JPH05201772A - Mixture and method for forming fire-resistant body combined to surface - Google Patents

Mixture and method for forming fire-resistant body combined to surface

Info

Publication number
JPH05201772A
JPH05201772A JP4197900A JP19790092A JPH05201772A JP H05201772 A JPH05201772 A JP H05201772A JP 4197900 A JP4197900 A JP 4197900A JP 19790092 A JP19790092 A JP 19790092A JP H05201772 A JPH05201772 A JP H05201772A
Authority
JP
Japan
Prior art keywords
particles
refractory
mixture
silicon
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4197900A
Other languages
Japanese (ja)
Other versions
JP3173879B2 (en
Inventor
Jean-Pierre Meynckens
ジャン−ピエール・メインカン
Leon-Philipp Mottet
レオン−フィリップ・モット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
Glaverbel Belgium SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19731305&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05201772(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Glaverbel Belgium SA filed Critical Glaverbel Belgium SA
Publication of JPH05201772A publication Critical patent/JPH05201772A/en
Application granted granted Critical
Publication of JP3173879B2 publication Critical patent/JP3173879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • F27D1/1642Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus
    • F27D1/1647Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus the projected materials being partly melted, e.g. by exothermic reactions of metals (Al, Si) with oxygen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/651Thermite type sintering, e.g. combustion sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE: To improve the bonding strength by projecting a mixture comprising compatible Si particles, at least one kind of refractory particles, specific particles and/or particles of another substance which particles are nonmetallic against the surface of a refractory simultaneously with oxygen.
CONSTITUTION: ≤70 Wt.% of one refractory particles such as SiC or SiO2 whose grain diameter is less than 4 mm, ≤15 wt.% of combustible Si or Si and Al, particles with a grain diameter of less than 50 μm, and additive particles of a non-metal compound such as of MgO and/or peroxide with a grain diameter of 10-500 μm to cause introduction of SiO2 produced by the combustion of Si particles into the crystalline lattice are blended in a way that the total amount of the additive is 25 wt.% or below to prepare the coherent refractory mass. Then the refractory forming mixture is projected to a surface of the refractory structure based on SiC or the like with a pure oxygen flow to be bonded with the substrate at ≤1000°C to obtain the refractory mass.
COPYRIGHT: (C)1993,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は燃焼熱の作用のもとに、前記の耐
火物体を形成するために十分な熱を放出して、投射した
酸素と発熱反応する可燃性粒子と、耐火物粒子との混合
物を酸素と同時に表面へ投射して、表面上に結合した耐
火物体を形成せしめる方法に関係する。本発明はまた燃
焼熱のもとに前記耐火物体を形成するための十分な熱を
放出するために、酸素との発熱反応が可能な可燃性物質
の粒子と、耐火物粒子との混合物を酸素と共に表面へ投
射して、表面上に結合した耐火物体を形成する方法のた
めの粒子混合物にも関係する。
The present invention provides a mixture of refractory particles and combustible particles which, under the action of heat of combustion, release sufficient heat to form the refractory body and react exothermically with projected oxygen. Is projected onto the surface simultaneously with oxygen to form a bonded refractory body on the surface. The present invention also provides a mixture of refractory particles with particles of a flammable substance capable of undergoing an exothermic reaction with oxygen to release sufficient heat to form the refractory body under the heat of combustion. It also relates to a particle mixture for the method of projecting onto a surface to form a bonded refractory body on the surface.

【0002】もし表面上の場所に耐火物体を形成したい
場合は、二つの周知の主要な方法のうちの何れかを選択
することができる。
If it is desired to form a refractory body at a location on the surface, one of two well-known major methods can be selected.

【0003】これらの方法中、英国特許第133089
4号(グラヴルベル社)と英国特許第2170191号
(グラヴルベル社)に例示されている、しばしば「セラ
ミツク溶接」と呼ばれる第一の方法では、酸素の存在下
に可燃性の粒子と、耐火物粒子の混合物を表面上へ投射
することで、表面に結合した耐火物体を形成している。
可燃性粒子とは酸素と発熱反応して、耐火性酸化物を形
成するとともに、投射した耐火物粒子を少なくとも表面
的に溶融するのに必要な熱を放出する、組成と粒度測定
結果をもつ粒子のことである。この種の可燃性物質とし
てはアルミニウムとケイ素をあげることができる。正確
に言えば、ケイ素は半金属として分類すべきものである
ことは周知の通りであるが、ケイ素がある種の金属に類
似した挙動を示すために(耐火性酸化物を形成する際
に、相当な発熱を伴う酸化が進行する)、これらの可燃
性元素を単に可燃性金属と呼ぶことがある。一般に粒子
の投射を高濃度酸素の存在下に、例えばガス担体として
市場にある品質の酸素を用いて、粒子の投射を行うこと
を推奨している。このようにして粒子を投射した表面上
へ、結合した耐火物体が形成されて付着する。セラミツ
ク溶接反応で到達できる温度は極めて高いので、処理さ
れる耐火物質の表面上にスラグが発生しても、これを貫
通して表面を軟化、溶融できるので、処理面と新たに形
成された耐火物体間に良好な結合が発生する。
Of these methods, British Patent No. 133089
In the first method, often referred to as "ceramic welding", which is exemplified in No. 4 (Gravel Bell) and British Patent No. 2170191 (Gravel Bell), flammable particles and refractory particles in the presence of oxygen The mixture is projected onto the surface to form a refractory body bonded to the surface.
Combustible particles and exothermic reaction with oxygen to form refractory oxides, and release the heat necessary to at least superficially melt the projected refractory particles, particles with composition and particle size measurement results That is. Examples of combustible substances of this type include aluminum and silicon. To be precise, it is well known that silicon should be classified as a semi-metal, but because silicon behaves similarly to certain metals (in forming refractory oxides, However, these combustible elements may be simply referred to as combustible metals. In general, it is recommended that the projection of particles be carried out in the presence of high-concentration oxygen, for example, by using commercially available oxygen as a gas carrier. In this way, bonded refractory bodies are formed and adhere to the surface onto which the particles have been projected. Since the temperature that can be reached by the ceramic welding reaction is extremely high, even if slag is generated on the surface of the refractory material to be treated, it can penetrate through it and soften and melt the surface, so the treated surface and the newly formed refractory Good coupling occurs between objects.

【0004】これら周知のセラミツク溶接法は、例えば
特殊な形状をもつブロツク等の耐火物品の形成にも使用
できるが、最も広く使用されているのは被覆形成用、ま
たは煉瓦、壁の補修用であって、現存する耐火構造物の
補修、補強用、例えばガラス製造炉、またはコークス炉
での炉壁のような壁の補修、または耐火装置の被覆に特
に有用である。
These well-known ceramic welding methods can be used for forming refractory articles such as blocks having a special shape, but most widely used for forming coatings or for repairing bricks and walls. Thus, it is particularly useful for repairing, reinforcing existing fire resistant structures, for repairing walls such as furnace walls in, for example, glass making furnaces, or coke ovens, or coating refractory equipment.

