JP2949180B2 - Negative electrode for lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery

Info

Publication number
JP2949180B2
JP2949180B2 JP4066414A JP6641492A JP2949180B2 JP 2949180 B2 JP2949180 B2 JP 2949180B2 JP 4066414 A JP4066414 A JP 4066414A JP 6641492 A JP6641492 A JP 6641492A JP 2949180 B2 JP2949180 B2 JP 2949180B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon material
lithium
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4066414A
Other languages
Japanese (ja)
Other versions
JPH05275077A (en
Inventor
国昭 辰巳
比夏里 栄部
俊一 樋口
昭弘 馬淵
喜照 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13315117&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2949180(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4066414A priority Critical patent/JP2949180B2/en
Publication of JPH05275077A publication Critical patent/JPH05275077A/en
Application granted granted Critical
Publication of JP2949180B2 publication Critical patent/JP2949180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー密度、放電
特性、サイクル特性などに優れたリチウム二次電池およ
びそれに用いる負極用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery excellent in energy density, discharge characteristics, cycle characteristics and the like, and a negative electrode material used therefor.

【0002】[0002]

【従来技術】負極活物質としてリチウムを使用し、正極
活物質として金属カルコゲン化物或いは金属酸化物を使
用し、電解液として非プロトン性有機溶媒に種々の塩を
溶解させた溶液を使用する、いわゆるリチウム二次電池
は、高エネルギー密度型二次電池として注目され、盛ん
に研究されている。
2. Description of the Related Art A so-called lithium active material is used as a negative electrode active material, a metal chalcogenide or a metal oxide is used as a positive electrode active material, and a solution in which various salts are dissolved in an aprotic organic solvent is used as an electrolyte. Lithium secondary batteries are attracting attention as high energy density secondary batteries and are being actively studied.

【0003】従来のリチウム電池では、負極活物質とし
てのリチウムは、箔状の単体で用いられることが多く、
充放電を繰り返すと、樹枝状リチウムが析出して両極が
短絡するため、充放電のサイクル寿命が短いという欠点
を有する。
[0003] In a conventional lithium battery, lithium as an anode active material is often used as a foil-like unit.
When charge and discharge are repeated, dendritic lithium is deposited and both electrodes are short-circuited, so that there is a disadvantage that the charge and discharge cycle life is short.

【0004】樹枝状リチウムの析出を防止するために、
負極活物質としてアルミニウム或いは鉛、カドミウムお
よびインジウムを含む可融性合金を使用して、充電時に
リチウムを合金として析出させ、放電時にこの合金から
リチウムを溶解させる方法が提案されている(米国特許
4002492号参照)。しかしながら、このような方
法によれば、樹枝状リチウムの析出は抑止できるもの
の、電池のエネルギー密度が低下する。
In order to prevent the precipitation of dendritic lithium,
A method has been proposed in which a fusible alloy containing aluminum or lead, cadmium and indium is used as a negative electrode active material, and lithium is precipitated as an alloy during charging, and lithium is dissolved from this alloy during discharging (US Patent No. 40000242). No.). However, according to such a method, although the precipitation of dendritic lithium can be suppressed, the energy density of the battery decreases.

