JPH05221639A - Production of electroconductive oxide fine powder and its sol - Google Patents

Production of electroconductive oxide fine powder and its sol

Info

Publication number
JPH05221639A
JPH05221639A JP5441892A JP5441892A JPH05221639A JP H05221639 A JPH05221639 A JP H05221639A JP 5441892 A JP5441892 A JP 5441892A JP 5441892 A JP5441892 A JP 5441892A JP H05221639 A JPH05221639 A JP H05221639A
Authority
JP
Japan
Prior art keywords
fine powder
tin
oxide fine
indium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5441892A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Satoshi Takemiya
聡 竹宮
Keiko Kubota
恵子 久保田
Keisuke Abe
啓介 阿部
Yasuhiro Sanada
恭宏 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5441892A priority Critical patent/JPH05221639A/en
Publication of JPH05221639A publication Critical patent/JPH05221639A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain fine powder of electroconductive oxide having low specific resistance and uniform particle diameter. CONSTITUTION:A beta-diketone, a hydroxyl group-containing carboxylic acid, a carboxylic acid ester or a ketonic acied ester is added to a solution containing tin or indium ion to form a complex of tin or indium which is neutralized to give tin oxide hydrate or indium, oxide hydrate. Tin oxide hydrate or indium oxide hydrate is drived and calcined to produce electroconductive oxide fine powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性酸化物微粉末の製
造方法、特に塗料に配合すれば導電性塗膜を得ることが
でき、しかも塗膜の透明性を損なうことのない導電性酸
化物微粉末の製造方法、および、その酸化物微粉末のゾ
ルの製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a conductive oxide fine powder, in particular, a conductive coating film can be obtained by adding it to a paint, and the conductive oxide film does not impair the transparency of the coating film. The present invention relates to a method for producing a fine powder and a method for producing a sol of the oxide fine powder.

【0002】[0002]

【従来の技術】近年、ガラスやプラスチックなどの透明
な基材に導電性を付与させることにより、基材の帯電防
止処理が行われている。この場合、導電性粉末とバイン
ダーとを含む導電性塗料を基体表面に塗布して、導電性
塗膜を形成する方法が広く取られている。また透明性に
優れた導電性塗膜を形成するには、導電性粉末として酸
化スズ、酸化インジウムなどが主に用いられている。
2. Description of the Related Art In recent years, a base material has been subjected to an antistatic treatment by imparting conductivity to a transparent base material such as glass or plastic. In this case, a method of applying a conductive paint containing a conductive powder and a binder to the surface of the substrate to form a conductive coating film is widely adopted. In order to form a conductive coating film having excellent transparency, tin oxide, indium oxide, etc. are mainly used as the conductive powder.

【0003】しかし、導電性粉末として酸化スズ、酸化
インジウムなどの導電性酸化物を用いて作成した導電性
塗膜は、透明性、強度、表面抵抗の点で必ずしも満足で
きるものではなかった。このような問題点を解決するた
めに、特公昭61−9343号公報にはアンチモンを含
有する酸化スズからなり、その平均粒径が可視光の波長
よりも小さい0.2μm以下である導電性塗料が開示さ
れている。
However, the conductive coating film formed by using a conductive oxide such as tin oxide or indium oxide as the conductive powder is not always satisfactory in terms of transparency, strength and surface resistance. In order to solve such a problem, Japanese Patent Publication No. 61-9343 discloses a conductive coating material made of tin oxide containing antimony and having an average particle diameter of 0.2 μm or less, which is smaller than the wavelength of visible light. Is disclosed.

【0004】特公昭61−9343号公報では、塩化ス
ズと塩化アンチモンを溶解した水溶液を加熱水中に注い
で、前記塩化物を加水分解して導電性粉末の前駆体を沈
殿させ、この沈殿物を濾過洗浄した後加熱処理すること
により、0.2μm以下の導電性粉末を製造している。
In Japanese Examined Patent Publication No. 61-9343, an aqueous solution in which tin chloride and antimony chloride are dissolved is poured into heated water to hydrolyze the chloride to precipitate a precursor of a conductive powder. A conductive powder having a particle size of 0.2 μm or less is manufactured by filtering and washing and then heat-treating.

【0005】[0005]

【発明が解決しようとする課題】スズ等のハロゲン化物
を加水分解して導電性粉末の前駆体を沈殿させると、得
られる沈殿は一次粒子が凝集した状態にある。また、加
水分解が速く、反応の制御が難しいため粒径も不均一で
ある。したがって、この前駆体の沈殿を濾過洗浄した後
加熱処理して得られる微粉末は、一次粒子が焼結して二
次粒子を形成し、その粒度分布も広い。このため、この
ような導電性微粉末を塗料に均一分散させるのは必ずし
も容易ではない。
When the halide of tin or the like is hydrolyzed to precipitate the precursor of the conductive powder, the obtained precipitate is in a state in which the primary particles are agglomerated. Further, since the hydrolysis is fast and the reaction is difficult to control, the particle size is not uniform. Therefore, in the fine powder obtained by filtering and washing the precipitate of the precursor and then heat-treating, the primary particles are sintered to form secondary particles, and the particle size distribution is wide. Therefore, it is not always easy to uniformly disperse such a conductive fine powder in the paint.