【0005】本操作は一般に耐火物の基材が高温時に実
施する。その結果装置が実質上作業温度に保たれている
間、場合によっては装置を操業中に耐火物の浸食表面の
補修が可能になる。
This operation is generally carried out when the temperature of the refractory substrate is high. As a result, it is possible to repair the erosion surface of the refractory, possibly while the equipment is in operation, while the equipment is maintained at substantially operating temperatures.

【0006】表面上に耐火物体を形成するための周知の
第二の方法は、「フレームスプレー法」と呼ばれる方法
である。本法では耐火物体を形成する場所へフレームを
指向し、このフレームを横切って耐火物粉末をスプレー
する。フレームはガス状、液状燃料、さらにコークス粉
末によっても供給できる。可能な限り高温のフレームを
発生させて最高の効率を達成するためには、本フレーム
スプレー技術が燃料の完全燃焼を必要とすることは明ら
かである。一般的にフレームスプレー法で達成できるフ
レーム温度は、セラミツク溶接技術で達成できる温度ほ
ど高温でないために、その結果として形成された耐火物
体の結合はそれ程良好でなく、さらに新しい耐火物体と
耐火物基材間の接着形成温度が低いために、接着強度が
劣る結果になる。さらに耐火物の処理面に発生し易いス
ラグを貫通するのに、本フレームスプレー法より溶接反
応の方が適している。
A second well-known method for forming refractory objects on surfaces is what is called the "flame spray method". The method directs a frame to a location where a refractory body is formed and sprays refractory powder across the frame. The flame can be supplied by gaseous or liquid fuel as well as coke powder. It is clear that the flame spray technique requires complete combustion of the fuel in order to generate the hottest flame possible and achieve maximum efficiency. Generally, the flame temperature achieved by flame spraying is not as high as that achievable with ceramic welding technology, so the resulting refractory body does not bond as well, and new refractory bodies and refractory substrates are not well bonded. The low bond formation temperature between the materials results in poor bond strength. Furthermore, the welding reaction is more suitable than the flame spray method for penetrating the slag that is likely to be generated on the treated surface of the refractory.

【0007】セラミツク溶接法で使用する混合物の組成
は、一般に基材となる耐火物の化学組成と同様のもの
か、これに近い補修用物体が生成するように選択する。
その結果新物質と、新物質がその上に形成される基材と
なる物質とに対する融和性と接着性が助長されることに
なる。
The composition of the mixture used in the ceramic welding process is generally selected to be similar to or similar to the chemical composition of the refractory material as the substrate, producing a repair object.
As a result, the compatibility and the adhesiveness between the new substance and the substance serving as a base material on which the new substance is formed are promoted.

【0008】しかしあるタイプの耐火構造物を修理した
いときに、基材となる耐火物体の組成と同様の化学組成
をもつ耐火物体を形成したときでも、若干の問題が発生
することを観察している。
However, when it is desired to repair a certain type of refractory structure, it has been observed that even when a refractory body having a chemical composition similar to that of the base refractory body is formed, some problems occur. There is.

【0009】例えば炭化ケイ素を基材にした耐火物構造
体表面を、炭素とケイ素の粒子と;さらにアルミニウム
とシリコン粒子のような金属性可燃物質の粒子とを主と
して含む混合物を用いて補修しても、生成した耐火物体
が常に基材の耐火物へ十分な接着を示すとは限らない。
For example, the surface of a refractory structure based on silicon carbide is repaired with a mixture mainly containing particles of carbon and silicon; and particles of metallic combustible material such as aluminum and silicon particles. However, the refractory body produced does not always show sufficient adhesion to the refractory body of the substrate.

【0010】炭化ケイ素の基材をもつ耐火物はある種の
金属加工装置、特に製鉄工業の高炉、または亜鉛の蒸溜
カラムに使用されている。本装置の操業中は、耐火物構
造体のある部分の最低操業温度が、例えば700℃程度
とむしろ低いうえに、さらに周囲温度の相当な変動を受
けることがある。周知技術によって耐火物構造体のこれ
らの部分に形成された耐火物体は、常に基材の耐火物体
へ十分な接着を示すとは限らず、ある場合、特にブロツ
ク、または低温度の耐火物壁上で補修を行う時には、新
しい耐火物体が基材の耐火物体から完全に分離して、装
置の操業中に離れてくることが観察されている。
Refractory materials with silicon carbide substrates are used in some metalworking equipment, especially in blast furnaces in the steel industry or in zinc distilling columns. During operation of the present apparatus, the minimum operating temperature of a portion of the refractory structure is rather low, for example, about 700 ° C., and further, the ambient temperature may be considerably changed. Refractory bodies formed in these parts of the refractory structure by known techniques do not always show sufficient adhesion to the substrate refractory body, and in some cases, especially on blocks, or on low temperature refractory walls. It has been observed that new refractory bodies are completely separated from the base refractory bodies during repairs and are separated during operation of the equipment.

【0011】もしあるコークス炉で使用されている高密
度シリカ基材の耐火物構造体(低密度の従来のシリカ耐
火物と区別するためにこのように呼称する)を補修する
場合にもこれと類似した問題が発生する。すなわち基材
の耐火物体と同様な化学組成の耐火物を形成することが
できても、新物体が常に十分に接着するとは限らず、炉
を操業したとき基材の耐火物体からすぐに離れてしまう
ことさえ起る。
This is also the case when repairing a high density silica based refractory structure used in a coke oven (which is so called to distinguish it from conventional low density silica refractories). Similar problems occur. That is, even if it is possible to form a refractory material having the same chemical composition as the refractory material of the base material, the new object does not always adhere sufficiently, and when the furnace is operated, the refractory material of the base material is immediately separated from It even happens.

【0012】例えば不活性の担体ガスと;可燃性で酸化
されうる物質と耐火性酸化物粒子との混合物をフレーム
スプレー装置へ供給し、高圧酸素が担体ガス/粒子混合
物を吸引して加速する、例えば炉のライニング補修用の
一方法が、国際特許出願WO90/03848号(ウイ
ルメツト/ウイラード)から周知である。ウイラードは
銅精錬用転炉の羽口ラインの耐火物ブロツク/煉瓦の補
修と、炭化ケイ素トレイカラムの補修とに本方法を適用
している。例えば79%炭化ケイ素、16.25%ケイ
素、4%アルミニウム、および0.75%マグネシウム
を含む混合物を、複式ベンチユリーの空気酸素系を通し
て、炭化ケイ素トレイカラムへ投射している。
[0012] For example, a mixture of an inert carrier gas; a flammable, oxidizable substance and refractory oxide particles is fed to a flame spray device, and high pressure oxygen draws in and accelerates the carrier gas / particle mixture. For example, one method for repairing the lining of a furnace is known from international patent application WO 90/03848 (Wilmet / Willard). Willard applies the method to repair refractory blocks / bricks in the tuyere line of a copper smelting converter and to repair silicon carbide tray columns. For example, a mixture containing 79% silicon carbide, 16.25% silicon, 4% aluminum, and 0.75% magnesium is projected into a silicon carbide tray column through a dual bench-yuri air-oxygen system.