【0005】さらに、放電容量を向上させるために、カ
ーボン材にリチウムを担持させることが試みられてい
る。例えば、繊維状乃至粉末状のカーボン材にリチウム
を担持させることが提案されている(特開昭63−11
4056号公報、特開昭62−268056号公報参
照)。しかしながら、カーボン材をリチウムの担持体と
して使用するリチウム二次電池においては、カーボン材
と電解液との最適の組合わせを得ることは極めて困難で
ある。即ち、単独で使用する有機溶媒としては、炭酸プ
ロピレン(プロピレンカーボネート)が比誘電率、使用
温度範囲などの特性に優れており、総合的に見ても炭酸
プロピレンに優る特性を示す有機溶媒は、見出されてい
ない。しかしながら、炭酸プロピレンについては、高結
晶性のカーボン材を電極として使用する場合には、還元
時に炭酸プロピレンの分解が生ずるという問題点が指摘
されている(J.Electrochem.Soc.,117(2),222(1970)
)。高結晶性のカーボン材は、発達した層状構造を有
しており、リチウムイオンのインターカレーションを考
慮すると、担持できるリチウム量(容量に相当する)が
大きいと考えられるので、炭酸プロピレンを用いる電解
液と組合わせてリチウム二次電池の負極として使用でき
る様にすることが好ましい。
Further, in order to improve the discharge capacity, attempts have been made to support lithium on a carbon material. For example, it has been proposed to support lithium on a fibrous or powdery carbon material (JP-A-63-11).
4056, JP-A-62-268056). However, in a lithium secondary battery using a carbon material as a lithium carrier, it is extremely difficult to obtain an optimal combination of a carbon material and an electrolytic solution. That is, as an organic solvent used alone, propylene carbonate (propylene carbonate) is excellent in properties such as relative dielectric constant and operating temperature range. Not found. However, with regard to propylene carbonate, it has been pointed out that, when a highly crystalline carbon material is used as an electrode, decomposition of propylene carbonate occurs during reduction (J. Electrochem. Soc., 117 (2) , 222 (1970)
). The highly crystalline carbon material has a developed layered structure, and considering the intercalation of lithium ions, it is considered that the amount of lithium that can be supported (corresponding to the capacity) is large. It is preferable that it can be used as a negative electrode of a lithium secondary battery in combination with the liquid.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は、カ
ーボン材を負極として使用し且つ炭酸プロピレンを電解
液の有機溶媒の少なくとも一部として使用する改良され
たリチウム二次電池を提供することを主な目的とする。
Accordingly, an object of the present invention is to provide an improved lithium secondary battery using a carbon material as a negative electrode and using propylene carbonate as at least a part of an organic solvent of an electrolyte. Main purpose.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記のよう
な技術の現状に鑑みて鋭意研究を重ねた結果、カーボン
材を負極として使用し且つ炭酸プロピレンを電解液の有
機溶媒の少なくとも一部として使用するリチウム二次電
池において、負極の構成要素として使用される特定構造
のカーボン材の表面をリチウムイオン伝導性の固体電解
質の薄膜でコーティングする場合には、従来技術の問題
点が実質的に解消乃至大幅に軽減されることを見出し、
本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the state of the art as described above, and as a result, using carbon material as a negative electrode and using propylene carbonate as at least one of the organic solvents of the electrolytic solution. In the case of a lithium secondary battery used as a part, when the surface of a carbon material having a specific structure used as a component of a negative electrode is coated with a thin film of a lithium ion conductive solid electrolyte, the problems of the prior art are substantially reduced. To be reduced or significantly reduced
The present invention has been completed.

【0008】即ち、本発明は下記のリチウム二次電池及
びその負極材料に係るものである。
That is, the present invention relates to the following lithium secondary battery and its negative electrode material.

【0009】1.負極の構成要素として用いられるカー
ボン材の表面をリチウムイオン伝導性固体電解質の薄膜
でコーティングし、かつ、該カーボン材のC軸方向の結
晶子サイズ(Lc)が300オングストローム以上であ
る、電解液の有機溶媒の少なくとも一部として炭酸プロ
ピレンを使用するリチウム二次電池用の負極。
1. The surface of a carbon material used as a component of the negative electrode is coated with a thin film of a lithium ion conductive solid electrolyte, and the crystallite size (Lc) in the C-axis direction of the carbon material is 300 Å or more. A negative electrode for a lithium secondary battery using propylene carbonate as at least a part of an organic solvent.

【0010】2.カーボン材の表面をリチウムイオン伝
導性固体電解質の薄膜でコーティングし、かつ、該カー
ボン材のC軸方向の結晶子サイズ(Lc)が300オン
グストローム以上である材料を負極の構成要素とする、
電解液の有機溶媒の少なくとも一部として炭酸プロピレ
ンを使用するリチウム二次電池。
[0010] 2. A material in which the surface of a carbon material is coated with a thin film of a lithium ion conductive solid electrolyte and the carbon material has a crystallite size (Lc) of 300 angstroms or more in the C-axis direction is a component of the negative electrode.
A lithium secondary battery using propylene carbonate as at least a part of an organic solvent of an electrolytic solution.