【0006】塗料中に導電性微粉末が均一に分散してい
ないと、導電性塗膜の透明度、強度が低下し、表面抵抗
は増加するなどの問題点が生じる。また、前記二次粒子
は、粉砕により粒子同士の結合を解きほぐして平均粒径
を小さくすることを試みても、粒度分布の狭い導電性微
粒子を得ることは困難で、解膠してゾル化するには多量
の界面活性剤が必要となるなどの問題点があった。
If the conductive fine powder is not uniformly dispersed in the paint, there arise problems such as a decrease in transparency and strength of the conductive coating film and an increase in surface resistance. Further, the secondary particles are difficult to obtain conductive fine particles having a narrow particle size distribution even if an attempt is made to loosen the bonds between the particles by pulverization to reduce the average particle size, and the peptized sol is formed. Has a problem that a large amount of surfactant is required.

【0007】本発明は、ガラスあるいはプラスチックな
どの基板上に、導電性および透明性に優れた塗膜を形成
する導電性塗料に用いるのに適した、分散性の良い導電
性微粉末の製造方法を新規に提供することを目的とする
ものである。
The present invention is a method for producing a conductive fine powder having good dispersibility, which is suitable for use in a conductive paint for forming a coating film having excellent conductivity and transparency on a substrate such as glass or plastic. Is intended to be newly provided.

【0008】[0008]

【課題を解決するための手段】本発明は、金属イオンを
加水分解して得た水和酸化物を乾燥、焼成して導電性酸
化物微粉末を製造する方法において、スズまたはインジ
ウムのイオンを含む溶液に、β−ジケトン、水酸基を有
するカルボン酸、カルボン酸エステル、ケトン酸エステ
ル、ベンゾイル化合物、環状ケトンからなる群より選ば
れる1種以上を添加して、スズまたはインジウムのイオ
ンと錯体を形成させた後、中和して加水分解することに
より水和酸化物を生成させ、これを乾燥、焼成すること
を特徴とする導電性酸化物微粉末の製造方法を提供する
ものである。
The present invention provides a method for producing a conductive oxide fine powder by drying and firing a hydrated oxide obtained by hydrolyzing a metal ion. At least one selected from the group consisting of β-diketone, carboxylic acid having a hydroxyl group, carboxylic acid ester, ketonic acid ester, benzoyl compound, and cyclic ketone is added to a solution containing the same to form a complex with tin or indium ions. The present invention provides a method for producing a conductive oxide fine powder, characterized in that a hydrated oxide is produced by neutralizing and hydrolyzing the resultant, followed by drying and firing.

【0009】本発明においてスズまたはインジウムのイ
オンと錯体を形成する化合物(以下錯形成剤という)
は、スズイオンまたはインジウムイオンを水溶液中で安
定化させ、これらが加水分解して水和酸化スズあるい水
和酸化インジウムが析出する速度を抑制する作用を有す
る。本発明における錯形成剤は、スズあるいはインジウ
ムに対する配位基としてドナー原子になり得るO原子を
含むC=O、COOH、COORを有する有機化合物で
あって、β−ジケトン、水酸基を有するカルボン酸、カ
ルボン酸エステル、ケトン酸エステル、ベンゾイル化合
物、環状ケトンからなる群から選ばれる。化合物中の配
位子の数は1個でも良く、またキレート環を形成できる
多座配位子でも良い。
In the present invention, a compound that forms a complex with tin or indium ions (hereinafter referred to as a complex forming agent)
Has the effect of stabilizing tin ions or indium ions in an aqueous solution and suppressing the rate at which they hydrolyze to precipitate hydrated tin oxide or hydrated indium oxide. The complexing agent in the present invention is an organic compound having C═O, COOH, COOR containing an O atom which can be a donor atom as a coordination group for tin or indium, and is a β-diketone, a carboxylic acid having a hydroxyl group, It is selected from the group consisting of carboxylic acid ester, ketone acid ester, benzoyl compound and cyclic ketone. The number of ligands in the compound may be one, or may be a multidentate ligand capable of forming a chelate ring.

