JPH03266424A - Annealing process of semiconductor substrate - Google Patents

Annealing process of semiconductor substrate

Info

Publication number
JPH03266424A
JPH03266424A JP6403190A JP6403190A JPH03266424A JP H03266424 A JPH03266424 A JP H03266424A JP 6403190 A JP6403190 A JP 6403190A JP 6403190 A JP6403190 A JP 6403190A JP H03266424 A JPH03266424 A JP H03266424A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
irradiated
carriers
annealing
wavelength radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6403190A
Other languages
Japanese (ja)
Inventor
Toshiya Hashiguchi
俊哉 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6403190A priority Critical patent/JPH03266424A/en
Publication of JPH03266424A publication Critical patent/JPH03266424A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the even annealing effect to be brought about without depending on the impurity concentration of a semiconductor substrate by a method wherein the substrate is irradiated with short wavelength radiation immediately before it is irradiated with long wavelength radiation. CONSTITUTION:A semiconductor substrate during the initial annealing process is irradiated with short wavelength radiation to sufficiently excite carriers for producing free carriers and then irradiated with long wavelength radiation such as lamp annealing process. That is, the excimer laser irradiation 12 of the semiconductor substrate is simultaneously started with the halogen lamp irradiation 11 of the same. At this time, the excimer laser irradiation may be started earlier than the starting time of the halogen lamp irradiation 11. When the semiconductor substrate is irradiated with excimer laser, the surface temperature only is raised to excite the carriers so as to start the halogen lamp irradiation simultaneously with or immediately after the time when the free carriers are produced by the excited carriers. Through these procedures, the semiconductor substrate can be evenly annealed so that the initial temperature of the substrate may be raised without depending on the impurity concentration to bring about the annealing effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板のアニール方法であって、短波長
の輻射線と長波長の輻射線を併用する半導体基板のアニ
ール方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of annealing a semiconductor substrate, and more particularly, to a method of annealing a semiconductor substrate using both short wavelength radiation and long wavelength radiation.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板のアニール方法において、ハロゲ
ンランプのような長波長の輻射線を照射する直前、また
は同時にエキシマレーザのような短波長の輻射線を照射
することを特徴とする半導体基板のアニール方法である
。短波長の輻射線照射によって半導体基板中のキャリア
を励起し、熱吸収特性を改善することによって、半導体
基板中の不純物濃度に依存しない均一なアニール効果を
実現する。
The present invention provides a method for annealing a semiconductor substrate, which includes irradiating short wavelength radiation such as an excimer laser immediately before or simultaneously with irradiating long wavelength radiation such as a halogen lamp. It's a method. By exciting carriers in the semiconductor substrate by irradiating short-wavelength radiation and improving heat absorption characteristics, a uniform annealing effect that is independent of the impurity concentration in the semiconductor substrate is achieved.

〔従来の技術] シリコン(以下Siという)やガリウム砒素等の半導体
基板に、高濃度のN型やP型の不純物イオンをイオン注
入法によって注入して、微細な半導体装置を形成するこ
とが多い。このイオン注入によって半導体基板中に注入
された不純物原子は、同時に多くの結晶欠陥や非晶質領
域を生成するので、アニールによって結晶性の回復を行
うとともに、不純物原子の電気的活性化をはかることが
行われている。
[Prior art] Microscopic semiconductor devices are often formed by implanting highly concentrated N-type or P-type impurity ions into a semiconductor substrate such as silicon (hereinafter referred to as Si) or gallium arsenide using an ion implantation method. . The impurity atoms injected into the semiconductor substrate through this ion implantation simultaneously generate many crystal defects and amorphous regions, so annealing is used to restore crystallinity and electrically activate the impurity atoms. is being carried out.