【0013】しかし本方法に金属マグネシウム粉末を使
用することは、金属マグネシウムが比較的揮発性をもつ
ために、生成した耐火物被覆の組成に関して、少なくと
もある程度の不確定性が存在する点に不利がある。
However, the use of metallic magnesium powder in the present process is disadvantageous in that there is at least some uncertainty as to the composition of the refractory coating formed due to the relative volatility of metallic magnesium. is there.

【0014】本発明の目的の一つはこれらの問題を解決
するにある。
One of the objects of the present invention is to solve these problems.

【0015】本発明は燃焼熱の作用のもとに、耐火物体
を形成するのに十分な熱を放出して、投射した酸素と発
熱反応する可燃性粒子と耐火物粒子を含む混合物を、酸
素と同時に表面へ投射することにより、ケイ素化合物を
基材にした表面上へ結合した耐火物体を形成せしめる方
法に関係し、その特徴とするところは本混合物が(i)可
燃性のケイ素粒子と;(ii)混合物重量の主たる部分とし
ての、一種または複数種の物質の耐火物粒子と;および
(iiia)耐火物体が形成される間に、ケイ素粒子の燃焼に
より生じたシリカの結晶格子内への導入を生起せしめる
他の物質の添加剤粒子と;および(または)(iiib)耐火
物体が形成される間に、ケイ素粒子の燃焼で生じたシリ
カの結晶格子内への導入を生起せしめる前記の他の物質
を生成する、非金属化合物の添加剤粒子とを含有する点
にある。
According to the present invention, a mixture containing combustible particles and refractory particles which exothermically reacts with the projected oxygen by releasing sufficient heat to form a refractory body under the action of combustion heat is treated with oxygen. At the same time, it relates to a method of forming a refractory body having a silicon compound bonded on the surface of the substrate by projecting it onto the surface, which is characterized in that the mixture is (i) flammable silicon particles; (ii) refractory particles of one or more substances as a major part of the weight of the mixture; and
(iiia) with the additive particles of another substance that causes the introduction of silica into the crystal lattice of the combustion of the silicon particles during the formation of the refractory body; and / or (iiib) the refractory body is formed. In the meanwhile, it contains additive particles of a non-metallic compound, which produce the other substances mentioned which cause the introduction of the silica particles into the crystal lattice of the silica produced by the combustion of the silicon particles.

【0016】本発明はまた燃焼熱の作用のもとに、前記
の耐火物体を形成するのに十分な熱を放出するために、
酸素と発熱反応をする可燃性粒子と耐火物粒子を含む混
合物を、酸素と共に前記表面へ投射することにより、ケ
イ素化合物を基材にした表面上へ、結合した耐火物体を
形成せしめる方法用の粒子混合物に関係し、その特徴と
するところは本混合物が(i) 可燃性のケイ素粒子と;(i
i)混合物重量の主たる部分としての、一種または複数種
の物質の耐火物粒子と;および(iiia)耐火物体が形成さ
れる間に、ケイ素粒子の燃焼で生じたシリカの結晶格子
内への導入を生起せしめる他の物質の添加剤粒子と;お
よび(または)(iiib)耐火物体が形成される間に、ケイ
素粒子の燃焼で生じたシリカの結晶格子内への導入を生
起せしめる前記の他の物質を生成する、非金属化合物の
添加剤粒子とを含有する点にある。
The invention also provides, under the action of the heat of combustion, to release sufficient heat to form the refractory body described above,
Particles for a method of forming a bonded refractory body on a surface based on a silicon compound by projecting a mixture containing flammable particles and refractory particles that undergo an exothermic reaction with oxygen onto the surface together with oxygen. In relation to the mixture, characterized in that the mixture is (i) with combustible silicon particles;
i) refractory particles of one or more substances as a major part of the mixture weight; and (iiia) the introduction of silicon particles into the crystal lattice of the silica produced by the combustion of the silicon particles during the formation of the refractory body. And / or (iiib) the other of the above-mentioned substances that cause the introduction of silica particles resulting from the combustion of the silicon particles into the crystal lattice of the silica particles during the formation of the refractory body. And a non-metallic compound additive particle that produces a substance.

【0017】このような混合物と方法は、例えば炉の耐
火物構造体のような、ケイ素化合物を基材にした表面を
補修するための高品質の耐火物体を形成するためと、部
分品を一緒に溶接するのに有用である。補修した表面が
装置の操業中に繰り返し熱状態の変動を受けるとき、お
よび(または)温度が600〜1000℃の間(例えば
700℃)のように比較的低い表面を補修するときに
も、基材の耐火物へ勝れた接着を示す耐火物体を得るこ
とが可能であるが、本範囲以外の温度にある表面へも本
発明が適用できることは勿論である。
Such a mixture and method combine parts to form high quality refractory bodies for repairing silicon compound-based surfaces, such as furnace refractory structures. Useful for welding to. When the repaired surface undergoes repeated thermal fluctuations during the operation of the device and / or when repairing relatively low temperatures such as temperatures between 600 and 1000 ° C. (eg 700 ° C.) It is possible to obtain a refractory body that exhibits excellent adhesion to the refractory material, but it goes without saying that the invention can also be applied to surfaces at temperatures outside this range.

【0018】本発明に従って形成された耐火物体は、表
面と形成された耐火物体間の境界面において、ケイ素の
燃焼で生成するシリカの結晶格子内への導入を生起せし
める物質を、出発混合物が全く含まないときに得られる
耐火物体とは異なる熱膨張性を示す。本発明によって得
られる利点が、少なくとも一部は境界面におけるこの違
いに起因することと、得られた耐火物体が境界面におい
て、問題の耐火物体の熱膨張性によく適合した熱膨張性
を示すことによるものと信じられている。
The refractory body formed in accordance with the present invention is such that at the interface between the surface and the formed refractory body, the starting mixture is completely free of substances that cause the introduction of silica produced by the combustion of silicon into the crystal lattice. It exhibits a different thermal expansion from the refractory material obtained when it is not included. The advantages gained by the present invention are due at least in part to this difference at the interface and that the refractory body obtained exhibits a thermal expansion at the interface that is well matched to that of the refractory body in question. It is believed that this is due to things.

【0019】可燃性のケイ素粒子(i) を唯一の可燃性物
質として使用してもよいし、あるいはアルミニウムのよ
うな一層燃焼性に富む物質粒子と混合することもでき
る。従って本混合物に可燃性のアルミニウム粒子をさら
に混合するのが好ましい。アルミニウム粒子は迅速に酸
化されて極めて大量の熱を放出して、耐火性酸化物自体
を形成することができる。従って本特性の適合が高品質
の耐火物体の形成を促進していることになる。
The flammable silicon particles (i) may be used as the sole flammable material or they may be mixed with particles of a more flammable material such as aluminum. Therefore, it is preferable to further mix combustible aluminum particles in the mixture. Aluminum particles can be rapidly oxidized to give off a very large amount of heat to form the refractory oxide itself. Therefore, the conformity of this property promotes the formation of high quality refractory objects.