【0011】[0011]

【0012】以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0013】本発明において、負極の基本構成要素とし
て用いられるカーボン材の由来(ピッチ系、石油系、P
AN系など)、種類(炭素繊維、黒鉛化炭素繊維な
ど)、形態(粉末、繊維状、ペレット、電極などの成形
体など)などは、特に制限されないが、電解液に炭酸プ
ロピレンを使用することを考慮すると、2000℃以上
の高温で黒鉛化処理した高結晶性のカーボン材が特に好
適である。結晶子の大きさでいうと、C軸方向の結晶子
サイズ(Lc )が少なくとも300オングストロームで
あるカーボン材が特に好ましい。黒鉛化処理温度が20
00℃を下回る場合には、カーボン材のC軸方向の結晶
子サイズ(Lc )が300オングストロームよりも小さ
くなり、充電時に溶媒として使用される炭酸プロピレン
の分解を生じやすい。
In the present invention, the origin of the carbon material (pitch, petroleum, P
AN type), type (carbon fiber, graphitized carbon fiber, etc.), form (powder, fibrous, pellet, molded product such as electrode, etc.) are not particularly limited, but propylene carbonate should be used for the electrolyte. In consideration of the above, a highly crystalline carbon material that has been graphitized at a high temperature of 2000 ° C. or higher is particularly suitable. In terms of crystallite size, a carbon material having a crystallite size (Lc) in the C-axis direction of at least 300 angstroms is particularly preferred. Graphitization temperature is 20
When the temperature is lower than 00 ° C., the crystallite size (L c ) in the C-axis direction of the carbon material becomes smaller than 300 Å, and propylene carbonate used as a solvent at the time of charging tends to be decomposed.

【0014】本発明においては、上記のカーボン材の表
面にリチウムイオン伝導性の固体電解質の薄膜を形成す
る。この様な固体電解質としては、ポリエチレンオキシ
ド(PEO)、LiI、Li 、LiAlO、L
GaO、 LiFeO、Li−Na−β−アルミナ、LiAl
SiO、 LiZn(GeO、Li11Cl、Li
NBr、 Li13Br、LiNIなどが例示される。イ
オン伝導による拡散速度の観点からは、ポリエチレンオ
キシドが最も好ましい。
In the present invention, a lithium ion conductive solid electrolyte thin film is formed on the surface of the carbon material. Such solid electrolytes include polyethylene oxide (PEO), LiI, Li 3 N , Li 5 AlO 4 , L
i 5 GaO 4 , Li 5 FeO 4 , Li-Na-β-alumina, LiAl
SiO 4 , Li 4 Zn (GeO 4 ) 4 , Li 11 N 3 Cl 2 , Li
6 NBr 3 , Li 13 N 4 Br, and Li 5 NI 2 are exemplified. From the viewpoint of the diffusion rate due to ion conduction, polyethylene oxide is most preferred.

【0015】薄膜を形成する手法は、この様なリチウム
イオン伝導性の固体電解質の薄膜が形成される限り、限
定されるものではないが、固体電解質を溶媒と混合して
塗布する吸着法、適当な表面処理により官能基を付与し
た重合物(PEOなど)の官能基と炭素材表面の官能基
とをアミド結合、エーテル結合或いはシロキサン結合を
介して共有結合させる共有結合法、モノマーを電解重合
させる電解析出法、加熱により高分子化合物を気化さ
せ、電極表面に蒸着させる気体蒸着法などが例示され
る。
The method of forming the thin film is not limited as long as such a lithium ion conductive solid electrolyte thin film is formed. Covalent bonding method in which a functional group of a polymer (such as PEO) having a functional group provided by a simple surface treatment and a functional group on the surface of a carbon material are covalently bonded via an amide bond, an ether bond or a siloxane bond, and the monomer is electrolytically polymerized. Examples include an electrolytic deposition method and a gas evaporation method in which a polymer compound is vaporized by heating and vapor-deposited on the electrode surface.

【0016】薄膜の厚さは、特に限定されるものではな
いが、通常0.01〜10μm程度である。
The thickness of the thin film is not particularly limited, but is usually about 0.01 to 10 μm.