従来、このアニールのための装置には、電気炉が用いら
れてきたが、半導体基板内の温度の均一化をはかるため
には、数十分程度の長時間を必要とし、さらに高い活性
化率を得るために高温で長時間のアニールが必要とされ
るため、注入した不純物原子の再拡散が生じ、微細で浅
い接合の形成等には適当でなかった。
Conventionally, electric furnaces have been used as equipment for this annealing, but in order to equalize the temperature within the semiconductor substrate, it requires a long time of several tens of minutes, and even higher activation rates are required. Since long-time annealing at high temperature is required to obtain the 200 nm, re-diffusion of the implanted impurity atoms occurs, making it unsuitable for forming fine and shallow junctions.

最近、電気炉アニールにかわる短時間のアニール方法と
して、ハロゲンランプのような赤外線アニールが行われ
るようになってきた。
Recently, infrared annealing using a halogen lamp has been used as a short-time annealing method to replace electric furnace annealing.

さらに、第3図に示すように、半導体基板1を保持板に
設置して、基板裏面に第1の窓4aを通してハロゲンラ
ンプ2のような赤外線の照射を継続中に、基板表面に第
2の窓4bを通してエキシマレーザ3のような短波長の
輻射線を照射するようにして、ランプアニール温度を低
温化し、かつ短時間でのアニールを行う方法が提案され
ている(出願番号 平1−114088号)。
Further, as shown in FIG. 3, the semiconductor substrate 1 is placed on a holding plate, and while the infrared rays from a halogen lamp 2 are being continuously irradiated through the first window 4a on the back side of the substrate, a second light is applied to the surface of the substrate. A method has been proposed in which the lamp annealing temperature is lowered and the annealing is performed in a short time by irradiating short wavelength radiation such as from an excimer laser 3 through the window 4b (Application No. 1-114088). ).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のハロゲンランプの照射中に、エキシマレーザの照
射を併用すれば、比較的低温度で短時間のアニールで結
晶性の回復において結晶の二次欠陥の発生がなく、不純
物原子の活性化において再拡散や増速拡散のない浅い接
合を形成することができるが、第2図に示すように、通
常使用されているタングステンハロゲンランプの発光強
度の下限と、半導体基板が熱吸収するSiの基礎吸収帯
の上限の波長に囲まれる領域が小さいので、輻射による
熱吸収は少なく、半導体基板中のフリーキャリアによっ
て吸収される熱吸収に影響される。半導体基板が高温で
あればキャリアが励起されてフリーキャリアが多く発生
するので不純物濃度に依存しないが、アニール開始直後
の常温付近では、フリーキャリアの濃度は半導体基板内
でも半導体基板間でも異なり、熱吸収の割合も異なるの
で、半導体基板の温度上昇特性は、その都度具なってし
まう。一方、短波長の発光を有するキセノンアークラン
プもあるが、ランプ自体が高価で、かつ水冷しないと寿
命が短く実用性に乏しい。
If excimer laser irradiation is used in conjunction with the halogen lamp irradiation described above, the annealing at a relatively low temperature and short time will restore crystallinity without generating secondary defects in the crystal, and will activate impurity atoms again. Although it is possible to form shallow junctions without diffusion or accelerated diffusion, as shown in Figure 2, the lower limit of the emission intensity of the commonly used tungsten-halogen lamp and the fundamental absorption of Si, which absorbs heat from the semiconductor substrate, Since the region surrounded by the upper limit wavelength of the band is small, there is little heat absorption due to radiation, and it is influenced by heat absorption absorbed by free carriers in the semiconductor substrate. If the semiconductor substrate is at a high temperature, carriers are excited and many free carriers are generated, so it does not depend on the impurity concentration.However, at room temperature immediately after the start of annealing, the concentration of free carriers differs both within and between semiconductor substrates, and heat Since the rate of absorption also differs, the temperature rise characteristics of the semiconductor substrate vary each time. On the other hand, there are xenon arc lamps that emit light with short wavelengths, but the lamps themselves are expensive and have short lifespans unless water-cooled, making them impractical.