【0020】本発明による混合物のケイ素含量は、15
重量%未満にとるのが好ましい。このことは生成した耐
火物体中に残留するかも分からない、未反応のケイ素量
を制限するために重要である。生成した耐火物体中に未
反応ケイ素が存在すると、耐火物体の品質を劣化させる
危険のあることが判明した。
The silicon content of the mixture according to the invention is 15
It is preferably less than wt%. This is important to limit the amount of unreacted silicon that may remain in the refractory body that is formed. It has been found that the presence of unreacted silicon in the formed refractory body poses a risk of degrading the quality of the refractory body.

【0021】均一物体を得るためには、耐火物粒子(ii)
が少なくとも70重量%、最も好ましいのは少なくとも
75重量%存在するようにとる。
To obtain a uniform object, refractory particles (ii)
Is at least 70% by weight, most preferably at least 75% by weight.

【0022】添加剤粒子(iiia)、および(または)(iii
b)が混合物の残りを構成するのが好ましく、混合物の2
5重量%まで、好ましくは5〜15重量%にとるのがよ
い。
Additive particles (iiia), and / or (iii
b) preferably constitutes the balance of the mixture, 2 of the mixture
It may be up to 5% by weight, preferably 5 to 15% by weight.

【0023】本混合物に使用する可燃性粒子(i) の平均
粒径は、50μm以下にとるのが好ましい。
The average particle size of the flammable particles (i) used in this mixture is preferably 50 μm or less.

【0024】正規の粉末ジエツトの生成を容易にするた
めに、耐火物粒子(ii)が実質上4mm以上の粒子を含ま
ないことが好ましく、2.5mm以上にならないように
とるのが最も好ましい。
In order to facilitate the production of a regular powder jet, it is preferable that the refractory particles (ii) contain substantially no particles of 4 mm or more, most preferably 2.5 mm or more.

【0025】本混合物に使用する添加剤粒子(iiia)、お
よび(または)(iiib)の粒子サイズは500μm以下、
またはこれに等しいのが好ましい。もし大きすぎる粒子
を使用する場合は、これらの粒子が有効な役割を演じな
い危険が存在する。これらの粒子サイズを少なくとも1
0μmにとるのが好ましい。もし細かすぎる粒子を使用
すると、反応中に揮発する危険が存在する。
The particle size of the additive particles (iiia) and / or (iiib) used in the mixture is 500 μm or less,
Alternatively, it is preferably equal to this. If too large particles are used, there is a risk that these particles will not play an effective role. These particle sizes should be at least 1
It is preferably set to 0 μm. If too fine particles are used, there is a risk of volatilization during the reaction.

【0026】耐火物体の形成中に、ケイ素の燃焼で生成
したシリカの結晶格子内への導入を誘発せしめるのには
各種の物質が適している。
A variety of materials are suitable for inducing the introduction of silica produced by the combustion of silicon into the crystal lattice during the formation of refractory bodies.

【0027】ケイ素の燃焼で生成したシリカの結晶格子
内への導入を生起せしめる上述の添加物質(iiia)は、マ
グネシア粒子の形態で混合物へ加えるのが好ましい。
The above-mentioned additive (iiia), which causes the introduction of the silica produced by the combustion of silicon into the crystal lattice, is preferably added to the mixture in the form of magnesia particles.

【0028】補修すべき耐火物表面へ投射する混合物中
に本化合物を存在させると、生成した耐火物体が正しい
耐熱性を確実にもつようになる。
The presence of the compound in the mixture which is projected onto the surface of the refractory to be repaired ensures that the refractory body produced has the correct heat resistance.

【0029】さらにマグネシアを混合物へ加えると、ケ
イ素の燃焼で生成したシリカの少なくとも一部が、フオ
ーステライト(forsterite)型の結晶格子内へ導入され
た耐火物体の形成が可能になる。その結果生成した耐火
物体が正しい耐熱性を確実にもつようになる。
Further addition of magnesia to the mixture enables the formation of refractory bodies in which at least some of the silica produced by the combustion of silicon has been introduced into the forsterite type crystal lattice. As a result, the refractory material produced will ensure that it has the correct heat resistance.

【0030】もし混合物がアルミニウムとマグネシアを
含有すると、ケイ素の燃焼で生成したシリカの少なくと
も一部が、フオーステライト構造の結晶格子内、および
(または)スピネル(尖晶石)(spinel)構造の結晶格
子内、および(または)コージライト(董青石)構造の
結晶格子内へ導入された耐火物体を形成することができ
る。
If the mixture contains aluminum and magnesia, at least a portion of the silica produced by the combustion of silicon is within the crystal lattice of the forsterite structure and / or crystals of the spinel structure. Refractory bodies can be formed that are introduced into the lattice and / or into the crystal lattice of the cordierite structure.

【0031】生成した耐火物体中にコージライト構造の
結晶格子が存在すると、この物体が勝れた耐熱衝撃性を
確実にもつようになる。フオーステライト構造、および
(または)スピネル構造の結晶格子が存在すると、生成
した耐火物体の耐熱性に好ましい影響を及ぼす。
The presence of a cordierite-structured crystal lattice in the refractory body produced ensures that the body has superior thermal shock resistance. The presence of crystal lattices of forsterite and / or spinel structure has a favorable effect on the heat resistance of the refractory body produced.

【0032】酸化カルシウム、または酸化鉄(II)のよう
なほかの酸化物も、ケイ素の燃焼で生成したシリカの、
結晶格子内への導入を生起せしめ添加物質(iiia)として
使用することができる。
Calcium oxide, or other oxides such as iron (II) oxide, can also be added to the silica produced by the combustion of silicon.
It can be used as an additive (iiia) which causes the introduction into the crystal lattice.

【0033】耐火物体を形成したとき、ケイ素の燃焼で
生成したシリカの結晶格子内への導入を生起せしめる物
質を発生するような組成の添加物質、または物質類(iii
b)を付加的、または代替的に含有する粒子混合物も使用
することができる。例えば過酸化カルシウムのような過
酸化物、窒化物、炭化物も使用することができる。
When a refractory body is formed, an additive substance or substances (iii) having a composition that generates a substance that causes the introduction of silica produced by the combustion of silicon into the crystal lattice.
Particle mixtures which additionally or alternatively contain b) can also be used. Peroxides such as calcium peroxide, nitrides, carbides can also be used.

【0034】例えば酸化カルシウムのような酸化物も、
例えば酸化カルシウムの場合には、ウオラストナイト
(珪灰石)(CaO・SiO2 )の形態で加えることが
できる。
Oxides such as calcium oxide,
For example, in the case of calcium oxide, it can be added in the form of wollastonite (wollastonite) (CaO.SiO 2 ).

【0035】本発明は炭化ケイ素基材を含む耐火物、ま
たは高密度シリカ基材を含む耐火物の補修に特に有用で
ある。従って重量の主たる部分が、それぞれ炭化ケイ
素、またはシリカを含有する混合物を用いてセラミツク
溶接を実施するのが好ましい。
The present invention is particularly useful for repairing refractory materials containing silicon carbide substrates or refractory materials containing high density silica substrates. Therefore, it is preferable to carry out the ceramic welding using a mixture in which the major part of the weight contains silicon carbide or silica, respectively.