【0010】このような化合物としては、アセチルアセ
トン、トリフルオロアセチルアセトン等のβ−ジケトン
類、アセト酢酸エチル、アセト酢酸メチル等のβ−ケト
ン酸エステル類、メタクリル酸メチル、酢酸エチル、酢
酸メチル等のカルボン酸エステル類、酒石酸、サリチル
酸、クエン酸等の水酸基を有するカルボン酸類、アセト
フェノン、ベンゾフェノン、ベンゾイルアセトン等のベ
ンゾイル化合物、アントラキノン、1,2−ヒドロキシ
アントラキノン、トロポロン、シクロヘキサノン等の環
状ケトン類などが好ましく用いられる。
Examples of such compounds include β-diketones such as acetylacetone and trifluoroacetylacetone, β-ketone esters such as ethyl acetoacetate and methyl acetoacetate, and carvone such as methyl methacrylate, ethyl acetate and methyl acetate. Acid esters, tartaric acid, salicylic acid, carboxylic acids having a hydroxyl group such as citric acid, acetophenone, benzophenone, benzoyl compounds such as benzoylacetone, anthraquinone, 1,2-hydroxyanthraquinone, tropolone, cyclic ketones such as cyclohexanone are preferably used. Be done.

【0011】本発明では、このような錯形成剤は単独で
用いることもできるし、2種以上を適宜組み合わせて用
いることもできる。錯形成剤の使用量は、スズまたはイ
ンジウムのイオン1モルに対して、0.5〜5モル程度
が好ましい。
In the present invention, such a complex forming agent may be used alone or in combination of two or more kinds. The amount of the complex-forming agent used is preferably about 0.5 to 5 mol per 1 mol of tin or indium ions.

【0012】本発明においては、まずスズまたはインジ
ウムの化合物の溶液中に、上記錯形成剤を加えて錯体を
形成する。スズまたはインジウムの化合物としては、可
溶性のものであれば特に限定されないが、ハロゲン化
物、硝酸塩、硫酸塩、アルコキシド等が好適に採用でき
る。このときの溶媒としては、適宜水系または有機系の
溶媒を使用することができる。
In the present invention, first, the complex forming agent is added to a solution of a compound of tin or indium to form a complex. The compound of tin or indium is not particularly limited as long as it is soluble, but halides, nitrates, sulfates, alkoxides and the like can be preferably used. As the solvent at this time, an aqueous solvent or an organic solvent can be appropriately used.

【0013】次に、この溶液を中和して、導電性微粒子
の前駆体である水和酸化スズまたは水和酸化インジウム
の沈殿を生成する。出発原料として塩化物のように溶液
が酸性を呈するものを用いる場合は、アンモニア水、水
酸化カリウム、水酸化ナトリウムなどのアルカリ性溶液
を、出発原料としてスズ酸カリウムのように溶液がアル
カリ性を呈するものを用いる場合は、塩酸、硝酸、硫酸
などの酸性溶液を加えて中和する。
Next, the solution is neutralized to form a precipitate of hydrated tin oxide or hydrated indium oxide which is a precursor of the conductive fine particles. When using a solution whose acidity is chloride-like as a starting material, an alkaline solution such as aqueous ammonia, potassium hydroxide, sodium hydroxide, etc. whose solution is alkaline-like potassium stannate as a starting material When used, the solution is neutralized by adding an acidic solution such as hydrochloric acid, nitric acid or sulfuric acid.

【0014】ここでの中和に際し、特定のpHに保持す
ることは、粒径の均一な導電性微粒子の前駆体を得るの
に有効である。これは生成する粒子の大きさが加水分解
のpHにより異なるため、加水分解時のpHが変動する
と生成粒子の粒径分布が広がるからである。この傾向
は、異種金属をドープして導電性の向上を図る場合に顕
著である。
During neutralization, maintaining a specific pH is effective for obtaining a precursor of conductive fine particles having a uniform particle size. This is because the size of the particles produced differs depending on the pH of the hydrolysis, so that if the pH during the hydrolysis changes, the particle size distribution of the produced particles broadens. This tendency is remarkable when doping different metals to improve conductivity.

【0015】加水分解時のpHは、2〜12まで幅広く
取り得るが、特にpH=6〜8に保持しながら加水分解
を行う場合は、濾過洗浄、焼成を経ても粒径分布の狭い
導電性微粉末を得ることができるので好ましい。pH<
6で加水分解を行うと、沈殿生成が不均一となり粒径分
布幅も広がりやすく、逆にpH>8で加水分解を行う
と、異種金属のドープ効率が低下し導電性が低下するの
で、それぞれ好ましくない。加水分解時のpHを上記範
囲に保持するには、スズまたはインジウム溶液および中
和剤としての酸またはアルカリを、上記pHに保持した
緩衝溶液中に同時に添加するのが好ましい。
The pH at the time of hydrolysis can be widely varied from 2 to 12, but particularly when the hydrolysis is carried out while maintaining pH = 6 to 8, the conductivity of which the particle size distribution is narrow even after filtering and washing is performed. It is preferable because a fine powder can be obtained. pH <
When the hydrolysis is carried out at 6, the precipitation formation becomes non-uniform and the particle size distribution width is apt to widen. On the contrary, when the hydrolysis is carried out at pH> 8, the doping efficiency of the dissimilar metals is lowered and the conductivity is lowered. Not preferable. In order to keep the pH during the hydrolysis within the above range, it is preferable to simultaneously add the tin or indium solution and the acid or alkali as the neutralizing agent to the buffer solution kept at the above pH.