【0017】前述の様に、電解液の有機溶媒として炭酸
プロピレンを使用し且つ高結晶性のカーボン材を電極に
使用すると、還元時に炭酸プロピレンの分解が容易に起
こるので、そのままの状態で使用することは不可能であ
る。しかしながら、この様なカーボン材の表面にリチウ
ムイオン伝導性の固体電解質の薄膜を付与する場合に
は、カーボン電極と電解液との直接的な接触が回避され
るので、炭酸プロピレンの分解を抑制しつつ、電気化学
的反応のみを進行させることが可能となる。また、溶媒
和された状態でリチウムイオンがカーボン層間にインタ
ーカレーション(コインターカレーション)することが
防止され、単位重量当たりの容量を増加させるという効
果も達成される。
As described above, when propylene carbonate is used as the organic solvent of the electrolytic solution and a highly crystalline carbon material is used for the electrode, the propylene carbonate is easily decomposed at the time of reduction. It is impossible. However, when a thin film of a lithium ion conductive solid electrolyte is applied to the surface of such a carbon material, direct contact between the carbon electrode and the electrolyte is avoided, so that decomposition of propylene carbonate is suppressed. In addition, only the electrochemical reaction can proceed. In addition, lithium ions are prevented from intercalating (co-intercalating) between carbon layers in a solvated state, and the effect of increasing the capacity per unit weight is also achieved.

【0018】本発明によるリチウムイオン伝導性固体電
解質の薄膜を形成されたカーボン材は、常法に従ってリ
チウムを付与され、リチウム二次電池の負極活物質とし
て使用される。
The carbon material on which the thin film of the lithium ion conductive solid electrolyte according to the present invention is formed is provided with lithium according to a conventional method, and is used as a negative electrode active material of a lithium secondary battery.

【0019】[0019]

【発明の効果】本発明によれば、電解液の有機溶媒の少
なくとも一部として炭酸プロピレンを使用し、負極材料
として高結晶性カーボン材を使用する高性能のリチウム
二次電池を得ることができる。
According to the present invention, a high-performance lithium secondary battery using propylene carbonate as at least a part of the organic solvent of the electrolytic solution and using a highly crystalline carbon material as the negative electrode material can be obtained. .

【0020】[0020]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples are shown below to further clarify the features of the present invention.

【0021】実施例1負極の作製 メソフェーズピッチの焼成体(熱処理温度3000℃)
99重量部とPTFEのディスパージョン(D−1、ダ
イキン工業(株)製)1重量部(固形分として)とを液
相で均一に混合攪拌した後、乾燥させ、ペースト状とし
た。この様にして得られた負極物質3mgをニッケルメッ
シュに圧着して、炭素電極を作製し、200℃で6時間
真空乾燥した。
Example 1 Fabrication of Negative Electrode Fired body of mesophase pitch (heat treatment temperature: 3000 ° C.)
99 parts by weight and 1 part by weight (as solid content) of PTFE dispersion (D-1, manufactured by Daikin Industries, Ltd.) were uniformly mixed and stirred in a liquid phase, and then dried to form a paste. 3 mg of the negative electrode material thus obtained was pressure-bonded to a nickel mesh to prepare a carbon electrode, which was vacuum-dried at 200 ° C. for 6 hours.

【0022】一方、1モル/lの濃度でLiClO4
溶解させた炭酸プロピレンに対し、体積比で10%のプ
ロピレンオキシドを溶解させて電解液とした後、上記の
炭素電極を作用極とし、対極としての白金電極および参
照極としての銀−塩化銀電極を用いて、1.5Vの定電
位電解を行なった。重合の終了時は電流が流れなくなっ
た時点とし、その後使用する電解液で3回洗浄した。
On the other hand, 10% by volume of propylene oxide is dissolved in propylene carbonate in which LiClO 4 is dissolved at a concentration of 1 mol / l to form an electrolyte, and the above-mentioned carbon electrode is used as a working electrode. Using a platinum electrode as a counter electrode and a silver-silver chloride electrode as a reference electrode, 1.5 V constant potential electrolysis was performed. At the end of the polymerization, it was assumed that the current stopped flowing, and then the substrate was washed three times with the used electrolyte.