【0036】本発明が通常のシリカ煉瓦とシリカ−アル
ミナ煉瓦のような上述の耐火物以外の、シコリンを基材
にした別の型の耐火物の補修にも使用できることは言う
までもない。
It goes without saying that the present invention can also be used to repair other types of refractory based on cicholine, other than the refractories mentioned above, such as ordinary silica bricks and silica-alumina bricks.

【0037】本混合物重量の主たる部分を構成する物
質、または物質類を、補修目的の耐火物の組成に適合さ
せてもよいし、また別の物質であってもかまわない。後
者の場合には、補修中の耐火物の性質と異なって、理想
的にはそれ以上に改善された性質、例えば改善された耐
摩損性、または改善された耐火性をもつ耐火物体が形成
できる。
The material, or materials, that make up the major portion of the weight of the mixture may be adapted to the composition of the refractory material for repair purposes or may be another material. In the latter case, a refractory body can be formed which, unlike the properties of the refractory being repaired, ideally has improved properties such as improved wear resistance or improved refractory properties. ..

【0038】次に実施例を用いて、本発明をさらに詳細
に例示する。
Next, the present invention will be illustrated in more detail with reference to Examples.

【0039】実施例 1 亜鉛蒸溜カラムの壁上へ耐火物体を形成する。この壁は
炭化ケイ素を基材にもつ煉瓦で構成されている。耐火性
酸化物を形成することで、発熱下に酸化可能な物質粒子
と、マグネシア粒子と、耐火物粒子の混合物をこれらの
煉瓦に投射する。壁温は800℃である。混合物を60
kg/hの割合で純酸素流中へ投射する。混合物の組成
は次の通りである。 SiO2 79重量% Si 8重量% Al 5重量% MgO 8重量%
Example 1 A refractory body is formed on the wall of a zinc distillation column. This wall is composed of a brick having silicon carbide as a base material. By forming refractory oxides, a mixture of material particles oxidizable under heat, magnesia particles, and refractory particles is projected onto these bricks. The wall temperature is 800 ° C. Mix 60
Project into a pure oxygen stream at a rate of kg / h. The composition of the mixture is as follows. SiO 2 79% by weight Si 8% by weight Al 5% by weight MgO 8% by weight

【0040】ケイ素粒子の直径は45μm以下で、比表
面積は2500〜8000cm2 /gの間にある。アル
ミニウム粒子の直径は45μm以下で、比表面積は35
00〜6000cm2 /gの間にある。炭化ケイ素粒子
の直径は1.47mm以下で、1〜1.47mmの範囲
が60重量%、0.5〜1mmが20%、0.125m
m以下が20%である。MgO粒子の平均直径は約30
0μmである。ここで「平均直径」とは、粒子の50重
量%がこの平均値より小さい直径をもつような寸法のこ
とである。
The silicon particles have a diameter of less than 45 μm and a specific surface area between 2500 and 8000 cm 2 / g. Aluminum particles have a diameter of 45 μm or less and a specific surface area of 35.
It is between 00 and 6000 cm 2 / g. The diameter of the silicon carbide particles is 1.47 mm or less, 60% by weight in the range of 1-1.47 mm, 20% in 0.5-1 mm, 0.125 m.
m or less is 20%. The average diameter of MgO particles is about 30
It is 0 μm. As used herein, the "average diameter" is the dimension such that 50% by weight of the particles have a diameter smaller than this average value.

【0041】本方法で補修した壁が周囲温度の相当な変
動を受けても、新しい本耐火物体は支持体に永続的に接
着していることが観察されている。
It has been observed that the new refractory body is permanently adhered to the support even though the walls repaired by the method are subject to considerable variations in ambient temperature.

【0042】生成した物体の構造を顕微鏡下で検査す
る。すると新耐火物体と基材の耐火物体間に、勝れた連
続性が観察される。またケイ素の燃焼で生成したシリカ
のフオーステライト、コージライト、およびアルミニウ
ムスピネルの結晶格子内への導入が観察される。
The structure of the produced object is examined under a microscope. A superior continuity is then observed between the new refractory body and the substrate refractory body. Also, the introduction of silica produced by the combustion of silicon into the crystal lattice of forsterite, cordierite, and aluminum spinel is observed.

【0043】比較する目的で、マグネシアを含有しない
混合物を同じ条件下に投射した。本混合物の組成は次の
通りである。 SiC 87重量% Si 12重量% Al 1重量%
For comparison purposes, the magnesia-free mixture was projected under the same conditions. The composition of this mixture is as follows. SiC 87 wt% Si 12 wt% Al 1 wt%

【0044】もし亜鉛蒸溜カラムの操業を継続すると、
生成した耐火物体が壁からすぐに分離して、固体ブロツ
クになって離れてくることが観察される。
If the operation of the zinc distillation column is continued,
It is observed that the refractory material that formed quickly separates from the wall and becomes a solid block away.

【0045】本実施例を変更して、通常のシリカ煉瓦と
シリカ−アルミナ煉瓦で形成した、コークス炉底部の補
修に本混合物を使用する。相当な熱変動を受けても、壁
によく接着して、勝れた耐摩損性をもつ補修物体を得る
ことができる。
This example is modified to use this mixture for repairing the bottom of a coke oven formed of normal silica bricks and silica-alumina bricks. It can adhere well to walls and undergo repairing objects with excellent wear resistance even when subjected to significant heat fluctuations.

【0046】実施例 2 実施例1の変法として、次の組成をもつ混合物を使用す
る。 SiC 82重量% Si 8重量% Al 5重量% MgO 5重量%
Example 2 As a modification of Example 1, a mixture with the following composition is used: SiC 82 wt% Si 8 wt% Al 5 wt% MgO 5 wt%

【0047】補修壁は炭化ケイ素基材の煉瓦製で、温度
は700℃である。
The repair wall is made of silicon carbide based brick and has a temperature of 700.degree.

【0048】得られた耐火物体もまた永続的に壁へ接着
する。
The refractory body obtained also adheres permanently to the wall.

【0049】実施例 3 高密度シリカ煉瓦製のコークス炉の壁上に耐火物体を形
成するのが目的である。従来のシリカ煉瓦の見かけ密度
は1.80程度なのに対し、高密度煉瓦の見かけ密度は
約1.89である。このような煉瓦は最近耐火物市場に
現れたものであって、従来のシリカ煉瓦と比較したと
き、煉瓦のガス透過性と熱伝導度に関して、著しく有利
な特性を備えている。
Example 3 The purpose is to form a refractory body on the wall of a coke oven made of high density silica brick. Conventional silica bricks have an apparent density of about 1.80, whereas high-density bricks have an apparent density of about 1.89. Such bricks have recently emerged in the refractory market and have significantly advantageous properties with respect to gas permeability and thermal conductivity of bricks when compared to conventional silica bricks.

【0050】温度が約750℃の壁について、次の混合
物を用いて補修を実施する。 SiO2 80.5重量% Si 11.1重量% Al 1重量% MgO 7.4重量%
Repair is carried out on a wall with a temperature of about 750 ° C. with the following mixture: SiO 2 80.5% by weight Si 11.1% by weight Al 1% by weight MgO 7.4% by weight

【0051】SiO2 粒子のサイズは2mm以下で、1
〜2mmの範囲が最大で30重量%、100μm以下が
15重量%以下である。
The size of the SiO 2 particles is 2 mm or less and 1
The range of up to 2 mm is 30% by weight at the maximum, and the range of 100 μm or less is 15% by weight or less.

