JPH05230586A - Mo sintered compact and its production - Google Patents

Mo sintered compact and its production

Info

Publication number
JPH05230586A
JPH05230586A JP3078364A JP7836491A JPH05230586A JP H05230586 A JPH05230586 A JP H05230586A JP 3078364 A JP3078364 A JP 3078364A JP 7836491 A JP7836491 A JP 7836491A JP H05230586 A JPH05230586 A JP H05230586A
Authority
JP
Japan
Prior art keywords
powder
sintered body
sintered
present
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3078364A
Other languages
Japanese (ja)
Inventor
Mitsuru Tsuchiya
満 土屋
Kunio Amitani
国夫 網谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP3078364A priority Critical patent/JPH05230586A/en
Publication of JPH05230586A publication Critical patent/JPH05230586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a tough Mo sintered compact capable of preventing cracking at the time of sizing and capable of enhancing its strength. CONSTITUTION:This Mo sintered compact contains Mo grains having 9.85-10.15 specific gravity and <=20mum average grain size and has >=900MPa deflective strength and >=0.8mm deflection. This Mo sintered compact is produced by sintering Mo powder as starting material having >=2.0m<2>/g specific surface area measured by the BET specific surface area measuring method by powder metallurgical processing at <=1,800 deg.C for 1-10hr. At this time, Mo powder having <=6mum grain size measured by the Fsss grain size measuring method may be substd. for <=40wt.% of the Mo powder as starting material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電子部品等に用いられ
る靱性のあるMo焼結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tough Mo sintered body used for electronic parts and the like and a method for producing the same.

【0002】[0002]

【従来の技術】従来,この種のMo焼結体は,原料Mo
粉末として,粒度{Fsss (μm)}で2.8〜3.2
μmの粉末を用い,粉末冶金法によって,1800℃で
10時間焼結して製造されている。しかし,このような
製造方法によって焼結されたMo焼結体は,9.60〜
9.85程度の比重を有するものしか得られず,焼結品
強度が低い。
2. Description of the Related Art Heretofore, this type of Mo sintered body has been used as a raw material
The powder has a particle size of {Fsss (μm)} of 2.8 to 3.2.
It is manufactured by sintering at 1800 ° C. for 10 hours by powder metallurgy using powder of μm. However, the Mo sintered body sintered by such a manufacturing method is 9.60 ~
Only those having a specific gravity of about 9.85 can be obtained, and the strength of the sintered product is low.

【0003】[0003]

【発明が解決しようとする課題】前記方法によって製造
されたMo焼結体は,比重が比較的低く,焼結品強度も
低い。したがって,小物Mo焼結体の寸法精度を出すた
めに,サイジングを行うと,サイジング時にクラックが
入るという欠点があった。一方,Mo焼結品は,抗折
力,たわみ量等が低いため,低い靭性を有する材料とし
て知られている。しかしながら,Mo焼結品の靱性にお
ける改善の要求は非常に高く,靱性の改善ができれば,
Mo焼結品の用途は,飛躍的に広がるものと考えられ
る。
The Mo sintered body produced by the above method has a relatively low specific gravity and a low sintered product strength. Therefore, if the sizing is performed in order to obtain the dimensional accuracy of the small Mo sintered body, there is a drawback that cracks are generated during the sizing. On the other hand, the Mo sintered product is known as a material having low toughness because of its low transverse rupture strength and flexure amount. However, the demand for improvement in the toughness of Mo sintered products is very high, and if the toughness can be improved,
The applications of Mo sintered products are expected to expand dramatically.

【0004】そこで,本発明の技術的課題は,サイジン
グ時のクラックの発生を防止でき,且つ焼結体の靱性を
向上させることができるMo焼結体及びその製造方法を
提供することにある。
Therefore, a technical object of the present invention is to provide a Mo sintered body and a manufacturing method thereof, which can prevent the occurrence of cracks during sizing and improve the toughness of the sintered body.

【0005】[0005]

【課題を解決するための手段】本発明によれば,比重が
9.85〜10.15のMo焼結体であって,前記焼結
体は,平均粒径20μm以下のMo粒子を含み,抗折力
及びたわみ量がそれぞれ900MPa及び0.8mm以上
であることを特徴とするMo焼結体が得られる。
According to the present invention, there is provided a Mo sintered body having a specific gravity of 9.85 to 10.15, said sintered body containing Mo particles having an average particle diameter of 20 μm or less, A Mo sintered body having a transverse rupture force and a bending amount of 900 MPa and 0.8 mm or more, respectively, is obtained.

