JPH0524863B2 - - Google Patents

Info

Publication number
JPH0524863B2
JPH0524863B2 JP16840587A JP16840587A JPH0524863B2 JP H0524863 B2 JPH0524863 B2 JP H0524863B2 JP 16840587 A JP16840587 A JP 16840587A JP 16840587 A JP16840587 A JP 16840587A JP H0524863 B2 JPH0524863 B2 JP H0524863B2
Authority
JP
Japan
Prior art keywords
powder
titanate
glass
batio
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16840587A
Other languages
Japanese (ja)
Other versions
JPS6414114A (en
Inventor
Kazuhiro Sano
Makoto Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP16840587A priority Critical patent/JPS6414114A/en
Publication of JPS6414114A publication Critical patent/JPS6414114A/en
Publication of JPH0524863B2 publication Critical patent/JPH0524863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、電子部品、特にセラミツクコンデン
サ等の材料に適するチタン酸塩粉末およびその製
造方法に関する。 (従来の技術) 近年における電子機器の小型高密度化に伴つて
BaTiO3,SrTiO3などの誘電材料を主原料とする
高誘電率セラミツクコンデンサ、半導体セラミツ
クコンデンサがその用途を拡大している。従来こ
れらのセラミツクコンデンサを用いられるチタン
酸塩粉末は、固相反応法によつて製造された粒径
1.5〜3μm程度のものが一般的であつた。固相反
応法は酸化チタンと炭酸塩の原料粉末とを混合
し、電気炉中で仮焼して得られるチタン酸塩の焼
結体を粉砕して粉末を得る方法であり、経済性・
量産性に優れている。 しかし、より一層の素子の小型化要請から、そ
の素材となる原料粉末も微粉化・高品位化が求め
られ、共沈法や金属アルコキシドの加水分解など
による化学的原料合成法が開発されてきた。また
最近では、チタン酸塩の基本成分をガラス形成物
質と共に溶融・急冷して、得られた非晶質体を熱
処理してチタン酸塩の結晶を析出させる、いわゆ
る、ガラス結晶化法によるチタン酸塩粉末の製造
方法が考えられている。 (発明が解決しよとする問題点) 上記ガラス結晶化法によれば、チタン酸塩の構
成成分とガラス形成物質とからなる非晶質体を作
成し、この非晶質体を熱処理してガラス相からチ
タン酸塩の結晶を析出させるので、熱処理条件を
変えることによつて析出する結晶粒径の制御を容
易に行うことができ、0.01〜数μmの範囲内で任
意の粒径の粉末を比較的シヤープな粒度分布で製
造することができる。しかしながら、従来のガラ
ス結晶化法では、たとえばコンデンサとして高誘
電率を得るために望まれる0.5〜1μmといつた所
望の粒径に対して、わずかではあるが0.1μm以下
というような粒径の非常に小さい微小粒子の混入
がさけられなかつた。 チタン酸塩粉末、特にBaTiO3は高い比誘電率
を有し、積層化により単位体積あたりの容量を大
きくできる利点から、積層セラミツクコンデンサ
の大多数に使用されている。しかしBaTiO3のみ
ではコンデンサとした場合の温度依存性に問題が
あり、温度依存性を改善するためBaTiO3粉末に
たとえばPb(Zn1/3Ta2/3)O3,Pb(Cd1/3Nb2/
3)O3などの温度依存性が良好な鉛化合物を混合
あるいは添加して用いるのが一般的である。普通
BaTiO3粉末は、これらの鉛化合物と混合されバ
インダーとともに成形・焼結される。このとき、
BaTiO3粉末中に粒径の非常に小さい粒子が存在
していると粒界における拡散が生じやすく、その
結果、誘電体層の不均質化、誘電特性の劣化をま
ねくという問題点がある。 このため焼結時の拡散を防止するとともに、焼
成収縮率を小さくする等の目的で、あらかじめ
BaTiO3粉末の仮焼が行われており、仮焼によつ
て焼結、凝固した粉末を粉砕して用いている。 仮焼により上記問題点はある程度解消されるが
仮焼・粉砕後の粉末の粒径は、仮焼前の粉末の結
晶粒子の粒径に依存しており、拡散をおこしやす
い微小粒子の影響を実質的に排除することはでき
ない。 本発明は、ガラス結晶化法によつて製造される
チタン酸塩粉末の有している上記問題点を解決し
不要な微小粒子を含まない粒度分布のシヤープな
チタン酸塩粉末を安定して供給することを目的と
する。 〔発明の構成〕 (問題点を解決するための手段と作用) 本発明は上記目的を達成するために、チタン酸
塩粉末に微量の白金族元素を含有させたものであ
る。 すなわち、一般式AO・TiO2(ただしAはBa,
Be,Mg,Ca,Sr,Raから選ばれる少なくとも
一種の元素)で表わされ、かつ白金族元素(Pt,
Rh,Pd,Ru,Os,Ir)のうち少なくとも一種を
10〜500ppm含有することを特徴とするチタン酸
塩粉末であり、またその製造方法は次のとおりで
ある。 チタン酸塩の基本成分とガラス形成物質とを含
む原料混合物を溶融させた後、この融液を急速に
冷却して得られる非晶質体を熱処理して結晶化さ
せ、その後希酸で処理してチタン酸塩の微粒子を
抽出するチタン酸塩粉末の製造方法において、前
記原料混合物または前記融液に、これらの全量に
対して白金族元素のうち少なくとも一種を10〜
500ppm添加する方法である。ここで添加される
白金族元素は、上記範囲内であれば金属粉末とし
て添加してもよく、これらの金属の酸化物または
金属塩として添加してもよい。 また添加された上記白金族元素は、チタン酸塩
の製造過程で酸処理によつて除去されるガラス形
成物質中には含まれず、生成するチタン酸塩中に
濃縮される結果となるため、製造過程での析出等
による減少分を考慮しても、その添加量は最終生
成物であるチタンを酸塩粉末中の含有量とほぼ等
量あればよく、その含有量を限定した理由は次の
とおりである。 白金属元素の含有量が10ppm未満では粒度均一
化の効果がなく、500ppmを越えるとチタン酸塩
粉末中に添加した金属が析出し、粉末の導電体化
をまねき絶縁特性を低下させる。またコストも高
いものとなり好ましくない。 本来ガラス結晶化法において、ガラス相からチ
タン酸塩の結晶が析出する反応は、固相内での原
子拡散に支配されるため、ゆつくりとした反応と
なり、非常に微細な粒子が析出する。このとき結
晶核生成および結晶成長が円滑に行われないと、
微小粒子がそのまま残存することとなる。 本発明において添加される白金属元素は、結晶
核の生成に関与しているものと考えられ、ガラス
相という均一な拡散母体との相剰的作用により、
すみやかに生成した結晶核はガラス相全体にわた
つて均一に成長し、生成するチタン酸塩粉末の粒
度分布は非常に狭いものとなる。 (実施例) 次に本発明の実施例についてBaTiO3を例とし
て説明する。 ガラス形成物質としてBaO・B2O3を用い、原
料混合物を溶融・冷却して得られる非晶質体にお
いて、BaTiO3:BaO・B2O3がモル比で60:40と
なようにBaCO3,TiO2,H3BO3を秤量し、この
原料混合物に表に示す金属の微粉末を添加・混合
して白金ルツボに収容し、高周波加熱装置を用い
て1300〜1400℃に加熱溶融した。この溶融物を白
金ルツボ底部のノズルから流出させ、水冷ローラ
により急速に冷却して薄板状の非晶質体とした。
この非晶質体をボールミルまたは振動ミルによつ
て微粉砕し、所定の容器に充填して電気炉内に収
容し、750〜850℃で、5Hr熱処理を行いBaTiO3
結晶を含む焼結体を生成させた。この焼結体を微
粉砕した後、10%酢酸溶液で処理してガラス形成
物質を溶解除去しBaTiO3粉末を得た。 また上記実施例と同一組成で金属添加をせずに
作成したBaTiO3粉末を比較例とした。 得られたBaTiO3粉末は、測定の結果、各々表
中に示す量の添加金属を含有していた。またこれ
らのBaTiO3粉末の電子顕微鏡による60000倍の
拡大写真から粒径を測定し、平均粒径と粒度分布
を求めた。その結果を合わせて表に示す。
[Object of the Invention] (Industrial Application Field) The present invention relates to a titanate powder suitable for use as a material for electronic components, particularly ceramic capacitors, and a method for producing the same. (Conventional technology) As electronic devices have become smaller and more dense in recent years,
The applications of high dielectric constant ceramic capacitors and semiconductor ceramic capacitors whose main raw materials are dielectric materials such as BaTiO 3 and SrTiO 3 are expanding. Traditionally, the titanate powder used in these ceramic capacitors has a particle size that is manufactured by a solid phase reaction method.