【0052】生成した物体は壁へ永続的に接着する。The produced object adheres permanently to the wall.

【0053】これに対して、同様の混合物であるが、マ
グネシアを含まない混合物を同じ操業条件のもとに投射
して、炉の操業時に存在する各種の熱的条件を壁が受け
ると、壁から容易に離れる耐火物体が出来あがった。
On the other hand, if a similar mixture, but without magnesia, is projected under the same operating conditions and the wall is subjected to the various thermal conditions present during the operation of the furnace, the wall A refractory object is created that easily separates from.

【0054】実施例 4 ケイ素化合物を基材にした耐火物製で、周囲温度の相当
な変動を受けるが、900℃を超えることのないコーク
ス炉の壁上に、耐火物体を形成するのが目的である。本
補修は温度が約750℃の壁上に、次の組成の混合物を
用いて実施する。 SiO2 80重量% CaO・SiO2(ウオラストナイト) 8重量% Si 8重量% Al 4重量%
Example 4 A refractory material based on a silicon compound, the purpose of which is to form a refractory body on the wall of a coke oven which does not exceed 900 ° C. but undergoes considerable fluctuations in ambient temperature. Is. The repair is carried out on a wall at a temperature of about 750 ° C. with a mixture of the following composition: SiO 2 80 wt% CaO ・ SiO 2 (wollastonite) 8 wt% Si 8 wt% Al 4 wt%

【0055】ウオラストナイト粒子の平均直径は約30
0μmである。金属粒子のサイズは実施例1にあげた通
りで、シリカ粒子のサイズは実施例3にあげた通りであ
る。
The average diameter of wollastonite particles is about 30.
It is 0 μm. The size of the metal particles is as described in Example 1, and the size of the silica particles is as described in Example 3.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 燃焼熱の作用のもとに、耐火物体を形成
するべく十分な熱を放出して投射された酸素と発熱反応
する可燃性粒子と耐火物粒子を含む混合物を、酸素と同
時に表面に投射することにより、ケイ素化合物を基材と
した表面に結合した耐火物体を形成せしめる方法におい
て、該混合物が(i) 可燃性のケイ素粒子;(ii)混合物の
重量の主たる部分としての、一種または複数種の物質の
耐火物粒子;および(iiia)耐火物体の形成の間に、ケイ
素粒子の燃焼により生じたシリカの結晶格子内への導入
を生起せしめる他の物質の添加剤粒子、および(また
は)(iiib)耐火物体の形成の間に、ケイ素粒子の燃焼に
より生じたシリカの結晶格子内への導入を生起せしめる
前記の他の物質を生成せしめる非金属化合物の添加剤粒
子を含有することを特徴とする方法。
1. A mixture containing flammable particles and refractory particles that exothermically reacts with the projected oxygen by releasing sufficient heat to form a refractory body under the action of combustion heat, simultaneously with oxygen. In a method of forming a refractory body bound to a silicon compound-based surface by projecting onto the surface, the mixture comprising: (i) flammable silicon particles; (ii) as a major portion of the weight of the mixture, Refractory particles of one or more substances; and (iiia) additive particles of other substances that, during the formation of the refractory body, cause the introduction of silica into the crystal lattice of the silica produced by the combustion of the silicon particles, and (Or) (iiib) contains additive particles of a non-metallic compound which, during the formation of the refractory body, produce the other substances mentioned above which cause the introduction of silica into the crystal lattice of the silica particles produced by the combustion of the silicon particles. Characterized by Method.
【請求項2】 ケイ素粒子の燃焼によって生じたシリカ
の結晶格子内への導入を生起せしめる前記物質(iiia)
を、マグネシア粒子の形態で混合物中へ加えることを特
徴とする、請求項1に記載の耐火物体の形成方法。
2. The substance (iiia) which causes the introduction of silica into the crystal lattice produced by the combustion of silicon particles.
The method for forming a refractory body according to claim 1, characterized in that is added to the mixture in the form of magnesia particles.
【請求項3】 ケイ素の燃焼によって生じたシリカの少
なくとも一部分を、フオーステライト構造の結晶格子内
へ導入せしめることを特徴とする、請求項2に記載の耐
火物体の形成方法。
3. The method for forming a refractory body according to claim 2, wherein at least a part of silica produced by combustion of silicon is introduced into a crystal lattice of a forsterite structure.
【請求項4】 前記可燃性粒子(i) が更にアルミニウム
粒子を含有することを特徴とする、請求項1〜3のうち
の一つに記載の耐火物体の形成方法。
4. The method for forming a refractory body according to claim 1, wherein the combustible particles (i) further contain aluminum particles.
【請求項5】 ケイ素の燃焼によって生じたシリカの少
なくとも一部を、フオーステライト構造の結晶格子、お
よび(または)スピネル構造の結晶格子、および(また
は)コージライト構造の結晶格子内へ導入せしめること
を特徴とする、請求項2と4に記載の耐火物体の形成方
法。
5. At least a part of silica produced by combustion of silicon is introduced into a crystal lattice of a forsterite structure and / or a crystal lattice of a spinel structure and / or a crystal lattice of a cordierite structure. The method for forming a refractory body according to claim 2 or 4, characterized in that.
【請求項6】 前記非金属化合物(iiib)を過酸化物、ま
たはケイ酸塩粒子の形態で混合物中へ加えることを特徴
とする、前記請求項のいずれかに記載の耐火物体の形成
方法。