〔発明を解決するための手段〕[Means for solving the invention]

前記課題を達成するため、本発明は半導体基板のアニー
ルの初期に、キャリアを十分励起するために短波長の輻
射線を照射してフリーキャリアを発生させて後ランプア
ニール等長波長の輻射線の照射を行うことによって、半
導体基板内及び半導体基板間のアニール効果の均一化を
はかろうとするものである。
In order to achieve the above object, the present invention generates free carriers by irradiating short-wavelength radiation to sufficiently excite carriers at the beginning of annealing a semiconductor substrate, and then irradiates the semiconductor substrate with long-wavelength radiation such as after lamp annealing. By performing irradiation, an attempt is made to make the annealing effect uniform within the semiconductor substrate and between the semiconductor substrates.

〔作用〕[Effect]

長波長の輻射線を照射する直前、または同時に短波長の
輻射線を照射すれば、Siの基礎吸収帯のうち十分熱吸
収の行われる領域で短波長の輻射線を照射するので、S
i中の不純物濃度に依存しないでフリーキャリアを多数
発生させることができて、その後の長波長の輻射線の照
射による熱吸収が均一に行われる。
If short-wavelength radiation is irradiated immediately before or at the same time as long-wavelength radiation, the short-wavelength radiation will be irradiated in the region of the fundamental absorption band of Si where sufficient heat absorption occurs, so that S
A large number of free carriers can be generated without depending on the impurity concentration in i, and heat absorption by subsequent irradiation with long wavelength radiation is performed uniformly.

〔実施例〕〔Example〕

本発明の実施例を、第1図を用いて説明する。 An embodiment of the present invention will be described with reference to FIG.

半導体基板に、ハロゲンランプ照射11を開始すると同
時に、エキシマレーザ照射12を開始する。エキシマレ
ーザ照射12の開始時間は、ハロゲンランプ照射11の
開始より早くてもよい。エキシマレーザ照射12を半導
体基板に照射すると、表面のみ温度が上昇してキャリア
を励起する。キャリアが励起されてフリーキャリアが発
生すると同時に、あるいは直後にハロゲンランプ照射1
1を開始すれば、半導体基板の温度上昇は不純物濃度に
依存せず、均一なアニール効果が得られる。
At the same time as halogen lamp irradiation 11 is started, excimer laser irradiation 12 is started on the semiconductor substrate. The start time of excimer laser irradiation 12 may be earlier than the start time of halogen lamp irradiation 11. When the semiconductor substrate is irradiated with excimer laser irradiation 12, the temperature rises only on the surface and excites carriers. Halogen lamp irradiation 1 at the same time or immediately after carriers are excited and free carriers are generated.
1, the temperature rise of the semiconductor substrate does not depend on the impurity concentration, and a uniform annealing effect can be obtained.