【0006】本発明によれば,BET粒度測定法で測定
されたときの2.0m2 /g以上の比表面積を有する原
料Mo粉末を粉末冶金法により1800℃以下で1〜1
0時間焼結することを特徴とするMo焼結体の製造方法
が得られる。
According to the present invention, a raw material Mo powder having a specific surface area of 2.0 m 2 / g or more as measured by the BET particle size measuring method is powder metallurgy at a temperature of 1800 ° C. or less to 1 to 1: 1.
A method for producing a Mo sintered body, which comprises sintering for 0 hour, is obtained.

【0007】本発明によれば,前記原料Mo粉末の多く
とも40wt%をFsss 粒度測定法で測定されたときの
6μm以下のMo粉で置換混合したことを特徴とするM
o焼結体の製造方法が得られる。
According to the present invention, at most 40 wt% of the raw Mo powder is replaced and mixed with Mo powder having a size of 6 μm or less as measured by the Fsss particle size measuring method.
A method for manufacturing a sintered body can be obtained.

【0008】ここで,本発明において,Mo焼結体の靱
性を高めるには,原料Mo粉の粒度を細かくすれば,良
いと考え行ったが,微粒粉は凝集するためFsss 粒度測
定法での規定が難しく,BET粒度測定法で規定した。
In the present invention, in order to enhance the toughness of the Mo sintered body, it was considered to be fine if the grain size of the raw Mo powder was fine. It is difficult to specify, and it was specified by the BET particle size measurement method.

【0009】本発明において,酸化モリブデン粉を用い
て,水素還元によりこの種の原料モリブデン粉を得る方
法があるが,BET値で5.0m2 /gを有する原料粉
末しか得ることができない。というのは,それ以上の粒
度を有するものを得ようとすれば,還元温度を低下しな
ければならず,その結果,Mo粉末の表面が活性にな
り,大気中に取り出すと表面酸化が急激に起こり,発熱
し,粉末に着火し燃え始めるからである。
In the present invention, there is a method of obtaining this type of raw material molybdenum powder by hydrogen reduction using molybdenum oxide powder, but only raw material powder having a BET value of 5.0 m 2 / g can be obtained. The reason is that, in order to obtain particles having a particle size larger than that, the reduction temperature must be lowered, and as a result, the surface of the Mo powder becomes active, and when it is taken out into the atmosphere, the surface oxidation rapidly occurs. This is because it occurs, heat is generated, the powder is ignited, and it begins to burn.

【0010】[0010]

【作用】本発明においては,Mo粉の粒度及び焼結温
度,焼結時間を制御し,焼結時の粒成長を抑えることが
できるようにし,これによって粒界の面積を増やすこと
ができた。この結果,粒界における不純物濃度を高めず
に済むことから,不純物による粒界が脆くなるのを防ぐ
ことができ,従って,高比重で高強度で靱性のある焼結
体が得られる。
In the present invention, the grain size of Mo powder, the sintering temperature, and the sintering time can be controlled to suppress the grain growth during sintering, thereby increasing the area of grain boundaries. .. As a result, it is possible to prevent the grain boundary from becoming brittle due to impurities because it is not necessary to increase the impurity concentration at the grain boundary, and thus a sintered body having high specific gravity, high strength and toughness can be obtained.

【0011】[0011]

【実施例】以下,本発明の実施例について説明する。図
1(a)は本発明の実施例に係るMo焼結体の示す曲げ
の強さ試験片の破断面の走査電子顕微鏡写真(以下,S
EM)である。また,図1(b)は図1(a)と比較す
るために,従来例に係るMo焼結体の同様のSEM写真
を示している。 図1(a)から判るように,本発明の
実施例に係るMo焼結体は,粒内破壊を起こしており,
図1(b)で示す従来のMo焼結体のように,粒界破壊
を起こしているものとくらべ,高強度が得られる。
EXAMPLES Examples of the present invention will be described below. FIG. 1A is a scanning electron micrograph (hereinafter, S) of a fracture surface of a bending strength test piece of a Mo sintered body according to an example of the present invention.
EM). Further, FIG. 1B shows a similar SEM photograph of the Mo sintered body according to the conventional example for comparison with FIG. 1A. As can be seen from FIG. 1 (a), the Mo sintered compacts according to the examples of the present invention caused intragranular fracture,
High strength can be obtained as compared with the conventional Mo sintered body shown in FIG. 1 (b) in which intergranular fracture occurs.