6. A method for forming a refractory body according to any of the preceding claims, characterized in that the non-metallic compound (iiib) is added to the mixture in the form of peroxide or silicate particles.
【請求項7】 混合物重量の主たる部分を構成する前記
耐火物粒子(ii)が、炭化ケイ素粒子であることを特徴と
する、請求項1〜6のうちの一つに記載の耐火物体の形
成方法。
7. Formation of a refractory body according to claim 1, characterized in that the refractory particles (ii) constituting the main part of the mixture weight are silicon carbide particles. Method.
【請求項8】 混合物重量の主たる部分を構成する前記
耐火物粒子(ii)が、シリカ粒子であることを特徴とす
る、請求項1〜6のうちの一つに記載の耐火物体の形成
方法。
8. The method for forming a refractory body according to claim 1, wherein the refractory particles (ii) constituting the main part of the weight of the mixture are silica particles. ..
【請求項9】 表面温度が1000℃以下であることを
特徴とする、前記請求項のいずれかに記載の方法。
9. The method according to claim 1, wherein the surface temperature is 1000 ° C. or lower.
【請求項10】 燃焼熱の作用のもとに、前記耐火物体
を形成するための十分な熱を放出するために、酸素と発
熱反応が可能な可燃性粒子と、耐火物粒子との混合物を
酸素と表面へ投射することで、ケイ素化合物を基材にし
た表面に結合した耐火物体を形成せしめる方法用の粒子
混合物において、本混合物が(i) 可燃性のケイ素粒子
と;(ii)混合物重量の主たる部分としての、一種または
複数種の物質の耐火物粒子と;および(iiia)耐火物体の
形成の間に、ケイ素粒子の燃焼により生じたシリカの結
晶格子内への導入を生起せしめる他の物質の添加剤粒
子、および(または)(iiib)耐火物体の形成の間に、ケ
イ素粒子の燃焼により生じたシリカの結晶格子内への導
入を生起せしめる前記の他の物質を生成する、非金属化
合物の添加剤粒子を含有することを特徴とする混合物。
10. A mixture of flammable particles capable of undergoing an exothermic reaction with oxygen and refractory particles to release sufficient heat to form the refractory body under the action of combustion heat. In a particle mixture for a method of forming a refractory body bound to a silicon-based surface by projecting it onto a surface of oxygen, the mixture comprising: (i) flammable silicon particles; and (ii) the weight of the mixture. With refractory particles of one or more substances as a major part of; and (iiia) during the formation of refractory bodies, other that cause the introduction of silica into the crystalline lattice of the silica produced by the combustion of the silicon particles. Non-metallic, producing additive particles of substances and / or (iiib), during the formation of the refractory body, other substances mentioned above which cause the introduction of silica into the crystal lattice of the silica produced by the combustion of silicon particles. Contains additive particles of the compound Mixture characterized.
【請求項11】 前記混合物が、他の物質の前記粒子(i
iia)として、マグネシア粒子を含有することを特徴とす
る、請求項10に記載の混合物。
11. The mixture comprises the particles (i) of another substance.
Mixture according to claim 10, characterized in that it contains magnesia particles as iia).
【請求項12】 前記混合物が、前記非金属化合物(iii
b)として過酸化物、またはケイ酸塩の粒子を含有するこ
とを特徴とする請求項10または11に記載の混合物。
12. The non-metallic compound (iii)
Mixture according to claim 10 or 11, characterized in that it contains particles of peroxide or silicate as b).
【請求項13】 前記可燃性粒子(i) が更にアルミニウ
ム粒子を含有することを特徴とする、請求項10〜12
のうちの一つに記載の混合物。
13. The flammable particles (i) further contain aluminum particles.
A mixture according to one of the:
【請求項14】 混合物重量の主たる部分を構成する前
記耐火物粒子(ii)が、炭化ケイ素粒子であることを特徴
とする、請求項10〜13のうちの一つに記載の混合
物。
14. A mixture according to claim 10, characterized in that the refractory particles (ii) constituting the major part of the mixture weight are silicon carbide particles.
【請求項15】 混合物重量の主たる部分を構成する前
記耐火物粒子(ii)が、シリカ粒子であることを特徴とす
る、請求項10〜13のうちの一つに記載の混合物。
15. Mixture according to one of claims 10 to 13, characterized in that the refractory particles (ii) constituting the major part of the mixture weight are silica particles.
【請求項16】 前記添加剤粒子(iiia)、または(iiib)
の粒子サイズが500μmに等しいか、またはこれ以下
であることを特徴とする、請求項10〜15のうちの一
つに記載の混合物。
16. The additive particles (iiia) or (iiib)
Mixture according to one of claims 10 to 15, characterized in that its particle size is less than or equal to 500 μm.
【請求項17】 添加剤粒子(iiia)、または(iiib)の粒
子サイズが少なくとも10μmであることを特徴とす
る、請求項10〜16のいずれか一つに記載の混合物。
17. Mixture according to any one of claims 10 to 16, characterized in that the additive particles (iiia) or (iiib) have a particle size of at least 10 μm.
【請求項18】 含有されるシリコンレベルが15重量
%未満であることを特徴とする、請求項10〜17のい
ずれか一つに記載の混合物。
18. Mixture according to claim 10, characterized in that the silicon level contained is less than 15% by weight.
JP19790092A 1991-07-03 1992-06-30 Mixtures and methods for forming bonded refractory bodies on surfaces Expired - Lifetime JP3173879B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU87969A LU87969A1 (en) 1991-07-03 1991-07-03 PROCESS AND MIXTURE FOR FORMING A CONSISTENT REFRACTORY MASS ON A SURFACE
LU87969 1991-07-03