【0023】次いで、得られた負極体を作用極とし、対
極および参照極としてリチウム電極を使用して、電位が
0Vとなるまで負極体にリチウムを吸蔵させた。この操
作における条件(電解液、電流密度など)は、以後行な
う電池特性の測定条件と同様にした。
Next, using the obtained negative electrode as a working electrode, lithium electrodes were used as a counter electrode and a reference electrode, and lithium was occluded in the negative electrode until the potential became 0 V. The conditions (electrolyte solution, current density, etc.) in this operation were the same as the measurement conditions of the battery characteristics to be performed later.

【0024】電池の作製 次いで、下記の構成材料を使用して、図1に断面図とし
て示すリチウム二次電池を作製した。
Production of Battery Next, a lithium secondary battery shown in a sectional view in FIG. 1 was produced using the following constituent materials.

【0025】正極体1…電解二酸化マンガン セパレータ2…ポリプロピレン不織布 負極体3…上記で得られたもの 電解液…LiClO4 を1モル/lの濃度で溶解させた
プロピレンカーボネート 図1において、リチウム二次電池は、上記以外の構成部
品として、ケース4、封口板5、絶縁パッキング6を備
えている。
Cathode body 1 electrolytic manganese dioxide Separator 2 polypropylene nonwoven fabric Negative body 3 obtained above Electrolyte solution propylene carbonate with LiClO 4 dissolved at a concentration of 1 mol / l In FIG. The battery includes a case 4, a sealing plate 5, and an insulating packing 6 as other components.

【0026】電池特性の測定 上記で得られたリチウム二次電池の放電特性を調べるた
めに50mA/g(負極カーボン基準)の定電流条件下
で充放電を行なった。放電容量は、電池電圧が2.0V
に低下するまでの容量とした。
Measurement of Battery Characteristics In order to examine the discharge characteristics of the lithium secondary battery obtained above, charging and discharging were performed under a constant current condition of 50 mA / g (based on negative electrode carbon). The discharge capacity is such that the battery voltage is 2.0 V
And the capacity until it decreased.

【0027】なお、対照として、リチウムイオン伝導性
固体電解質の薄膜を形成しない上記と同様のメソフェー
ズピッチの焼成体(熱処理温度1000℃、2000℃
および3000℃)をそれぞれ使用する負極体を用いた
従来型のリチウム二次電池のついても、同一条件下に電
池特性の測定を行なった。
As a control, a fired body of a mesophase pitch similar to that described above without forming a thin film of a lithium ion conductive solid electrolyte (heat treatment temperature: 1000 ° C., 2000 ° C.)
And 3000 ° C.), the battery characteristics of the conventional lithium secondary battery using the negative electrode body were measured under the same conditions.

【0028】結果は、表1に示す通りである。The results are as shown in Table 1.

【0029】 表 1 熱処理温度 Lc 放電容量(Ah/kg) (℃) (オングストローム) 1サイクル 10サイクル 実施例1 3000 580 300 290 対照1 1000 20 250 140 対照2 2000 300 125 95 対照3 3000 580 0 0 注:対照3においては、溶媒分解により測定不能であった。Table 1 Heat treatment temperature Lc Discharge capacity (Ah / kg) (° C) (angstrom) 1 cycle 10 cycles Example 1 3000 580 300 290 Control 1 1000 20 250 250 140 Control 2 2000 300 125 95 Control 3 3000 580 0 0 Note: In Control 3, measurement was not possible due to solvent decomposition.

【0030】表1に示す結果から明らかな様に、C軸方
向の結晶子サイズ(Lc )が300オングストローム以
上である高結晶性カーボン材をリチウムイオン伝導性固
体電解質により被覆した負極材料を使用する本発明によ
れば、従来のリチウム二次電池とは異なって、電解液の
有機溶媒の少なくとも一部として炭酸プロピレンを使用
して、従来にない高い放電特性およびサイクル特性を備
えた高性能のリチウム二次電池を得ることができる。
As is apparent from the results shown in Table 1, a negative electrode material in which a highly crystalline carbon material having a crystallite size (Lc) in the C-axis direction of 300 Å or more is coated with a lithium ion conductive solid electrolyte is used. According to the present invention, unlike conventional lithium secondary batteries, using propylene carbonate as at least a part of the organic solvent of the electrolytic solution, a high-performance lithium battery having unprecedented high discharge characteristics and cycle characteristics A secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1で得られた本発明のリチウム
二次電池の断面図である。
FIG. 1 is a cross-sectional view of a lithium secondary battery of the present invention obtained in Example 1.