Generally, the thickness was about 1.5 to 3 μm. The solid-phase reaction method is a method of mixing titanium oxide and carbonate raw powder, calcining it in an electric furnace, and pulverizing the obtained titanate sintered body to obtain a powder.
Excellent for mass production. However, due to the demand for further miniaturization of devices, the raw material powder that is used as the material is required to be finer and of higher quality, and chemical raw material synthesis methods such as coprecipitation and hydrolysis of metal alkoxides have been developed. . Recently, titanate acid has been produced using the so-called glass crystallization method, in which the basic components of titanate are melted and rapidly cooled together with a glass-forming substance, and the resulting amorphous body is heat-treated to precipitate titanate crystals. A method for producing salt powder has been considered. (Problems to be Solved by the Invention) According to the above-mentioned glass crystallization method, an amorphous body made of titanate constituents and a glass-forming substance is created, and this amorphous body is heat-treated. Since titanate crystals are precipitated from the glass phase, the size of the precipitated crystal grains can be easily controlled by changing the heat treatment conditions. can be produced with a relatively sharp particle size distribution. However, in the conventional glass crystallization method, for example, in contrast to the desired particle size of 0.5 to 1 μm, which is desired in order to obtain a high dielectric constant for capacitors, the particle size of 0.1 μm or less is very small. The contamination of small microparticles was unavoidable. Titanate powder, especially BaTiO 3 , has a high dielectric constant and is used in the majority of multilayer ceramic capacitors because of its high dielectric constant and the ability to increase the capacitance per unit volume by layering. However, BaTiO 3 alone has a problem with temperature dependence when used as a capacitor, and in order to improve temperature dependence, BaTiO 3 powder is mixed with, for example, Pb(Zn1/3Ta2/3)O 3 , Pb(Cd1/3Nb2/
3) It is common to mix or add a lead compound with good temperature dependence, such as O 3 . usually
BaTiO 3 powder is mixed with these lead compounds, molded and sintered together with a binder. At this time,
The presence of very small particles in BaTiO 3 powder tends to cause diffusion at grain boundaries, resulting in a problem of non-uniformity of the dielectric layer and deterioration of dielectric properties. For this reason, in order to prevent diffusion during sintering and to reduce the firing shrinkage rate,
BaTiO 3 powder is calcined, and the sintered and solidified powder is used by pulverizing it. Although the above problems can be solved to some extent by calcination, the particle size of the powder after calcination and pulverization depends on the particle size of the crystal grains of the powder before calcination, and the influence of microparticles that are likely to cause diffusion can be avoided. It cannot be practically excluded. The present invention solves the above-mentioned problems of titanate powder produced by the glass crystallization method, and stably supplies titanate powder with a sharp particle size distribution that does not contain unnecessary fine particles. The purpose is to [Structure of the Invention] (Means and Effects for Solving the Problems) In order to achieve the above object, the present invention includes a titanate powder containing a trace amount of a platinum group element. That is, the general formula AO・TiO 2 (where A is Ba,
At least one element selected from Be, Mg, Ca, Sr, Ra) and platinum group elements (Pt,
Rh, Pd, Ru, Os, Ir)
It is a titanate powder characterized by containing 10 to 500 ppm, and its manufacturing method is as follows. After melting a raw material mixture containing the basic components of titanate and a glass-forming substance, the melt is rapidly cooled and the resulting amorphous body is heat-treated to crystallize, followed by treatment with dilute acid. In the method for producing titanate powder, the raw material mixture or the melt contains at least 10 to 10% of the platinum group element based on the total amount thereof.