【0016】ここで緩衝液には塩酸、硝酸、酢酸、リン
酸、ホウ酸、クエン酸、水酸化ナトリウムとその塩との
混合物が用いられる。塩としては硝酸アンモニウム、塩
化アンモニウム、酢酸ナトリウム、クエン酸ナトリウム
などが用いられるが、緩衝作用のあるものであれば特に
限定されない。
The buffer solution used here is a mixture of hydrochloric acid, nitric acid, acetic acid, phosphoric acid, boric acid, citric acid, sodium hydroxide and its salt. Ammonium nitrate, ammonium chloride, sodium acetate, sodium citrate or the like is used as the salt, but it is not particularly limited as long as it has a buffering action.

【0017】このようにして得られた水和酸化物の沈殿
物は、通常非晶質であるから、適宜洗浄を行った後、4
00〜800℃で焼成するのが好ましい。焼成温度が4
00℃に満たない場合は、結晶化が不十分になり得られ
る微粉末が導電性の低いものになるおそれがあるので好
ましくない。逆に、焼成温度が800℃を超える場合
は、異常成長した粒子の存在により粒径分布が広がりや
すく、また粒子の凝集力が強くなって解膠が難しくなる
おそれがあるので好ましくない。
The precipitate of the hydrated oxide thus obtained is usually amorphous, and therefore, after being washed appropriately, 4
It is preferable to bake at 00 to 800 ° C. Firing temperature is 4
If the temperature is lower than 00 ° C., crystallization becomes insufficient and the resulting fine powder may have low conductivity, which is not preferable. On the other hand, if the firing temperature exceeds 800 ° C., the presence of abnormally grown particles tends to broaden the particle size distribution, and the particle cohesive force may become so strong that peptization may be difficult, which is not preferable.

【0018】焼成後の粉末は一次粒子が強く凝集あるい
は焼結した状態にあるため、導電性塗料として使用する
場合、その結合を解きほぐすことが必要である。焼成温
度が高いほど粒子同士の結合状態が強くなるため、なる
べく低温で焼成することが望ましい。したがって本発明
のように低温焼成で導電性を発現できる手法は、その後
の分散操作を容易にするうえで有利である。
Since the primary particles of the powder after firing are in a strongly aggregated or sintered state, it is necessary to loosen the bond when using it as a conductive paint. The higher the firing temperature, the stronger the bonding state between the particles, so it is desirable to fire at a temperature as low as possible. Therefore, the method capable of exhibiting conductivity by low temperature firing as in the present invention is advantageous in facilitating the subsequent dispersion operation.

【0019】導電性微粒子の分散には、サンドミル、ボ
ールミル、アトライター、ホモジナイザーなどが適宜使
用し得る。本発明に用いる導電性微粒子は焼成後1〜1
0μmであるが、上記操作により粒径0.2μm以下の
ゾルとすることができる。このとき解膠剤としては、水
酸化カリウム、水酸化ナトリウム、テトラエチルアンモ
ニウムなどのアルカリ水溶液や、ポリオキシエチレンア
ルキルエーテルなどの非イオン系界面活性剤等を用いる
のが好ましい。
For dispersing the conductive fine particles, a sand mill, a ball mill, an attritor, a homogenizer or the like can be used appropriately. The conductive fine particles used in the present invention are 1 to 1 after firing.
Although it is 0 μm, a sol having a particle size of 0.2 μm or less can be obtained by the above operation. At this time, as the deflocculant, it is preferable to use an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide or tetraethylammonium, or a nonionic surfactant such as polyoxyethylene alkyl ether.

【0020】本発明においては、導電性微粉末の電導度
を向上させる手段として、ドーパント成分を添加するの
が好ましい。スズ化合物を含有する原料液には特定量の
アンチモン化合物またはフッ素化合物を溶解させておく
ことにより、スズ化合物にアンチモンまたはフッ素がド
ープした導電性微粉末を得ることができる。アンチモン
またはフッ素のドープ量はスズに対して2〜30at%
が好ましい。インジウム化合物を含有する原料液には特
定量のスズ化合物を溶解させておくことにより、インジ
ウム化合物にスズがドープした導電性微粉末を得ること
ができる。スズのドープ量はインジウムに対して2〜2
0at%が好ましい。
In the present invention, it is preferable to add a dopant component as a means for improving the electric conductivity of the conductive fine powder. By dissolving a specific amount of the antimony compound or the fluorine compound in the raw material liquid containing the tin compound, it is possible to obtain a conductive fine powder in which the tin compound is doped with antimony or fluorine. The doping amount of antimony or fluorine is 2 to 30 at% with respect to tin.
Is preferred. By dissolving a specific amount of the tin compound in the raw material liquid containing the indium compound, it is possible to obtain a conductive fine powder in which the indium compound is doped with tin. Doping amount of tin is 2 to 2 with respect to indium
0 at% is preferable.