【0012】次に本発明の実施例に係るMo焼結体の製
造方法について説明する。本発明の実施例に係るMo焼
結体は,原料Mo粉として,BET粒度測定法で3.4
6m2 /gのMo粉80wt%と,Fsss 粒度測定法で
4.5μmのMo粉を20wt%の割合で混合した粉末
を用いて製造された。一方,比較のための従来方法で
は,Fsss 粒度測定法で測定された時に,3.1μmの
値を示す原料のMo粉を使用した。これら2種の原料M
o粉を294MPsでプレスし,1700℃,1800
℃で2時間〜100時間焼結した。得られた焼結体を超
硬工具協会規格CIS026−1983に基づき,サン
プルの厚みを3.10〜3.20,幅を7.10〜7.
20mmに研磨し,試験片として焼結品の曲げの強さ(抗
折力)を測定した。
Next, a method for manufacturing a Mo sintered body according to an embodiment of the present invention will be described. The Mo sintered body according to the example of the present invention was used as a raw material Mo powder in 3.4 by BET particle size measurement.
It was manufactured using 80 wt% of 6 m 2 / g Mo powder and 20 wt% of Mo powder of 4.5 μm by Fsss particle size measurement method. On the other hand, in the conventional method for comparison, raw material Mo powder showing a value of 3.1 μm when measured by the Fsss particle size measuring method was used. These two raw materials M
o powder is pressed at 294MPs, 1700 ℃, 1800
Sintered at 2 ° C for 100 hours. Based on the cemented carbide tool association standard CIS026-1983, the obtained sintered body had a sample thickness of 3.10 to 3.20 and a width of 7.10 to 7.
It was ground to 20 mm and the bending strength (flexural strength) of the sintered product was measured as a test piece.

【0013】図2は,得られた焼結体の比重を示す図で
ある。図2において,曲線1,2で示される本発明の実
施例に係る焼結体は,曲線3,4で示される従来例に係
る焼結体よりも,短時間で大きな比重を得ることができ
ることが判明した。
FIG. 2 is a diagram showing the specific gravity of the obtained sintered body. In FIG. 2, the sintered body according to the example of the present invention shown by curves 1 and 2 can obtain a larger specific gravity in a shorter time than the sintered body according to the conventional example shown by curves 3 and 4. There was found.

【0014】図3,図4は,図2の焼結体の曲げの強さ
(抗折力)及びたわみの量の値を夫々示している。図3
に示すように,曲線31,32で示される本発明の実施
例に係る焼結体は,曲線33,34で示される従来例に
係る焼結体よりも,短時間で大きな曲げの強さを得るこ
とができることが判明した。また,図4に示すように,
曲線41,42示される本発明の実施例に係る焼結体
は,曲線43,44で示される従来例に係る焼結体より
も,焼結時間30までは,大きなたわみ量を得ることが
できることが判明した。
FIG. 3 and FIG. 4 respectively show values of bending strength (flexural strength) and bending amount of the sintered body of FIG. Figure 3
As shown in FIG. 3, the sintered bodies according to the examples of the present invention shown by the curves 31 and 32 have a larger bending strength in a shorter time than the sintered bodies according to the conventional example shown by the curves 33 and 34. It turns out that you can get. Also, as shown in FIG.
The sintered bodies according to the examples of the present invention shown by the curves 41 and 42 can obtain a larger deflection amount up to the sintering time 30 than the sintered bodies according to the conventional example shown by the curves 43 and 44. There was found.

【0015】尚,図5(a)及び(b)は曲げの強さを
測定する方法を示す図である。図5(a)において,支
持台50中において,試験片51を支点52,53で2
点支持するとともに,荷重Pを支点54及び治具55を
介して加圧している。図5(b)において,荷重Pを印
加した試験片は折れ曲がり,その支点54の位置から撓
量lが計算される。尚,測定時に図5(b)のように,
試験片51が治具55に接触したものについては,接触
する直前の荷重を破断値として計算した。
5 (a) and 5 (b) are views showing a method for measuring the bending strength. In FIG. 5 (a), the test piece 51 is supported at two fulcrums 52 and 53 in the support base 50.
The point P is supported and the load P is pressed through the fulcrum 54 and the jig 55. In FIG. 5B, the test piece to which the load P is applied bends, and the amount of deflection 1 is calculated from the position of the fulcrum 54. In addition, at the time of measurement, as shown in FIG.
When the test piece 51 was in contact with the jig 55, the load immediately before contact was calculated as the fracture value.