【符号の説明】[Explanation of symbols]

1…正極 2…セパレータ 3…負極 4…ケース 5…封口板 6…絶縁パッキング DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Separator 3 ... Negative electrode 4 ... Case 5 ... Sealing plate 6 ... Insulation packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 俊一 大阪府箕面市牧落5丁目8番2−212 (72)発明者 馬淵 昭弘 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 中川 喜照 大阪府大阪市中央区平野町四丁目1番2 号 大阪瓦斯株式会社内 (56)参考文献 特開 平3−25866(JP,A) 特開 平2−82466(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shunichi Higuchi 5-2-2, Makino, Minoh-shi, Osaka (72) Akihiro Mabuchi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. In-house (72) Inventor Yoshiteru Nakagawa 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Osaka Gas Co., Ltd. (56) References JP-A-3-25866 (JP, A) JP-A-2- 82466 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極の構成要素として用いられるカーボン
材の表面をリチウムイオン伝導性固体電解質の薄膜でコ
ーティングし、かつ、該カーボン材のC軸方向の結晶子
サイズ(Lc)が300オングストローム以上である、
電解液の有機溶媒の少なくとも一部として炭酸プロピレ
ンを使用するリチウム二次電池用の負極。
The surface of a carbon material used as a component of a negative electrode is coated with a thin film of a lithium ion conductive solid electrolyte, and the carbon material has a crystallite size (Lc) in the C-axis direction of 300 Å or more. is there,
A negative electrode for a lithium secondary battery using propylene carbonate as at least a part of an organic solvent of an electrolytic solution.
【請求項2】カーボン材の表面をリチウムイオン伝導性
固体電解質の薄膜でコーティングし、かつ、該カーボン
材のC軸方向の結晶子サイズ(Lc)が300オングス
トローム以上である材料を負極の構成要素とする、電解
液の有機溶媒の少なくとも一部として炭酸プロピレンを
使用するリチウム二次電池。
2. A negative electrode comprising a material in which the surface of a carbon material is coated with a thin film of a lithium ion conductive solid electrolyte and the carbon material has a crystallite size (Lc) in the C-axis direction of 300 Å or more. A lithium secondary battery using propylene carbonate as at least a part of the organic solvent of the electrolytic solution.
JP4066414A 1992-03-24 1992-03-24 Negative electrode for lithium secondary battery Expired - Lifetime JP2949180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4066414A JP2949180B2 (en) 1992-03-24 1992-03-24 Negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4066414A JP2949180B2 (en) 1992-03-24 1992-03-24 Negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05275077A JPH05275077A (en) 1993-10-22
JP2949180B2 true JP2949180B2 (en) 1999-09-13