【0021】具体的には原料液にドーパント成分を添加
しておき、主成分と同時に加水分解することにより共沈
を得て、これを濾過洗浄後焼成してドープすることによ
り電導度の高導電性微粉末を得ることができる。導電性
が高くかつ分散性の高いアンチモンドープ酸化スズを得
るためには、加水分解の速度を制御し、共沈合成時にス
ズとアンチモンが均一に混合した共沈粉を得ることが重
要である。本発明のように錯形成後に加水分解させるこ
とにより均一混合が可能となるため、従来より低温の焼
成で十分な導電性が発現できる。
Specifically, a dopant component is added to the raw material liquid, and a coprecipitation is obtained by hydrolyzing at the same time as the main component to obtain a coprecipitate. The coprecipitation is filtered, washed, and fired to be doped to obtain a high conductivity. A fine powder can be obtained. In order to obtain antimony-doped tin oxide having high conductivity and high dispersibility, it is important to control the hydrolysis rate and obtain a coprecipitated powder in which tin and antimony are uniformly mixed during coprecipitation synthesis. As in the present invention, hydrolysis is carried out after complex formation, so that uniform mixing is possible, so that sufficient conductivity can be exhibited by firing at a lower temperature than before.

【0022】[0022]

【作用】本発明では、錯形成剤はスズあるいはインジウ
ムのイオンを水溶液中で安定化させる作用を有し、水和
酸化物析出の速度が適正な範囲に保たれる。このため、
粒径の均一な導電性微粉末の前駆体が得られ、濾過洗
浄、焼成を経た後でも粒径分布の狭い導電性微粉末が得
られる。
In the present invention, the complexing agent has a function of stabilizing tin or indium ions in an aqueous solution, and the rate of hydrated oxide precipitation is kept within an appropriate range. For this reason,
A conductive fine powder precursor having a uniform particle size is obtained, and a conductive fine powder having a narrow particle size distribution is obtained even after being filtered, washed, and baked.

【0023】[0023]

【実施例】【Example】

実施例1 塩化スズ60gと塩化アンチモン10gをエタノール2
00gに溶解し、塩化スズと等モルのアセチルアセトン
を溶解して原料液とした。次に50℃の硝酸アンモニウ
ム水溶液1000gに、この原料液と15%アンモニア
水溶液を並行添加してpH7に保持しながら加水分解を
行い、水和酸化物の共沈物を得た。この共沈物を濾過洗
浄して夾雑イオンを除去した後、乾燥し、さらに500
℃で3時間焼成してアンチモンドープ酸化スズの導電性
微粉末を得た。
Example 1 60 g of tin chloride and 10 g of antimony chloride were added to ethanol 2
It was dissolved in 100 g, and acetylacetone in an equimolar amount to tin chloride was dissolved to obtain a raw material liquid. Next, this raw material solution and a 15% aqueous ammonia solution were added in parallel to 1000 g of an ammonium nitrate aqueous solution at 50 ° C. to carry out hydrolysis while maintaining the pH at 7 to obtain a coprecipitate of a hydrated oxide. This coprecipitate is filtered and washed to remove contaminant ions, and then dried, and further 500
It was fired at 3 ° C. for 3 hours to obtain conductive fine powder of antimony-doped tin oxide.

【0024】次に、この微粉末を水酸化カリウム水溶液
に加えた後、サンドミルにて4時間粉砕して、固形分濃
度20重量%のゾルを調製した。
Next, this fine powder was added to an aqueous solution of potassium hydroxide and then pulverized in a sand mill for 4 hours to prepare a sol having a solid content concentration of 20% by weight.

【0025】実施例2 実施例1のアセチルアセトンを等モルのアセト酢酸メチ
ルにした以外は、実施例1と同様にして導電性微粉末お
よびゾルを得た。
Example 2 A conductive fine powder and a sol were obtained in the same manner as in Example 1 except that acetylacetone of Example 1 was changed to equimolar methyl acetoacetate.

【0026】実施例3 実施例1のアセチルアセトンを等モルのアセト酢酸エチ
ルにした以外は、実施例1と同様にして導電性微粉末お
よびゾルを得た。
Example 3 A conductive fine powder and a sol were obtained in the same manner as in Example 1 except that acetylacetone of Example 1 was changed to equimolar ethyl acetoacetate.

【0027】実施例4 実施例1のアセチルアセトンを等モルのメタクリル酸メ
チルにした以外は、実施例1と同様にして導電性微粉末
およびゾルを得た。
Example 4 A conductive fine powder and a sol were obtained in the same manner as in Example 1 except that acetylacetone of Example 1 was changed to equimolar methyl methacrylate.

【0028】実施例5 実施例1のアセチルアセトンを等モルの酢酸エチルにし
た以外は、実施例1と同様にして導電性微粉末およびゾ
ルを得た。
Example 5 A conductive fine powder and a sol were obtained in the same manner as in Example 1 except that acetylacetone of Example 1 was changed to equimolar ethyl acetate.