【0016】図6は,サイジングテストに用いられる小
物Mo焼結体の形状を示す図である。このMo焼結体に
ついて,サイジングテストを行った。その結果を第1表
に示す。
FIG. 6 is a view showing the shape of a small Mo sintered body used in the sizing test. A sizing test was performed on this Mo sintered body. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示すように,試料数300に対し
て,クラックが発生したものが従来例では24個あるに
対して,上記実施例で得られた焼結体は全くクラックが
発生していないことが判る。
As shown in Table 1, in the conventional example, there are 24 cracks for 300 samples, whereas in the sintered bodies obtained in the above examples, no cracks occur. I know there isn't one.

【0019】以上,本発明の実施例においては,Mo粉
の粒度及び焼結温度,焼結時間をコントロールすること
により,焼結時の粒成長を抑え,粒界に不純物が溜まり
粒界がもろくなるのを防ぐことにより,高比重で高強度
で靱性のある焼結体が得られた。
As described above, in the examples of the present invention, grain growth during sintering is suppressed by controlling the grain size of Mo powder, the sintering temperature, and the sintering time, and impurities are accumulated in the grain boundaries and the grain boundaries are fragile. By preventing this, a sintered body with high specific gravity, high strength and toughness was obtained.

【0020】[0020]

【発明の効果】以上説明したように,本発明によれば,
焼結品で,高比重,高強度,高靱性のMo焼結体が得ら
れる。また,本発明によれば,焼結時間が今までより短
縮でき,生産性の向上になる。さらに,本発明によれ
ば,焼結品で高比重,高靱性が得られることにより,今
まで加工材しか適用されなかった部分に焼結品の適用が
可能になった。本発明によれば,従来焼結品より高比
重,高強度,高靱性になることにより,焼結部品として
の信頼性の向上が得られた。さらに,本発明によれば,
今までの焼結レベルに比べ,低温度.短時間での焼結が
可能になり,生産性の向上が計れ,また,コストの低減
ができる。
As described above, according to the present invention,
As a sintered product, Mo sintered compact with high specific gravity, high strength and high toughness can be obtained. Further, according to the present invention, the sintering time can be shortened and the productivity can be improved. Further, according to the present invention, the high specific gravity and the high toughness of the sintered product can be obtained, so that the sintered product can be applied to a portion where only the processed material has been applied so far. According to the present invention, the specific gravity, the strength and the toughness are higher than those of the conventional sintered products, so that the reliability of the sintered parts is improved. Furthermore, according to the present invention,
Low temperature compared to previous sintering levels. Sintering can be done in a short time, productivity can be improved, and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例に係るMo焼結体の示
す曲げの強さ試験片の破断面の走査電子顕微鏡写真(以
下,SEM)である。(b)は従来例に係るMo焼結体
の(a)と同様のSEM写真を示している。
FIG. 1A is a scanning electron micrograph (hereinafter, SEM) of a fracture surface of a bending strength test piece of a Mo sintered body according to an example of the present invention. (B) shows the same SEM photograph as (a) of the Mo sintered compact concerning a prior art example.

【図2】本発明の実施例に係るMo焼結体の比重を示す
図である。
FIG. 2 is a diagram showing a specific gravity of a Mo sintered body according to an example of the present invention.

【図3】図2の焼結体の曲げの強さ(抗折力)値を示す
図である。
FIG. 3 is a graph showing bending strength (bending strength) values of the sintered body of FIG.

【図4】図2の焼結体のたわみ量の値を示す図である。FIG. 4 is a diagram showing a value of a bending amount of the sintered body of FIG.

【図5】(a)及び(b)は曲げの強さを測定する方法
を示す図である。
5A and 5B are views showing a method for measuring bending strength.

【図6】サイジングテストに用いられる小物Mo焼結体
の形状を示す図である。
FIG. 6 is a view showing a shape of a small Mo sintered body used for a sizing test.

【符号の説明】[Explanation of symbols]

50 支持台 51 試験片 52 支点 53 支点 54 支点 55 治具 50 support base 51 test piece 52 fulcrum 53 fulcrum 54 fulcrum 55 jig