This is a method of adding 500ppm. The platinum group element added here may be added as a metal powder as long as it is within the above range, or may be added as an oxide or metal salt of these metals. In addition, the added platinum group elements are not included in the glass-forming substances that are removed by acid treatment during the titanate manufacturing process, but are concentrated in the titanate that is produced. Even considering the reduction due to precipitation etc. in the process, the amount of titanium added should be approximately equal to the content of the final product titanium in the salt powder, and the reason for limiting the content is as follows. That's right. If the content of the platinum metal element is less than 10 ppm, there is no effect of uniformizing the particle size, and if it exceeds 500 ppm, the metal added to the titanate powder will precipitate, causing the powder to become a conductor and reducing the insulation properties. Moreover, the cost is also high, which is not preferable. Originally, in the glass crystallization method, the reaction in which titanate crystals are precipitated from the glass phase is controlled by atomic diffusion within the solid phase, so the reaction is slow and very fine particles are precipitated. If crystal nucleation and crystal growth do not occur smoothly at this time,
The fine particles will remain as they are. The platinum metal element added in the present invention is thought to be involved in the generation of crystal nuclei, and due to the additive effect with the uniform diffusion matrix called the glass phase,
The rapidly generated crystal nuclei grow uniformly throughout the glass phase, and the resulting titanate powder has a very narrow particle size distribution. (Example) Next, an example of the present invention will be described using BaTiO 3 as an example. In an amorphous body obtained by melting and cooling a raw material mixture using BaO・B 2 O 3 as a glass forming substance, BaCO 3 , TiO 2 and H 3 BO 3 were weighed, and fine powders of the metals shown in the table were added and mixed to this raw material mixture, placed in a platinum crucible, and heated and melted at 1300 to 1400 °C using a high-frequency heating device. . This melt was flowed out from a nozzle at the bottom of the platinum crucible and rapidly cooled by a water-cooled roller to form a thin plate-like amorphous material.
This amorphous material is pulverized using a ball mill or vibration mill, filled into a specified container, placed in an electric furnace, and heat-treated at 750 to 850°C for 5 hours to form BaTiO 3
A sintered body containing crystals was produced. After this sintered body was finely pulverized, it was treated with a 10% acetic acid solution to dissolve and remove the glass-forming substance to obtain BaTiO 3 powder. In addition, a BaTiO 3 powder prepared with the same composition as in the above example but without metal addition was used as a comparative example. As a result of measurement, the obtained BaTiO 3 powder contained the amounts of additive metals shown in the table. In addition, the particle size was measured from photographs of these BaTiO 3 powders magnified 60,000 times using an electron microscope, and the average particle size and particle size distribution were determined. The results are also shown in the table.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、不要な微小粒子
を含まない、極めて粒度のそろつた均一な粉末が
得られ、本発明のチタン酸塩粉末を用いたセラミ
ツクコンデンサ素子は、均質で焼結強度が高く非
常に安定した素子となる。特に積層セラミツクコ
ンザンサの誘電体層の薄層化に伴つて問題となる
結晶の異常粒成長、ボイド、微小クラツク、デラ
ミネーシヨン等の構造欠陥が発生しにくく、誘電
体層を薄くして小型・大容量の積層セラミツクコ
ンデンサを得ることができるなど電子材料用粉末
として多くの有益な効果を奏する。
As described above, according to the present invention, it is possible to obtain a uniform powder that does not contain unnecessary fine particles and has an extremely uniform particle size. This makes the device extremely stable. In particular, structural defects such as abnormal crystal grain growth, voids, microcracks, and delamination, which are problems associated with thinning of the dielectric layer of laminated ceramic conductors, are less likely to occur. It has many beneficial effects as a powder for electronic materials, such as the ability to obtain small-sized, large-capacity multilayer ceramic capacitors.