【0029】実施例6 実施例1のアセチルアセトンを等モルの酢酸メチルにし
た以外は、実施例1と同様にして導電性微粉末およびゾ
ルを得た。
Example 6 A conductive fine powder and a sol were obtained in the same manner as in Example 1 except that acetylacetone of Example 1 was changed to equimolar methyl acetate.

【0030】実施例7 実施例1のアセチルアセトンを等モルの酒石酸にした以
外は、実施例1と同様にして導電の微粉末およびゾルを
得た。
Example 7 A conductive fine powder and a sol were obtained in the same manner as in Example 1, except that acetylacetone of Example 1 was changed to equimolar tartaric acid.

【0031】実施例8 実施例1の原料液の代わりに、テトラプロポキシスズ5
0gとトリブトキシアンチモン8gとテトラプロポキシ
スズと等モルのアセチルアセトンをエタノール200g
に溶解した溶液を用いた以外は、実施例1と同様にして
導電性微粉末およびゾルを得た。
Example 8 Instead of the raw material liquid of Example 1, tetrapropoxy tin 5 was used.
0 g, tributoxy antimony 8 g, tetrapropoxy tin, equimolar acetylacetone, ethanol 200 g
Conductive fine powder and sol were obtained in the same manner as in Example 1 except that the solution dissolved in was used.

【0032】実施例9 硝酸インジウム40gと塩化スズ3gを、水50gとメ
タノール150gの混合溶媒200gに溶解し、アセチ
ルアセトンを硝酸インジウムと等モル溶解して原料液と
した。次に50℃の硝酸アンモニウム水溶液1000g
に、この原料液と15%アンモニア水溶液を並行添加し
てpH7に保持しながら加水分解を行い、水和酸化物の
共沈物を得た。この共沈物を濾過洗浄して夾雑イオンを
除去した後、乾燥し、さらに500℃で3時間焼成し
て、スズドープ酸化インジウムの導電性微粉末を得た。
Example 9 40 g of indium nitrate and 3 g of tin chloride were dissolved in 200 g of a mixed solvent of 50 g of water and 150 g of methanol, and acetylacetone was dissolved in equimolar amount with indium nitrate to obtain a raw material liquid. Next, 1000 g of ammonium nitrate aqueous solution at 50 ° C
Then, this raw material solution and a 15% aqueous ammonia solution were added in parallel to carry out hydrolysis while maintaining the pH at 7 to obtain a coprecipitate of hydrated oxide. The coprecipitate was filtered and washed to remove contaminant ions, dried, and then calcined at 500 ° C. for 3 hours to obtain a conductive fine powder of tin-doped indium oxide.

【0033】次に、この粉末をテトラエチルアンモニウ
ム水溶液に加えた後、サンドミルにて4時間粉砕して、
固形分濃度20重量%のゾルを調製した。
Next, this powder was added to a tetraethylammonium aqueous solution and then pulverized with a sand mill for 4 hours,
A sol having a solid content concentration of 20% by weight was prepared.

【0034】比較例1 塩化スズ60gと塩化アンチモン10gをエタノール2
00gに溶解して原料液とした。次に50℃の水100
0gに、この原料液と15%アンモニア水溶液を添加し
てpH5にて加水分解を行い、水和酸化物の共沈物を得
た。この共沈物を濾過洗浄して夾雑イオンを除去した
後、乾燥し、さらに500℃で3時間焼成して、アンチ
モンドープ酸化スズの導電性微粉末を得た。
Comparative Example 1 60 g of tin chloride and 10 g of antimony chloride were mixed with 2 parts of ethanol.
It was dissolved in 00 g to obtain a raw material liquid. Next, 100 water at 50 ° C
This raw material solution and a 15% aqueous ammonia solution were added to 0 g for hydrolysis at pH 5 to obtain a coprecipitate of hydrated oxide. This coprecipitate was filtered and washed to remove contaminant ions, dried, and then calcined at 500 ° C. for 3 hours to obtain a conductive fine powder of antimony-doped tin oxide.

【0035】次に、この粉末を水酸化カリウム水溶液に
加えた後、サンドミルにて4時間粉砕して、固形分濃度
20重量%のゾルを調製した。
Next, this powder was added to an aqueous solution of potassium hydroxide and then pulverized with a sand mill for 4 hours to prepare a sol having a solid content concentration of 20% by weight.

【0036】比較例2 硝酸インジウム40gと塩化スズ3gを、水50gとメ
タノール150gの混合溶媒200gに溶解して原料液
とした。次に50℃の硝酸アンモニウム水溶液1000
gに、この原料液と15%アンモニア水溶液を添加して
pH4にて加水分解を行い、水和酸化物の共沈物を得
た。この液を濾過洗浄して夾雑イオンを除去した後、乾
燥し、さらに500℃で3時間焼成してスズドープ酸化
インジウムの導電性微粉末を得た。
Comparative Example 2 40 g of indium nitrate and 3 g of tin chloride were dissolved in 200 g of a mixed solvent of 50 g of water and 150 g of methanol to prepare a raw material liquid. Next, 1000 ° C. ammonium nitrate aqueous solution at 50 ° C.
This raw material liquid and a 15% aqueous ammonia solution were added to g to carry out hydrolysis at pH 4 to obtain a coprecipitate of hydrated oxide. The liquid was filtered and washed to remove contaminant ions, dried, and then baked at 500 ° C. for 3 hours to obtain a conductive fine powder of tin-doped indium oxide.