本発明におけるエキシマレーザは、キャリアを励起する
ためのものであり、Siの基礎吸収帯、すなわち1ミク
ロン以下の短波長の輻射線であればよく、例えば蛍光灯
や水銀ランプ等を光ファイバやミラーを用いて設置して
もよい。また、ハロゲンランプによる照射は半導体裏面
のみならず両面を加熱してもよい。
The excimer laser in the present invention is for exciting carriers, and any radiation in the fundamental absorption band of Si, that is, short wavelength of 1 micron or less, is sufficient. It may also be installed using Furthermore, the irradiation with a halogen lamp may heat not only the back surface of the semiconductor but also both surfaces.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体基板のアニール方法を用いれば、始
めに半導体基板中のキャリアを短波長の輻射線を照射し
て励起させて後、ハロゲンランプ等の長波長の輻射線を
照射するので、半導体基板の初期の温度上昇が不純物濃
度に依存せず均一なアニール効果が得られる。
When using the method of annealing a semiconductor substrate according to the present invention, carriers in the semiconductor substrate are first excited by irradiating short wavelength radiation, and then long wavelength radiation such as a halogen lamp is irradiated, so that the semiconductor substrate The initial temperature rise does not depend on the impurity concentration, and a uniform annealing effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアニール方法を示す図、第2図はダン
ゲステンハロゲンランプの発光強度とStの基礎吸収帯
を示す図、第3図は従来のアニール装置の概略断面図で
ある。 i −−−−−−・−一−−−−・・半導体基板2−・
・−一−−−−−−−・ハロゲンランプ3・・−−−一
−−−−・−エキシマレーザ4a・・−−−−一・−第
1の照射窓 4 b−−−−−−−−−−−一第2の照射窓11・・
−一一−−−−−−−−−−ハロゲンランプ照射12−
−−−−−−−−−・−エキシマレーザ照射相対的時間
→ 1.0   2.0   3.0 波長(ミクロン) !2図タンク゛′λテンハロゲンランフの余光強度とS
iの基礎吸収帯と示す聞
FIG. 1 is a diagram showing the annealing method of the present invention, FIG. 2 is a diagram showing the emission intensity of a Dungesten halogen lamp and the fundamental absorption band of St, and FIG. 3 is a schematic cross-sectional view of a conventional annealing apparatus. i ----------1----- Semiconductor substrate 2-
-1-------Halogen lamp 3...--1-------Excimer laser 4a...--1--First irradiation window 4 b---- ------First and second irradiation windows 11...
-11--------Halogen lamp irradiation 12-
−−−−−−−−−・−Relative time of excimer laser irradiation → 1.0 2.0 3.0 Wavelength (microns) ! Figure 2 Afterglow intensity and S of tank ゛'λ ten halogen lamp
The fundamental absorption band of i

Claims (1)

【特許請求の範囲】[Claims]  半導体基板を2つの異なる波長の輻射線を照射してア
ニールする方法において、長波長の輻射線を照射する直
前、または同時に短波長の輻射線を照射することを特徴
とする半導体基板のアニール方法。
A method of annealing a semiconductor substrate by irradiating a semiconductor substrate with radiation of two different wavelengths, the method comprising irradiating a semiconductor substrate with radiation of a short wavelength immediately before or at the same time as irradiating the radiation with a long wavelength.
JP6403190A 1990-03-16 1990-03-16 Annealing process of semiconductor substrate Pending JPH03266424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6403190A JPH03266424A (en) 1990-03-16 1990-03-16 Annealing process of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6403190A JPH03266424A (en) 1990-03-16 1990-03-16 Annealing process of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH03266424A true JPH03266424A (en) 1991-11-27

Family

ID=13246353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6403190A Pending JPH03266424A (en) 1990-03-16 1990-03-16 Annealing process of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH03266424A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239413B1 (en) 1998-11-13 2001-05-29 Nec Corporation Light irradiation annealing apparatus having infrared radiation cut filter
JP2004356322A (en) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device and semiconductor manufacturing device
JP2005210129A (en) * 2004-01-22 2005-08-04 Ultratech Inc Laser thermal annealing of lightly-doped silicon substrates
WO2005106935A1 (en) * 2004-04-28 2005-11-10 Emd Corporation Solid sample surface quality modification method, impurities activation method, and semiconductor device manufacturing method
JP2006279013A (en) * 2005-03-03 2006-10-12 Nec Electronics Corp Method of manufacturing field-effect transistor
US7214574B2 (en) 1997-03-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
JP2007261869A (en) * 2006-03-28 2007-10-11 Brother Ind Ltd Method for forming ceramic film and annealing apparatus
WO2007116917A1 (en) * 2006-04-05 2007-10-18 F.T.L. Co., Ltd. Production method for 3-d semiconductor device
US7368769B2 (en) 2004-07-23 2008-05-06 Samsung Electronics Co., Ltd. MOS transistor having a recessed gate electrode and fabrication method thereof
US7485554B2 (en) 2003-09-22 2009-02-03 Samsung Electronics Co., Ltd. Method of increasing a free carrier concentration in a semiconductor substrate
US7494942B2 (en) 2003-09-29 2009-02-24 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates
JP2011014914A (en) * 2010-07-20 2011-01-20 Emd:Kk Impurity activation method, and semiconductor device manufacturing method
JP2012503311A (en) * 2008-09-17 2012-02-02 アプライド マテリアルズ インコーポレイテッド Control of heat during substrate annealing
JP2012231158A (en) * 2003-09-29 2012-11-22 Ultratech Inc Laser thermal annealing of lightly doped silicon substrates