Claims (1)

【特許請求の範囲】 1 一般式AO・TiO2(ただしAはBa,Be,Mg,
Ca,Sr,Raから選ばれる少なくとも一種の元
素)で表わされ、かつ白金族元素(Pt,Rh,
Pd,Ru,Os,Ir)のうち少なくとも一種を10〜
500ppm含有することを特徴とするチタン酸塩粉
末。 2 チタン酸塩の基本成分とガラス形成物質とを
含む原料混合物を溶融させた後、この融液を急速
に冷却して得られる非晶質体を熱処理して結晶化
させ、その後希酸で処理してチタン酸塩の微粒子
を抽出するチタン酸粉末の製造方法において、前
記融液が白金族元素(Pt,Rh,Pd,Ru,Os,
Ir)のうち少なくとも一種を10〜500ppm含有す
ることを特徴とするチタン酸塩粉末の製造方法。
[Claims] 1 General formula AO・TiO 2 (where A is Ba, Be, Mg,
at least one element selected from Ca, Sr, Ra), and a platinum group element (Pt, Rh,
Pd, Ru, Os, Ir) at least 10 to 10%
A titanate powder characterized by containing 500ppm. 2. After melting a raw material mixture containing the basic components of titanate and a glass-forming substance, the melt is rapidly cooled, the resulting amorphous material is heat-treated to crystallize it, and then treated with dilute acid. In the method for producing titanate powder in which fine particles of titanate are extracted by
A method for producing a titanate powder, characterized in that it contains 10 to 500 ppm of at least one of Ir).
JP16840587A 1987-07-06 1987-07-06 Titanate powder and its production Granted JPS6414114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16840587A JPS6414114A (en) 1987-07-06 1987-07-06 Titanate powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16840587A JPS6414114A (en) 1987-07-06 1987-07-06 Titanate powder and its production