【0037】次に、この粉末をテトラエチルアンモニウ
ム水溶液に加えた後、サンドミルにて4時間粉砕して、
固形分濃度20重量%のゾルを調製した。
Next, this powder was added to a tetraethylammonium aqueous solution and then pulverized in a sand mill for 4 hours,
A sol having a solid content concentration of 20% by weight was prepared.

【0038】以上の各実施例および各比較例で得られた
導電性微粉末に関して、圧粉体抵抗およ比表面積を測定
し、ゾルに関しては平均粒径を測定した。測定は以下の
方法による。得られた結果を表1に示す。
With respect to the conductive fine powder obtained in each of the above Examples and Comparative Examples, the resistance to green compact and the specific surface area were measured, and the average particle size of the sol was measured. The measurement is by the following method. The results obtained are shown in Table 1.

【0039】(1)圧粉体抵抗 試料粉末を200kg/cm2 の圧力で円板状圧粉体と
し、直流4端子法で抵抗を測定した。 (2)比表面積 B.E.T法により試料粉末の比表面積を測定した。 (3)ゾル平均粒径 レーザー粒径解析装置(大塚電子製)を用いて、光散乱
法により測定した。
(1) Resistance of green compact The sample powder was made into a disk-shaped green compact at a pressure of 200 kg / cm 2 , and the resistance was measured by the DC 4-terminal method. (2) Specific surface area B. E. The specific surface area of the sample powder was measured by the T method. (3) Sol average particle size It was measured by a light scattering method using a laser particle size analyzer (manufactured by Otsuka Electronics).

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明の製造方法により比抵抗が小さ
く、粒径の均一な導電性微粉末を得ることができる。ま
たこの微粉末は容易にゾルの状態まで分散できるので、
導電性塗料の原料に用いた場合、基体の透明性を損なう
ことなく、導電性を付与することができる。
According to the manufacturing method of the present invention, a conductive fine powder having a small specific resistance and a uniform particle size can be obtained. Also, since this fine powder can be easily dispersed to the sol state,
When used as a raw material for a conductive paint, conductivity can be imparted without impairing the transparency of the substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 恵子 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 阿部 啓介 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 真田 恭宏 千葉県市原市五井海岸10番地 旭硝子株式 会社千葉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiko Kubota 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Institute (72) Keisuke Abe 1150, Hazawa-machi, Kanagawa-ku, Yokohama Asahi Glass Co., Ltd. Central Research Laboratory (72) Inventor Yasuhiro Sanada 10 Goi Coast, Ichihara City, Chiba Asahi Glass Co., Ltd. Chiba Factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属イオンを加水分解して得た水和酸化物
を乾燥、焼成して導電性酸化物微粉末を製造する方法に
おいて、スズまたはインジウムのイオンを含む溶液に、
β−ジケトン、水酸基を有するカルボン酸、カルボン酸
エステル、ケトン酸エステル、ベンゾイル化合物、環状
ケトンからなる群より選ばれる1種以上を添加して、ス
ズまたはインジウムのイオンと錯体を形成させた後、中
和して加水分解することにより水和酸化物を生成させ、
これを乾燥、焼成することを特徴とする導電性酸化物微
粉末の製造方法。
1. A method for producing a conductive oxide fine powder by drying and calcining a hydrated oxide obtained by hydrolyzing a metal ion, to a solution containing tin or indium ions,
After adding at least one selected from the group consisting of β-diketone, carboxylic acid having a hydroxyl group, carboxylic acid ester, ketonic acid ester, benzoyl compound, and cyclic ketone to form a complex with tin or indium ions, Produces hydrated oxide by neutralizing and hydrolyzing,
A method for producing a conductive oxide fine powder, which comprises drying and firing this.
【請求項2】スズまたはインジウムのイオンと錯体を形
成する化合物が、アセチルアセトン、アセト酢酸エチ
ル、アセト酢酸メチル、メタクリル酸メチル、酢酸エチ
ル、酢酸メチル、酒石酸からなる群より選ばれる1種も
しくは2種以上である請求項1の導電性酸化物微粉末の
製造方法。
2. The compound which forms a complex with tin or indium ions is one or two selected from the group consisting of acetylacetone, ethyl acetoacetate, methyl acetoacetate, methyl methacrylate, ethyl acetate, methyl acetate and tartaric acid. The method for producing the conductive oxide fine powder according to claim 1, which is as described above.
【請求項3】金属イオンがスズイオンであって、この溶
液にアンチモンまたはフッ素の化合物を添加して、ドー
プされた酸化スズ微粉末を得る請求項1または請求項2
の導電性酸化物微粉末の製造方法。
3. The method according to claim 1, wherein the metal ion is tin ion, and a compound of antimony or fluorine is added to the solution to obtain a doped tin oxide fine powder.
1. A method for producing a conductive oxide fine powder.
【請求項4】金属イオンがインジウムイオンであって、
この溶液にスズの化合物を添加して、ドープされた酸化
インジウム微粉末を得る請求項1または請求項2の導電
性酸化物微粉末の製造方法。
4. The metal ion is indium ion,
The method for producing a conductive oxide fine powder according to claim 1 or 2, wherein a tin compound is added to this solution to obtain a doped indium oxide fine powder.
【請求項5】緩衝液を用いて加水分解時のpHを6〜8
に保持する請求項1〜4いずれか1の導電性酸化物微粉
末の製造方法。
5. A pH of 6 to 8 during hydrolysis using a buffer solution.
The method for producing a conductive oxide fine powder according to claim 1, wherein
【請求項6】請求項1〜5いずれか1の方法により得た
導電性酸化物微粉末を解膠することを特徴とする導電性
酸化物微粉末のゾルの製造方法。
6. A method for producing a sol of conductive oxide fine powder, which comprises peptizing the conductive oxide fine powder obtained by the method according to any one of claims 1 to 5.
【請求項7】請求項1〜5いずれか1に記載の方法によ
り得た導電性酸化物微粉末を含有する導電性塗料。
7. A conductive coating material containing the conductive oxide fine powder obtained by the method according to any one of claims 1 to 5.
JP5441892A 1992-02-05 1992-02-05 Production of electroconductive oxide fine powder and its sol Withdrawn JPH05221639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5441892A JPH05221639A (en) 1992-02-05 1992-02-05 Production of electroconductive oxide fine powder and its sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5441892A JPH05221639A (en) 1992-02-05 1992-02-05 Production of electroconductive oxide fine powder and its sol