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月24日[Submission date] February 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】(a)は本発明の実施例に係るMo焼結体の曲
げの強さ試験片の破断面の金属組織を示す走査電子顕微
鏡写真である。(b)は従来例に係るMo焼結体の
(a)と同様の破断面の金属組織を示す走査電子顕微鏡
写真である。
1 (a) is songs Mo sintered body according to an embodiment of the present invention
Is a scanning electron micrograph showing the metal structure of the fractured surface of the lower strength test piece. (B) is a scanning electron microscope showing a metal structure of a fracture surface similar to (a) of a Mo sintered body according to a conventional example.
It is a photograph .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 比重が9.85〜10.15のMo焼結
体であって,前記焼結体は,平均粒径20μm以下のM
o粒子を含み,抗折力及びたわみ量がそれぞれ900M
Pa及び0.8mm以上であることを特徴とするMo焼結
体。
1. A Mo sintered body having a specific gravity of 9.85 to 10.15, wherein the sintered body is M having an average particle size of 20 μm or less.
Includes o particles, bending strength and flexure amount of 900M each
A Mo sintered body characterized by having Pa and 0.8 mm or more.
【請求項2】 BET粒度測定法で測定されたときの
2.0m2 /g以上の比表面積を有する原料Mo粉末を
粉末冶金法により1800℃以下で1〜10時間焼結す
ることを特徴とするMo焼結体の製造方法。
2. A raw Mo powder having a specific surface area of 2.0 m 2 / g or more as measured by the BET particle size measuring method is sintered by powder metallurgy at 1800 ° C. or lower for 1 to 10 hours. A method for producing a Mo sintered body.
【請求項3】 請求項2のMo焼結体の製造方法におい
て,前記原料Mo粉末の多くとも40wt%をFsss 粒
度測定法で測定されたときの6μm以下のMo粉で置換
混合したことを特徴とするMo焼結体の製造方法。
3. The method for producing a Mo sintered body according to claim 2, wherein at most 40 wt% of the raw Mo powder is replaced and mixed with Mo powder having a particle size of 6 μm or less as measured by the Fsss particle size measuring method. And a method for manufacturing a Mo sintered body.
JP3078364A 1991-03-19 1991-03-19 Mo sintered compact and its production Pending JPH05230586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078364A JPH05230586A (en) 1991-03-19 1991-03-19 Mo sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078364A JPH05230586A (en) 1991-03-19 1991-03-19 Mo sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH05230586A true JPH05230586A (en) 1993-09-07

Family

ID=13659950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078364A Pending JPH05230586A (en) 1991-03-19 1991-03-19 Mo sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH05230586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220785B2 (en) 2003-05-12 2007-05-22 Seiko Epson Corporation Anisotropically conductive adhesive comprising crushable microcapsules adhered to a surface of conductive particles
JP2009527640A (en) * 2006-02-17 2009-07-30 クライマックス エンジニアード マテリアルズ リミテッド ライアビリティ カンパニー High density molybdenum metal powder and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461393A (en) * 1987-08-31 1989-03-08 Nippon Mining Co Production of molybdenum single crystal
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461393A (en) * 1987-08-31 1989-03-08 Nippon Mining Co Production of molybdenum single crystal
JPH01156449A (en) * 1987-12-11 1989-06-20 Tokyo Tungsten Co Ltd Molybdenum sintered compact and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220785B2 (en) 2003-05-12 2007-05-22 Seiko Epson Corporation Anisotropically conductive adhesive comprising crushable microcapsules adhered to a surface of conductive particles
JP2009527640A (en) * 2006-02-17 2009-07-30 クライマックス エンジニアード マテリアルズ リミテッド ライアビリティ カンパニー High density molybdenum metal powder and method for producing the same
GB2448285B (en) * 2006-02-17 2012-03-07 Climax Engineered Mat Llc Densified molybdenum metal powder and method for producing same

Similar Documents

Publication Publication Date Title
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
CN111164227B (en) Sintered molybdenum component
JP2007113033A (en) METHOD FOR PRODUCING Mo TARGET MATERIAL, AND Mo TARGET MATERIAL
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
EP3778939A1 (en) Method for producing a tungsten alloy part
JPH05230586A (en) Mo sintered compact and its production
JP4598212B2 (en) Method for producing WC-based composite ceramic sintered body
CN110392743B (en) Hard sintered body
JPH05345903A (en) Mo sintered body and its production
JPH05147916A (en) Production of fine tungsten-based carbide powder
JP4199406B2 (en) Molybdenum material and manufacturing method thereof
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JPH10110265A (en) Metallic silicide target material
KR20200129143A (en) Sputtering target and manufacturing method of sputtering target
JPH0849068A (en) Tungsten silicide target material and its production
JP2020158361A (en) Boron nitride-based sintered body, insert and cutting tool
JP2723170B2 (en) Superplastic silicon nitride sintered body
JPH07157362A (en) Aluminum oxide-based ceramic having high strength and high toughness
JP3472882B2 (en) Oxide dispersion type alloy and method for producing the same
JP2000129389A (en) Molybdenum sintered compact and its manufacture
JPH11264045A (en) Mulybdenum material and its production
JPS63171847A (en) Molybdenum crucible and its production
JP3283238B2 (en) Silicon nitride ceramic parts and method of manufacturing the same
JPH06128604A (en) Production of metallic material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970218