Publications (2)

Publication Number Publication Date
JPH05201772A true JPH05201772A (en) 1993-08-10
JP3173879B2 JP3173879B2 (en) 2001-06-04

Family

ID=19731305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19790092A Expired - Lifetime JP3173879B2 (en) 1991-07-03 1992-06-30 Mixtures and methods for forming bonded refractory bodies on surfaces

Country Status (26)

Country Link
JP (1) JP3173879B2 (en)
KR (1) KR100232797B1 (en)
CN (1) CN1065847C (en)
AT (1) AT396784B (en)
AU (1) AU654860B2 (en)
BE (1) BE1005914A4 (en)
BR (1) BR9202589A (en)
CA (1) CA2071370C (en)
DE (1) DE4221480C2 (en)
EG (1) EG19701A (en)
ES (1) ES2041222B1 (en)
FR (1) FR2678606B1 (en)
GB (1) GB2257136B (en)
GE (1) GEP19981387B (en)
IT (1) IT1259596B (en)
LU (1) LU87969A1 (en)
MX (1) MX9203875A (en)
NL (1) NL195098C (en)
PL (1) PL174315B1 (en)
RO (1) RO109068B1 (en)
RU (1) RU2051879C1 (en)
SE (1) SE504729C2 (en)
TR (1) TR28834A (en)
TW (1) TW270109B (en)
ZA (1) ZA924907B (en)
ZW (1) ZW9992A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373703B1 (en) * 1998-12-29 2003-05-09 주식회사 포스코 Silica Refractory Composition and Manufacturing Method Thereof
US6969214B2 (en) * 2004-02-06 2005-11-29 George Jay Lichtblau Process and apparatus for highway marking
US7052202B2 (en) * 2004-02-06 2006-05-30 George Jay Lichtblau Process and apparatus for highway marking
US7449068B2 (en) 2004-09-23 2008-11-11 Gjl Patents, Llc Flame spraying process and apparatus
JP2017145452A (en) * 2016-02-17 2017-08-24 品川リフラクトリーズ株式会社 Thermal spray material
JP2018062708A (en) * 2016-10-12 2018-04-19 品川リフラクトリーズ株式会社 Thermal spray material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380563A (en) * 1991-06-20 1995-01-10 Coal Industry (Patents) Limited Ceramic welding
US5686028A (en) * 1991-07-03 1997-11-11 Glaverbel Process for forming a coherent refractory mass on a surface
GB9324655D0 (en) * 1993-12-01 1994-01-19 Glaverbel A method and powder mixture for repairing oxide based refractory bodies
US5700309A (en) * 1993-12-01 1997-12-23 Glaverbel Method and powder mixture for repairing oxide based refractory bodies
GB9423984D0 (en) 1994-11-28 1995-01-11 Glaverbel Process for making a crystalline siliceous refractory mass
HRP950552B1 (en) * 1994-11-28 2000-04-30 Glaverbel Production of a siliceous refractory mass
GB9511692D0 (en) * 1995-06-09 1995-08-02 Fosbel Int Ltd A process for forming a refractory repair mass
GB9513126D0 (en) * 1995-06-28 1995-08-30 Glaverbel A method of dressing refractory material bodies and a powder mixture for use therein
GB9604344D0 (en) 1996-02-01 1996-05-01 Glaverbel Formation of a refractory repair mass
KR101788275B1 (en) 2011-08-04 2017-10-19 주식회사 인텍 Ceramic welding composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348929A (en) * 1962-04-16 1967-10-24 Metalurgitschen Zd Lenin Protecting carbon materials from oxidation
BE757466A (en) * 1969-11-04 1971-04-14 Glaverbel
BE871496A (en) * 1978-10-24 1979-02-15 Plumat Emile PROCESS FOR MANUFACTURING REFRACTORY MATERIALS BY REACTIVE THERMOFUSION.
GB2154228B (en) * 1981-11-25 1986-04-23 Glaverbel Composition of matter for use in forming refractory masses in situ
US4489022A (en) * 1981-11-25 1984-12-18 Glaverbel Forming coherent refractory masses
JPS58172263A (en) * 1982-04-02 1983-10-11 品川白煉瓦株式会社 Sio2-cao low expansion flame spray material
BE894731A (en) * 1982-10-19 1983-02-14 Plumat Emile Refractory material fabrication - by highly exothermic reaction of carbide(s) with oxide particles and oxidising agent
GB2170191B (en) * 1985-01-26 1988-08-24 Glaverbel Forming refractory masses and composition of matter for use in forming such refractory masses
GB2180047B (en) * 1985-09-07 1989-08-16 Glaverbel Forming refractory masses
LU86431A1 (en) * 1986-05-16 1987-12-16 Glaverbel METHOD FOR FORMING A REFRACTORY MASS ON A SURFACE AND MIXING PARTICLES TO FORM SUCH A MASS
GB8616450D0 (en) * 1986-07-05 1986-08-13 Foseco Int Protection of graphite electrodes
GB2213812A (en) * 1987-12-17 1989-08-23 Glaverbel Ceramic welding composition and process
GB8729418D0 (en) * 1987-12-17 1988-02-03 Glaverbel Surface treatment of refractories
US5013499A (en) * 1988-10-11 1991-05-07 Sudamet, Ltd. Method of flame spraying refractory material
EP0425668A4 (en) * 1989-04-03 1992-10-14 Institut Strukturnoi Makrokinetiki Akademii Nauk Sssr Method and reactor for obtaining powdered refractory material
WO1990013526A1 (en) * 1989-04-28 1990-11-15 Kazakhsky Mezhotraslevoi Nauchno-Tekhnichesky Tsentr Svs Refractory material
GB8916951D0 (en) * 1989-07-25 1989-09-13 Glaverbel Ceramic welding process and powder mixture for use in the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373703B1 (en) * 1998-12-29 2003-05-09 주식회사 포스코 Silica Refractory Composition and Manufacturing Method Thereof
US6969214B2 (en) * 2004-02-06 2005-11-29 George Jay Lichtblau Process and apparatus for highway marking
US7052202B2 (en) * 2004-02-06 2006-05-30 George Jay Lichtblau Process and apparatus for highway marking
US7073974B2 (en) 2004-02-06 2006-07-11 George Jay Lichtblau Process and apparatus for highway marking
US7449068B2 (en) 2004-09-23 2008-11-11 Gjl Patents, Llc Flame spraying process and apparatus
JP2017145452A (en) * 2016-02-17 2017-08-24 品川リフラクトリーズ株式会社 Thermal spray material
JP2018062708A (en) * 2016-10-12 2018-04-19 品川リフラクトリーズ株式会社 Thermal spray material

Also Published As

Publication number Publication date
NL9201170A (en) 1993-02-01
GB9213805D0 (en) 1992-08-12
ZW9992A1 (en) 1993-07-28
KR100232797B1 (en) 1999-12-01
MX9203875A (en) 1993-01-01
BR9202589A (en) 1993-03-16
AU654860B2 (en) 1994-11-24
GEP19981387B (en) 1998-11-10
EG19701A (en) 1995-10-31
LU87969A1 (en) 1993-02-15
SE9201925D0 (en) 1992-06-23
CA2071370A1 (en) 1993-01-04
RO109068B1 (en) 1994-11-30
FR2678606A1 (en) 1993-01-08
NL195098C (en) 2004-05-06
GB2257136B (en) 1996-01-31
AU1840492A (en) 1993-01-07
ES2041222B1 (en) 1994-05-16
GB2257136A (en) 1993-01-06
TR28834A (en) 1997-08-04
TW270109B (en) 1996-02-11
CN1068319A (en) 1993-01-27
DE4221480A1 (en) 1993-01-14
AT396784B (en) 1993-11-25
IT1259596B (en) 1996-03-20
PL174315B1 (en) 1998-07-31
ZA924907B (en) 1993-04-28
ITTO920540A0 (en) 1992-06-26
JP3173879B2 (en) 2001-06-04
ATA136592A (en) 1993-04-15
ITTO920540A1 (en) 1993-12-26
SE9201925L (en) 1993-01-04
PL295072A1 (en) 1993-01-11
RU2051879C1 (en) 1996-01-10
CN1065847C (en) 2001-05-16
FR2678606B1 (en) 1994-09-09
DE4221480C2 (en) 2000-10-05
BE1005914A4 (en) 1994-03-08
SE504729C2 (en) 1997-04-14
CA2071370C (en) 2004-08-24
ES2041222A1 (en) 1993-11-01
KR930002283A (en) 1993-02-22

Similar Documents

Publication Publication Date Title
JP3173879B2 (en) Mixtures and methods for forming bonded refractory bodies on surfaces
SE470308B (en) Method and powder composition to form a porous, refractory mass on a surface
RU2154044C2 (en) Method of forming refractory repair paste and powder mix
US5686028A (en) Process for forming a coherent refractory mass on a surface
JPH09132469A (en) Flame thermal spray material
KR970009993B1 (en) Ceramic welding process and powder mixture for use in the same
JP4109663B2 (en) Thermal spraying material for industrial kiln repair
JP3174179B2 (en) Thermal spray material
KR100332159B1 (en) Repair method of oxide-based refractory body and powder mixture for same
JP4464804B2 (en) Thermal spraying material for industrial kiln repair
US5700309A (en) Method and powder mixture for repairing oxide based refractory bodies
US2703445A (en) Process of making refractory ware
JP3009084B2 (en) Magnesia-alumina spray material
KR100196061B1 (en) Improvements in or relating to ceramic welding
US499248A (en) Basic lining
JP2018039939A (en) Coke oven blast furnace bottom repairing material
KR940006432B1 (en) Expansion flame spray materal
JPS59203782A (en) Limy flame spray repairing material
JP2024044395A (en) Powder for thermal spraying materials
GB2284415A (en) Repairing oxide based refractory bodies
JPS59225286A (en) Hot repairing method of inner wall of kiln, etc.
JPS63162581A (en) Flame spray material
JPH03205347A (en) Magnesia-carbon brick
JPH0791120B2 (en) Silica-based furnace wall repair spray material
JPS59223277A (en) Flame spraying repaiment material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12