Publications (1)

Publication Number Publication Date
JPH05221639A true JPH05221639A (en) 1993-08-31

Family

ID=12970158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5441892A Withdrawn JPH05221639A (en) 1992-02-05 1992-02-05 Production of electroconductive oxide fine powder and its sol

Country Status (1)

Country Link
JP (1) JPH05221639A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772924A (en) * 1994-06-14 1998-06-30 Mitsui Mining & Smelting Co., Ltd. Composite conductive powder and conductive film formed from the powder
JP2008150258A (en) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd Precursor particle for tin dioxide, method for producing the same, and method for producing tin dioxide using the precursor particle
JP2012193109A (en) * 2012-07-10 2012-10-11 Ishihara Sangyo Kaisha Ltd Method for producing tin dioxide precursor particle, and method for producing tin dioxide particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772924A (en) * 1994-06-14 1998-06-30 Mitsui Mining & Smelting Co., Ltd. Composite conductive powder and conductive film formed from the powder
JP2008150258A (en) * 2006-12-19 2008-07-03 Ishihara Sangyo Kaisha Ltd Precursor particle for tin dioxide, method for producing the same, and method for producing tin dioxide using the precursor particle
JP2012193109A (en) * 2012-07-10 2012-10-11 Ishihara Sangyo Kaisha Ltd Method for producing tin dioxide precursor particle, and method for producing tin dioxide particle

Similar Documents

Publication Publication Date Title
JP2695605B2 (en) Target and manufacturing method thereof
JP3444655B2 (en) Composite conductive powder and conductive film
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
US5707552A (en) Zinc antimonate anhydride and method for producing same
JPH10188681A (en) Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JPH05503502A (en) Improved ceramic dielectric compositions and methods for enhancing dielectricity
JP4134314B2 (en) Method for producing conductive powder
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
KR100986628B1 (en) Indium derived metal particle and its preparation method and coating solution containing indium derived metal particle, substrate for coating, display device
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPH05221639A (en) Production of electroconductive oxide fine powder and its sol
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP4941637B2 (en) Method for producing boride particles and boride particles
JP3367149B2 (en) Method for producing conductive oxide powder
JPH07242842A (en) Composition for forming transparent electrically-conductive film and transparent electrically-conductive film
JP2844011B2 (en) Conductive fine powder and method for producing the same
JP2963296B2 (en) Method for producing conductive fine powder
JP2003054949A (en) Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM
JPH07188593A (en) Electrically-conductive coating material
JPH08295513A (en) Indium oxide organosol, its production and base material with conductive coating film
TWI832929B (en) Surface-treated infrared absorbing fine particle dispersion liquid and method for producing the same
JP3476520B2 (en) Material for forming protective film for rapid start fluorescent lamp, rapid start fluorescent lamp, method of manufacturing protective film for rapid start fluorescent lamp
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP5268174B2 (en) Crystalline copper aluminate fine particles, fine particle-dispersed sol, and method for producing the fine particles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518