Family

ID=13315117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4066414A Expired - Lifetime JP2949180B2 (en) 1992-03-24 1992-03-24 Negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2949180B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2181860A1 (en) * 1995-07-24 1997-01-25 Hitoshi Miura Non-aqueous electrolyte lithium secondary battery
JP3588885B2 (en) * 1995-12-21 2004-11-17 ソニー株式会社 Non-aqueous electrolyte battery
JP3882285B2 (en) * 1997-09-22 2007-02-14 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery
CA2346178A1 (en) * 1999-08-12 2001-02-22 Nisshinbo Industries Inc. Electrode structure, electric component and production methods
JP4729774B2 (en) * 2000-02-28 2011-07-20 株式会社豊田中央研究所 Method for producing negative electrode material for lithium secondary battery
JP4618399B2 (en) 2002-06-11 2011-01-26 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP4033074B2 (en) 2002-08-29 2008-01-16 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
KR100623476B1 (en) * 2003-07-11 2006-09-19 주식회사 엘지화학 Lithium ion battery using a thin layer coating
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US8445144B2 (en) 2003-12-15 2013-05-21 Nec Corporation Additive for an electrolyte solution for an electrochemical device
JP4725728B2 (en) 2003-12-15 2011-07-13 日本電気株式会社 Secondary battery
JP5091458B2 (en) * 2006-10-31 2012-12-05 株式会社オハラ Lithium secondary battery and electrode for lithium secondary battery
JP2008162821A (en) * 2006-12-27 2008-07-17 Tokyo Institute Of Technology Carbon composite material and its manufacturing method
EP2183803B1 (en) * 2007-07-26 2015-04-29 LG Chem, Ltd. Anode active material having a core-shell structure
JP5348897B2 (en) * 2008-01-21 2013-11-20 古河電池株式会社 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
JP5169400B2 (en) 2008-04-07 2013-03-27 Necエナジーデバイス株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
EP2395580B1 (en) 2009-02-04 2017-07-26 National Institute of Advanced Industrial Science And Technology Fiber electrodes for lithium secondary batteries, manufacturing method therefor, and lithium secondary batteries provided with fiber electrodes
KR101385881B1 (en) * 2009-07-14 2014-04-15 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Electrical storage device provided with fiber electrodes, and method for producing same
JP5450182B2 (en) * 2010-03-12 2014-03-26 株式会社半導体エネルギー研究所 Secondary battery and electronic equipment
JP2013045560A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Sintered type electrode and battery
WO2014033277A1 (en) * 2012-09-03 2014-03-06 Swerea Sicomp Ab A battery half cell, a battery and their manufacture
JP5839733B2 (en) * 2013-12-25 2016-01-06 株式会社半導体エネルギー研究所 Manufacturing method of secondary battery
EP3128583B1 (en) 2014-03-31 2019-03-13 Kureha Corporation Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JP2612320B2 (en) * 1988-09-20 1997-05-21 新日本製鐵株式会社 Lithium secondary battery using carbon fiber for both electrodes
JP2703350B2 (en) * 1989-06-21 1998-01-26 シャープ株式会社 Rechargeable battery
JP2856795B2 (en) * 1989-12-05 1999-02-10 三菱化学株式会社 Electrodes for secondary batteries
JPH05121098A (en) * 1991-10-30 1993-05-18 Yuasa Corp Secondary battery

Also Published As

Publication number Publication date
JPH05275077A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP2949180B2 (en) Negative electrode for lithium secondary battery
Cao et al. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode
Zaghib et al. Electrochemistry of anodes in solid‐state Li‐ion polymer batteries
US11551878B2 (en) Electricity storage device
RU2742351C2 (en) Rechargeable sodium cells for high energy density battery use
Du et al. Carbon fiber micron film guided uniform plating/stripping of metals: A universal approach for highly stable metal batteries
Zhou et al. Ion-sieving Janus separator modified by Ti3C2Tx toward dendrite-free zinc-ion battery
JP2014007117A (en) Li BASED SECONDARY BATTERY
You et al. Graphite intercalation compounds (GICs) based multi-functional interface layer toward highly reversible Zn metal anodes
CN105489892A (en) Composite positive electrode plate of lithium-sulfur battery and preparation method of composite positive electrode plate
Ma et al. Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte
WO1993014528A1 (en) Secondary battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JPH07105938A (en) Manufacture of negetive electrode for non-aqueous electrolyte secondary battery
US20230253620A1 (en) Improved electrolyte for electrochemical cell
Bi et al. High‐Energy Aqueous/Organic Hybrid Batteries Enabled by Cu2+ Redox Charge Carriers
US11183686B2 (en) Electrolyte, energy storage device, and method for producing energy storage device
Xi et al. Simple Fabrication of Ti3C2/MnO2 Composites as Cathode Material for High Capacity and Long Cycle Lifespan Zn‐ion Batteries
CA1139362A (en) Sulfur trioxide soluble cathode primary cell
JPH04190557A (en) Lithium secondary battery
JP2007149533A (en) Electrode, and electrochemical cell using it
JPH04179049A (en) Negative electrode for battery
US20240047747A1 (en) Zinc rechargeable batteries
JPH0714608A (en) Battery
Liang et al. Freestanding H2V3O8/MXene films for high performance quasi-solid-state zinc-ion batteries

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term