Publications (2)

Publication Number Publication Date
JPS6414114A JPS6414114A (en) 1989-01-18
JPH0524863B2 true JPH0524863B2 (en) 1993-04-09

Family

ID=15867514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16840587A Granted JPS6414114A (en) 1987-07-06 1987-07-06 Titanate powder and its production

Country Status (1)

Country Link
JP (1) JPS6414114A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226287Y2 (en) * 1981-04-12 1990-07-18
US6585951B1 (en) * 2000-10-30 2003-07-01 Idaho Research Foundation, Inc. Methods for manufacturing dielectric powders
JP4474851B2 (en) * 2003-06-27 2010-06-09 旭硝子株式会社 Dielectric-resin composite and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6414114A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
US6585951B1 (en) Methods for manufacturing dielectric powders
GB2349272A (en) Piezoelectric paste and piezoelectric film and piezoelectric part using the same
EP1624468A1 (en) Liquid composition for forming ferroelectric thin film and method for forming ferroelectric thin film
JP2007084354A (en) Spherical ceramic particulate and method for producing the same
JPH0524863B2 (en)
JP4735257B2 (en) Method for producing bismuth titanate fine particles
JP3526886B2 (en) Method for producing composite oxide
JP2000095541A (en) Low melting temperature composite solder glass, additive for the same and use of the same
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
JPH06272033A (en) Production of abox high dielectric target for sputtering
JP2558357B2 (en) Barium titanate-based powder for semiconductor porcelain and its manufacturing method
JP4752194B2 (en) Method for producing barium titanate fine particles
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPH01219014A (en) Production of dielectric material powder
Gorokhovskii et al. Synthesis of glass-ceramic materials in the BaO–PbO–B2O3–Al2O3–TiO2 system
JP5056414B2 (en) Method for producing strontium bismuth tantalate fine particles
JP2004331492A (en) Method of manufacturing lead titanate zirconate fine particle
JP2007173777A (en) Forming method of ferroelectric layer
JP2003020274A (en) Piezoelectric paste, and piezoelectric film and piezoelectric parts using the same
JP3127575B2 (en) Sputtering target material for producing lead-containing perovskite structure composite oxide ferroelectric thin film and method for producing the same
JP2003146744A (en) Method of controlling dielectric constant of dielectric ceramic for low temperature firing, dielectric ceramic for low temperature firing, and electronic parts
JPH0624975B2 (en) Method for producing titanate powder
EP1650769A1 (en) Liquid composition for ferroelectric thin film formation and process for producing ferroelectric thin film
JPS62123018A (en) Production of ferroelectric powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER