided on a part of the first conductivity type semiconductor and the transparent conductive film, respectively; A light-emitting diode made of AlGaInP and having a transparent conductive layer made of AlGaAs.
JP2828395A 1995-02-16 1995-02-16 Semiconductor light emitting device Expired - Fee Related JP3633018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2828395A JP3633018B2 (en) 1995-02-16 1995-02-16 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2828395A JP3633018B2 (en) 1995-02-16 1995-02-16 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08222761A JPH08222761A (en) 1996-08-30
JP3633018B2 true JP3633018B2 (en) 2005-03-30

Family

ID=12244283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2828395A Expired - Fee Related JP3633018B2 (en) 1995-02-16 1995-02-16 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3633018B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292493C (en) 1999-12-03 2006-12-27 美商克立股份有限公司 Enhanced light extration in LEDs through the use of internal and external optical elements
KR20020081947A (en) * 2001-04-20 2002-10-30 주식회사 옵토웨이퍼테크 Light-emitting device with multi-reflective coating layer and the preparation thereof
KR101662037B1 (en) * 2009-12-02 2016-10-05 삼성전자 주식회사 Light Emitting Device and method for manufacturing the same
KR20110085609A (en) 2010-01-21 2011-07-27 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
KR101034053B1 (en) 2010-05-25 2011-05-12 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
KR102212793B1 (en) * 2014-05-15 2021-02-05 엘지이노텍 주식회사 Light emitting device and ultraviolet light emitting device package having the same

Also Published As

Publication number Publication date
JPH08222761A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
US5008718A (en) Light-emitting diode with an electrically conductive window
US9136432B2 (en) High efficiency light emitting diode
US7087933B2 (en) Light-emitting semiconductor device and method of fabrication
US20050269588A1 (en) Flip chip type nitride semiconductor light-emitting diode
JP3675003B2 (en) Semiconductor light emitting device
US20050205886A1 (en) Gallium-containing light-emitting semiconductor device and method of fabrication
JPH05251739A (en) Semiconductor light emitting device
JP3720341B2 (en) Semiconductor light emitting device
JPH10173224A (en) Compound semiconductor light emitting element and its manufacture
JP4212413B2 (en) Oxide semiconductor light emitting device
JP3102647B2 (en) Semiconductor light emitting device
JP3633018B2 (en) Semiconductor light emitting device
JP2005005421A (en) Oxide semiconductor light emitting element
US5898190A (en) P-type electrode structure and a semiconductor light emitting element using the same structure
JP3934730B2 (en) Semiconductor light emitting device
WO2002093658A1 (en) Nitride semiconductor led with tunnel junction
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
JPH09129933A (en) Light emitting element
JPH09172198A (en) Light emitting diode and its manufacture
JP4286983B2 (en) AlGaInP light emitting diode
JP2656276B2 (en) Semiconductor light emitting device
JP2000286499A (en) Iii nitride compound semiconductor device
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4050435B2 (en) AlGaInP light emitting diode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees