JPH05206053A - Crystal damage remover - Google Patents

Crystal damage remover

Info

Publication number
JPH05206053A
JPH05206053A JP1461492A JP1461492A JPH05206053A JP H05206053 A JPH05206053 A JP H05206053A JP 1461492 A JP1461492 A JP 1461492A JP 1461492 A JP1461492 A JP 1461492A JP H05206053 A JPH05206053 A JP H05206053A
Authority
JP
Japan
Prior art keywords
light
crystal damage
light source
substrate
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1461492A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Masahiro Deguchi
正洋 出口
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1461492A priority Critical patent/JPH05206053A/en
Priority to US07/918,961 priority patent/US5328855A/en
Publication of JPH05206053A publication Critical patent/JPH05206053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To simply remove the crystal damage by ion implantation and suppress it by having at least a plurality of light sources different in wavelength area being set to irradiate a substrate, and changing the intensity of each light source, according to the distribution in the depth direction of crystal damage. CONSTITUTION:This remover has a plurality of light sources 1, 2, and 3, and collects those beams 4, 5, and 6 into one beam 7, and applies it to a board 9 where crystal damage has certain depth distribution. The crystal damage by ion shock varies with the kind of ions or the energy of ion, and it has depth distribution different according to the depth of an implantation layer. On the other hand, the light is different in absorption coefficient with a board if the wavelength of the light is different, so the depth distribution in heating of the board is different. The light in an ultraviolet ray area is large in absorption coefficient, so it heats principally the vicinity of surface, and the light in an infrared ray area heats it as far as a deeper place since the absorption coefficient is small. Optimum heat treatment effect can be gotten by controlling each intensity of three light sources 1, 2, and 3 so that the distribution of heating may conform to the depth distribution of crystal damage 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等へのドーピン
グ等に用いるイオン打ち込みに伴うイオン衝撃による結
晶損傷の除去装置に関するもので、格子欠陥の導入を抑
える結晶損傷除去装置を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing crystal damage due to ion bombardment associated with ion implantation used for doping semiconductors and the like, and provides a crystal damage removing apparatus for suppressing the introduction of lattice defects.

【0002】[0002]

【従来の技術】従来半導体へのドーピング等に用いられ
るイオン注入は有効にドーピングが行える一方、同時に
結晶損傷も基板に導入される欠点がある。これらの結晶
損傷はイオン打ち込み後の熱処理によって元の格子に戻
されるが完全ではなく格子欠陥が残り、上記熱処理過程
は半導体素子の製造過程を複雑にしている。
2. Description of the Related Art Ion implantation, which is conventionally used for doping semiconductors, can effectively perform doping, but at the same time, crystal damage is introduced into the substrate. These crystal damages are returned to the original lattice by the heat treatment after the ion implantation, but they are not perfect and lattice defects remain, and the heat treatment process complicates the manufacturing process of the semiconductor device.

【0003】[0003]

【発明が解決しようとする課題】イオン打ち込みに関わ
るこの複雑な熱処理過程を簡略化し、さらに格子欠陥の
形成を抑制し、格子欠陥を完全に除去できる方法が望ま
れていた。
There has been a demand for a method capable of simplifying the complicated heat treatment process associated with ion implantation, suppressing the formation of lattice defects, and completely removing the lattice defects.

【0004】本発明は、イオン打ち込みによる結晶損傷
を簡便に短時間で除去し格子損傷の形成を抑制する結晶
損傷除去装置を提供することを目的とする。
It is an object of the present invention to provide a crystal damage removing apparatus that simply removes crystal damage due to ion implantation in a short time and suppresses formation of lattice damage.

【0005】[0005]

【課題を解決するための手段】基板に照射されるように
セットされた複数の波長域の異なる光源を少なくとも有
し、結晶損傷の深さ方向の分布に従って各々の光源の強
度を変化することにより結光源の全体強度の波長分布を
変化させるよう結晶損傷除去装置を構成する。
By having at least a plurality of light sources of different wavelength ranges set so as to irradiate a substrate, and changing the intensity of each light source according to the distribution of crystal damage in the depth direction. The crystal damage removing device is configured to change the wavelength distribution of the total intensity of the condensing light source.

【0006】[0006]

【作用】本発明は、光の照射によってイオン衝撃による
結晶損傷を除去するものであるが、照射光の波長分布を
変化させることにより、異なるイオン種やイオンエネル
ギーを用いた場合の異なる深さ分布を持った結晶損傷を
最適条件で除去可能とするものである。この結果、イオ
ン衝撃の格子欠陥の形成を抑制し、上記課題を解決する
ものである。
The present invention is intended to remove crystal damage due to ion bombardment by irradiation with light, but by changing the wavelength distribution of irradiation light, different depth distributions when different ion species and ion energies are used. It is possible to remove the crystal damage with the optimum condition. As a result, the formation of lattice defects due to ion bombardment is suppressed, and the above problems are solved.

【0007】[0007]

【実施例】本発明は図1に示すごとく、複数の光源1、
2、3を有しその光線4、5、6を一本7にまとめ、結
晶損傷8がある深さ分布を持った基板9に照射される。
イオン衝撃による結晶損傷はイオン種やイオンエネルギ
ーにより異なり、注入層の深さに応じて異なる深さ分布
を持っている。一方光は基板の表面から吸収され基板を
加熱するが、光の波長域が違うと基板での吸収係数が違
うため基板の加熱の深さ分布が異なることとなる。つま
り、紫外領域の光は吸収係数が大きいため表面近傍をお
もに加熱し、赤外領域の光は吸収係数が小さいためより
深いところまで加熱する。紫外光4による基板加熱の深
さ分布は図2の実線10の様になり、赤外光5による基
板加熱の深さ分布は点線11の様になる。中間の可視領
域の光6は一点破線12のごとくなり、これらの3つの
異なった波長領域の光を重畳することにより任意の加熱
分布を形成できる。加熱分布を結晶損傷8の深さ分布と
一致するように、3つの光源1、2、3の各々の強度を
制御することにより、最適の熱処理効果が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention, as shown in FIG.
The light rays 4, 5 and 6 having 2 and 3 are collected into a single beam 7 and irradiated onto a substrate 9 having a depth distribution with crystal damage 8.
The crystal damage due to ion bombardment differs depending on the ion species and ion energy, and has a different depth distribution depending on the depth of the implanted layer. On the other hand, light is absorbed from the surface of the substrate and heats the substrate. However, if the wavelength range of light is different, the absorption coefficient of the substrate is different, and thus the heating depth distribution of the substrate is different. That is, since the light in the ultraviolet region has a large absorption coefficient, the vicinity of the surface is heated mainly, and the light in the infrared region has a small absorption coefficient, so that the light is heated to a deeper position. The depth distribution of the substrate heating by the ultraviolet light 4 is as shown by the solid line 10 in FIG. 2, and the depth distribution of the substrate heating by the infrared light 5 is as shown by the dotted line 11. The light 6 in the visible region in the middle is as shown by a dashed line 12 and an arbitrary heating distribution can be formed by superimposing the lights in these three different wavelength regions. By controlling the intensity of each of the three light sources 1, 2, 3 so that the heating distribution matches the depth distribution of the crystal damage 8, the optimum heat treatment effect can be obtained.

【0008】また、光源をイオン打ち込み装置に付属さ
せ、光の照射がイオン照射中に同時に行われる様にする
と、格子欠陥の濃度が小さい内にコンペンセートされ格
子が元の完全な結晶に戻りやすい。イオン打ち込みと同
時に光を照射することにより、光照射による熱処理はイ
オン照射後の熱処理に較べて非常に有効に働く。叉、イ
オン注入中に格子欠陥の形成が抑制さるため後処理とし
ての熱処理も必要とせず、製造プロセスも簡略化され
る。
Further, if a light source is attached to the ion implanting device so that light irradiation is performed simultaneously during ion irradiation, the concentration of lattice defects is low and the lattice is likely to return to the original perfect crystal. .. By irradiating light at the same time as ion implantation, the heat treatment by light irradiation works much more effectively than the heat treatment after ion irradiation. Moreover, since the formation of lattice defects is suppressed during the ion implantation, a heat treatment as a post-treatment is not required and the manufacturing process is simplified.

【0009】ここで用いる光の光源はCO2レーザーな
どの赤外線のレーザー、Arレーザー等の可視域、エキ
シマレーザー等の紫外線のレーザーが有効であることを
本発明者らは確認したが、水銀灯、ナトリウムランプ等
の光源でも有効であることも確認した。
The present inventors have confirmed that an infrared laser such as a CO 2 laser, a visible region such as an Ar laser, and an ultraviolet laser such as an excimer laser are effective as the light source of the light used here, but the mercury lamp, sodium It was also confirmed that it is effective for light sources such as lamps.

【0010】光源をイオン打ち込み装置に付属させた場
合のイオン打ち込みのエネルギ−は50eV以上1Me
V以下が有効であることを確認した。この範囲で形成さ
れる損傷は光照射による局所加熱によりコンペンセート
できる範囲の広がりに抑えられると考えられる。この範
囲以下ではイオンは基板内に有効に打ち込まれず、この
範囲以上では損傷が大きくなりすぎる。
When the light source is attached to the ion implantation device, the energy of ion implantation is 50 eV or more and 1 Me.
It was confirmed that V or less was effective. It is considered that the damage formed in this range can be suppressed to the extent of the compensable range by local heating by light irradiation. Below this range, ions will not be effectively implanted into the substrate, and above this range, damage will be too great.

【0011】叉、水冷や液体窒素冷却により打ち込まれ
る基板を300℃以下に保っておくと基板結晶内でイン
タースティシャルのみが移動可能でベイカンシーは凍結
され安定な大きなベイカンシーが形成されないので、イ
オン損傷による格子欠陥を光照射による局所的な熱処理
によりコンペンセートする事ができ有効である。これ以
上の温度では、イオン打ち込み時にベイカンシーも移動
可能となり大きなベイカンシーが打ち込まれる基板結晶
中に形成され、これを光照射も含めて熱処理によりコン
ペンセートする事は難しい。しかし、光源をイオン打ち
込み装置に付属させた場合は光照射がイオンの照射と同
時に行われるので、ベイカンシーの拡散が起こる以前に
欠陥がコンペンセートされる可能性が強い。つまり、基
板を300℃以下に保つと有効であるが、300℃以上
の場合でも、本発明の効果は十分に期待される。
Further, if the substrate to be driven by water cooling or liquid nitrogen cooling is kept at 300 ° C. or less, only the interstitial can move within the substrate crystal and the vacancy is frozen and a stable large vacancy cannot be formed. It is effective because the lattice defects due to can be compensated by local heat treatment by light irradiation. At a temperature higher than this, the vacancy can be moved during the ion implantation, and a large vacancy is formed in the substrate crystal into which the vacancy is implanted, and it is difficult to perform compensating by heat treatment including light irradiation. However, when the light source is attached to the ion implanter, the light irradiation is performed at the same time as the ion irradiation, and therefore there is a strong possibility that defects will be compensated before the diffusion of vacancy occurs. That is, it is effective to keep the temperature of the substrate at 300 ° C. or lower, but the effects of the present invention can be expected sufficiently even at 300 ° C. or higher.

【0012】ここで、光の照射を間欠的にするかまたは
光としてレーザ光(叉は集光光線)を用い光をスキャン
すると、基板が低温に保ったれたまま上記光の照射によ
る熱処理効果が働き有効であった。
Here, if the light irradiation is intermittent or the light is scanned using a laser light (or a condensed light beam) as the light, the heat treatment effect by the light irradiation can be obtained while the substrate is kept at a low temperature. It was effective.

【0013】以下、具体的実施例を挙げて本発明をより
詳細に説明する。 (実施例1)本発明の結晶損傷除去装置の第一の実施例
を図1を用いて説明する。1x10 15のドーズ量で10
0keVのB+イオンを打ち込んだSi基板9に、エキ
シマレーザ光源1から308nmの波長の1Jcm−2
のレーザー光4を10パルス/秒で、CO2レーザ光源
2からの波長の1Wのレーザ光5を、Arレーザ光源3
から514.5nmの波長の1Wのレーザ光6を5秒間
照射することにより、Si基板9中の損傷8がコンペン
セートされ、打ち込まれたBが格子位置に入り、p型の
電気伝導の半導体Siを得た。この場合3つの光源から
の光の照射は同時であっても時間的なずれがあっても有
効であることを本発明者らは確認した。
The present invention will be described in more detail below with reference to specific examples.
The details will be described. (Embodiment 1) A first embodiment of the crystal damage removing apparatus of the present invention
Will be described with reference to FIG. 1x10 15With a dose of 10
The Si substrate 9 in which 0 keV B + ions have been implanted is excited.
1 Jcm-2 of the wavelength of 308 nm from the sima laser light source
CO2 laser light source with 10 laser pulses of 4 pulses
The laser light 5 of 1 W having a wavelength from 2 is supplied to the Ar laser light source 3
From 1W laser light 6 with a wavelength of 514.5 nm for 5 seconds
By irradiating, damage 8 in Si substrate 9
The set and driven B enters the lattice position,
An electrically conductive semiconductor Si was obtained. In this case from three light sources
Light irradiation may occur at the same time or with a time lag.
The present inventors confirmed that it is effective.

【0014】(実施例2)本発明の結晶損傷除去装置の
第2の実施例を図3を用いて説明する。水冷されている
基板ホルダー13上にセットされたSi基板9にイオン
源14から1x1015のドーズ量で200keVのB+
イオン15を打ち込んだ。この時同時にエキシマレーザ
光源1から308nmの波長の0.5Jcm−2のレー
ザー光4を10パルス/秒で、CO2レーザ光源2から
の波長の2Wのレーザ光5を、Arレーザ光源3から5
14.5nmの波長の1Wのレーザ光6を1分毎に1秒
間間欠的に照射することにより、Si基板9中の損傷8
がコンペンセートされ、打ち込まれたBが格子位置に入
り、p型の電気伝導の半導体Siを得た。この場合実施
例1と同様に、3つの光源からの光の照射は同時であっ
ても時間的なずれがあっても有効であることを本発明者
らは確認した。
(Embodiment 2) A second embodiment of the crystal damage removing apparatus of the present invention will be described with reference to FIG. On the Si substrate 9 set on the substrate holder 13 which is water-cooled, B + of 200 keV is applied from the ion source 14 at a dose of 1 × 10 15.
I hit on ion 15. At this time, at the same time, the laser light 4 of 0.5 Jcm −2 having a wavelength of 308 nm from the excimer laser light source 1 is 10 pulses / second, and the laser light 5 of 2 W having a wavelength of 2 from the CO 2 laser light source 2 is emitted from the Ar laser light sources 3 to 5.
Damage 1 in the Si substrate 9 is caused by intermittently irradiating 1 W of laser light 6 having a wavelength of 14.5 nm for 1 second every 1 minute.
Was compensated, and the implanted B entered the lattice position to obtain a p-type electrically conductive semiconductor Si. In this case, as in Example 1, the present inventors have confirmed that the irradiation of light from the three light sources is effective even if the irradiation is simultaneous or there is a time lag.

【0015】[0015]

【発明の効果】本発明の結晶損傷除去装置により、イオ
ン衝撃による結晶損傷の効率的な除去が実現された。ま
た、イオン打ち込み装置に付属させることにより後処理
(熱処理)を必要としない簡便な製造過程でn型、p型
の半導体素子等の形成が可能となり、本発明の工業的価
値は高い。
With the crystal damage removing apparatus of the present invention, efficient removal of crystal damage due to ion bombardment has been realized. Further, by attaching it to the ion implantation apparatus, it becomes possible to form n-type and p-type semiconductor elements and the like in a simple manufacturing process that does not require post-treatment (heat treatment), and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における結晶損傷除去装置の
概念図
FIG. 1 is a conceptual diagram of a crystal damage removing device according to an embodiment of the present invention.

【図2】本発明の結晶損傷除去装置の異なる光源による
基板加熱の深さ分布の概念図
FIG. 2 is a conceptual diagram of the depth distribution of substrate heating by different light sources of the crystal damage removal device of the present invention.

【図3】本発明の他の実施例における結晶損傷除去装置
の概念図
FIG. 3 is a conceptual diagram of a crystal damage removing device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2、3 光源 4、5、6、7 光線 8 結晶損傷 9 基板 10 紫外光による基板加熱の深さ分布 11 赤外線による基板加熱の深さ分布 12 可視光による基板加熱の深さ分布 13 基板ホルダ 14 イオン源 15 B+イオン 1, 2, 3 Light source 4, 5, 6, 7 Light beam 8 Crystal damage 9 Substrate 10 Depth distribution of substrate heating by ultraviolet light 11 Depth distribution of substrate heating by infrared light 12 Depth distribution of substrate heating by visible light 13 Substrate Holder 14 Ion source 15 B + ion

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板に照射されるようにセットされた複数
の波長域の異なる光源を少なくとも有し、結晶損傷の深
さ方向の分布に従って各々の光源の強度を変化すること
により結光源の全体強度の波長分布を変化させることを
特徴とする結晶損傷除去装置。
1. A whole condensing light source, comprising at least a plurality of light sources having different wavelength ranges set so as to irradiate a substrate, and changing the intensity of each light source according to the distribution of crystal damage in the depth direction. A crystal damage removing device characterized by changing the intensity wavelength distribution.
【請求項2】複数の光源が、紫外線の光源と赤外線の光
源を含むことを特徴とする請求項1記載の結晶損傷除去
装置。
2. The crystal damage removing device according to claim 1, wherein the plurality of light sources include an ultraviolet light source and an infrared light source.
【請求項3】基板に照射されるようにセットされた光源
がイオン打ち込み装置に付属し、イオン打ち込み中に光
の照射により結晶損傷除去が行なわれることを特徴とし
た請求項1記載の結晶損傷除去装置。
3. The crystal damage according to claim 1, wherein a light source set so as to irradiate the substrate is attached to the ion implantation device, and crystal damage is removed by irradiation of light during the ion implantation. Removal device.
【請求項4】イオン打ち込み装置の基板が300℃以下
に保たれていることを特徴とする請求項3記載の結晶損
傷除去装置。
4. The crystal damage removing apparatus according to claim 3, wherein the substrate of the ion implantation apparatus is kept at 300 ° C. or lower.
【請求項5】イオン打ち込み装置のイオン源の照射エネ
ルギーが50V以上1MV以下であることを特徴とする
請求項3記載の結晶損傷除去装置。
5. The crystal damage removing device according to claim 3, wherein the irradiation energy of the ion source of the ion implanting device is 50 V or more and 1 MV or less.
【請求項6】基板に照射されるようにセットされた光源
がパルス発光光源であるかシャッターを有しており間欠
的に光照射されることを特徴とする請求項3記載の結晶
損傷除去装置。
6. The crystal damage removing device according to claim 3, wherein the light source set to irradiate the substrate is a pulsed light source or has a shutter, and light is intermittently irradiated. ..
【請求項7】基板に照射されるようにセットされた光源
からの光を集光し集光点をスキャンするための光学系を
有することを特徴とする請求項3記載の結晶損傷除去装
置。
7. The crystal damage removing apparatus according to claim 3, further comprising an optical system for condensing light from a light source set so as to irradiate the substrate and scanning the condensing point.
【請求項8】基板に照射されるようにセットされた光源
がレーザ光源でありレーザ光線をスキャンするための光
学系を有することを特徴とする請求項3記載の結晶損傷
除去装置。
8. The crystal damage removing apparatus according to claim 3, wherein the light source set to irradiate the substrate is a laser light source and has an optical system for scanning a laser beam.
JP1461492A 1991-07-25 1992-01-30 Crystal damage remover Pending JPH05206053A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1461492A JPH05206053A (en) 1992-01-30 1992-01-30 Crystal damage remover
US07/918,961 US5328855A (en) 1991-07-25 1992-07-24 Formation of semiconductor diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1461492A JPH05206053A (en) 1992-01-30 1992-01-30 Crystal damage remover

Publications (1)

Publication Number Publication Date
JPH05206053A true JPH05206053A (en) 1993-08-13

Family

ID=11866084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1461492A Pending JPH05206053A (en) 1991-07-25 1992-01-30 Crystal damage remover

Country Status (1)

Country Link
JP (1) JPH05206053A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036626A1 (en) * 2003-10-09 2005-04-21 Matsushita Electric Industrial Co., Ltd. Junction forming method and object to be processed and formed by using same
JP2006156784A (en) * 2004-11-30 2006-06-15 Sumitomo Heavy Ind Ltd Manufacturing method for semiconductor device and laser annealing device
JP2008211177A (en) * 2007-02-27 2008-09-11 Wafermasters Inc Optical processing at selective depth
US7618883B2 (en) 2003-02-19 2009-11-17 Panasonic Corporation Method for introducing impurities and apparatus for introducing impurities
US7759254B2 (en) 2003-08-25 2010-07-20 Panasonic Corporation Method for forming impurity-introduced layer, method for cleaning object to be processed apparatus for introducing impurity and method for producing device
US7858479B2 (en) 2004-05-14 2010-12-28 Panasonic Corporation Method and apparatus of fabricating semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148431A (en) * 1979-05-09 1980-11-19 Toshiba Corp Manufacture of semiconductor device
JPS58106836A (en) * 1981-12-18 1983-06-25 Hitachi Ltd Laser annealing device
JPH0541359A (en) * 1991-08-05 1993-02-19 Nippon Telegr & Teleph Corp <Ntt> Removal method of ion shock damage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148431A (en) * 1979-05-09 1980-11-19 Toshiba Corp Manufacture of semiconductor device
JPS58106836A (en) * 1981-12-18 1983-06-25 Hitachi Ltd Laser annealing device
JPH0541359A (en) * 1991-08-05 1993-02-19 Nippon Telegr & Teleph Corp <Ntt> Removal method of ion shock damage

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709362B2 (en) 2003-02-19 2010-05-04 Panasonic Corporation Method for introducing impurities and apparatus for introducing impurities
US8222128B2 (en) 2003-02-19 2012-07-17 Panasonic Corporation Method for introducing impurities and apparatus for introducing impurities
US7741199B2 (en) 2003-02-19 2010-06-22 Panasonic Corporation Method for introducing impurities and apparatus for introducing impurities
US7618883B2 (en) 2003-02-19 2009-11-17 Panasonic Corporation Method for introducing impurities and apparatus for introducing impurities
US7696072B2 (en) 2003-02-19 2010-04-13 Panasonic Corporation Method for introduction impurities and apparatus for introducing impurities
US7759254B2 (en) 2003-08-25 2010-07-20 Panasonic Corporation Method for forming impurity-introduced layer, method for cleaning object to be processed apparatus for introducing impurity and method for producing device
CN100454491C (en) * 2003-10-09 2009-01-21 松下电器产业株式会社 Junction forming method and object to be processed and formed by using same
WO2005036626A1 (en) * 2003-10-09 2005-04-21 Matsushita Electric Industrial Co., Ltd. Junction forming method and object to be processed and formed by using same
JP4979234B2 (en) * 2003-10-09 2012-07-18 パナソニック株式会社 Bonding formation method and workpiece formed using the same
US7858479B2 (en) 2004-05-14 2010-12-28 Panasonic Corporation Method and apparatus of fabricating semiconductor device
JP4614747B2 (en) * 2004-11-30 2011-01-19 住友重機械工業株式会社 Manufacturing method of semiconductor device
JP2006156784A (en) * 2004-11-30 2006-06-15 Sumitomo Heavy Ind Ltd Manufacturing method for semiconductor device and laser annealing device
JP2008211177A (en) * 2007-02-27 2008-09-11 Wafermasters Inc Optical processing at selective depth

Similar Documents

Publication Publication Date Title
US4504323A (en) Method for annealing semiconductors with a planar source composed of flash discharge lamps
US9839976B2 (en) Annealing apparatus using two wavelengths of radiation
JP4942128B2 (en) Methods for forming extremely shallow junctions by laser annealing and rapid thermal annealing.
US9595459B2 (en) Managing thermal budget in annealing of substrates
US20170221712A1 (en) Laser annealing apparatus and laser annealing method
US4151008A (en) Method involving pulsed light processing of semiconductor devices
US20070032096A1 (en) System and process for providing multiple beam sequential lateral solidification
US20090227121A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
JP2008047923A (en) Laser spike annealing employing a plurality of light sources
SG193882A1 (en) Managing thermal budget in annealing of substrates
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
JPH05206053A (en) Crystal damage remover
JPH03266424A (en) Annealing process of semiconductor substrate
JPH05206049A (en) Ion implantation method and ion implantation device
GB2234968A (en) Method of modifying the surface of a glass substrate
US9214346B2 (en) Apparatus and method to reduce particles in advanced anneal process
JPS6226572B2 (en)
JP5013235B2 (en) Ion implantation apparatus and ion implantation method
US6423605B1 (en) Method and apparatus for forming ultra-shallow junction for semiconductor device
JP3413484B2 (en) Laser annealing equipment
JPS5897837A (en) Light irradiation annealing method and device therefor
JP2732741B2 (en) Manufacturing method of semiconductor diamond
WO2008024211A2 (en) Fast axis beam profile shaping
JPH0234165B2 (en) HANDOTAIANIIRUHOHO
KR0152912B1 (en) Manufacturing apparatus of semiconductor