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410850B2 (en) 1997-03-11 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
US7214574B2 (en) 1997-03-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
US6239413B1 (en) 1998-11-13 2001-05-29 Nec Corporation Light irradiation annealing apparatus having infrared radiation cut filter
JP2004356322A (en) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device and semiconductor manufacturing device
US7485554B2 (en) 2003-09-22 2009-02-03 Samsung Electronics Co., Ltd. Method of increasing a free carrier concentration in a semiconductor substrate
JP2012231158A (en) * 2003-09-29 2012-11-22 Ultratech Inc Laser thermal annealing of lightly doped silicon substrates
US7494942B2 (en) 2003-09-29 2009-02-24 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates
JP2005210129A (en) * 2004-01-22 2005-08-04 Ultratech Inc Laser thermal annealing of lightly-doped silicon substrates
JP2005317767A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Method of reforming surface of solid sample, impurity activating method and manufacturing method of semiconductor device
WO2005106935A1 (en) * 2004-04-28 2005-11-10 Emd Corporation Solid sample surface quality modification method, impurities activation method, and semiconductor device manufacturing method
US7368769B2 (en) 2004-07-23 2008-05-06 Samsung Electronics Co., Ltd. MOS transistor having a recessed gate electrode and fabrication method thereof
JP2006279013A (en) * 2005-03-03 2006-10-12 Nec Electronics Corp Method of manufacturing field-effect transistor
JP2007261869A (en) * 2006-03-28 2007-10-11 Brother Ind Ltd Method for forming ceramic film and annealing apparatus
WO2007116917A1 (en) * 2006-04-05 2007-10-18 F.T.L. Co., Ltd. Production method for 3-d semiconductor device
JP2012503311A (en) * 2008-09-17 2012-02-02 アプライド マテリアルズ インコーポレイテッド Control of heat during substrate annealing
JP2011014914A (en) * 2010-07-20 2011-01-20 Emd:Kk Impurity activation method, and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US5633174A (en) Type silicon material with enhanced surface mobility
US7579654B2 (en) Semiconductor on insulator structure made using radiation annealing
US9839976B2 (en) Annealing apparatus using two wavelengths of radiation
JP3910603B2 (en) Heat treatment apparatus, heat treatment method, and semiconductor device manufacturing method
JPH03266424A (en) Annealing process of semiconductor substrate
JP3190653B2 (en) Annealing method and annealing device
US4659422A (en) Process for producing monocrystalline layer on insulator
JPS58223320A (en) Diffusing method for impurity
JPH01187814A (en) Manufacture of thin film semiconductor device
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
US20070141817A1 (en) Non-thermal annealing of doped semiconductor material
US6383902B1 (en) Method for producing a microelectronic semiconductor component
JPS59211221A (en) Heat treatment of ion implanted semiconductor
JP2002222773A (en) Method for manufacturing nitride semiconductor wafer
US6423605B1 (en) Method and apparatus for forming ultra-shallow junction for semiconductor device
JP5013235B2 (en) Ion implantation apparatus and ion implantation method
JP2813990B2 (en) Method for manufacturing electronic device using boron nitride
JPH0817577A (en) Luminescence silicon material and its formation method as well as treatment method of luminescence base material and electroluminescence device
JPS60239400A (en) Process for annealing compound semiconductor
KR100777198B1 (en) Wafer processing method, semiconductor device manufacturing method, and wafer processing apparatus
JPH05206053A (en) Crystal damage remover
JPS63271922A (en) Heat treatment device
JPS5897837A (en) Light irradiation annealing method and device therefor
JPS61218131A (en) Manufacture of semiconductor device
JPH07118444B2 (en) Heat treatment method for semiconductor thin film