JPH05198839A - Silicon integral type integrated light emitting element and manufacture thereof - Google Patents

Silicon integral type integrated light emitting element and manufacture thereof

Info

Publication number
JPH05198839A
JPH05198839A JP760492A JP760492A JPH05198839A JP H05198839 A JPH05198839 A JP H05198839A JP 760492 A JP760492 A JP 760492A JP 760492 A JP760492 A JP 760492A JP H05198839 A JPH05198839 A JP H05198839A
Authority
JP
Japan
Prior art keywords
light emitting
silicon
emitter
silicon substrate
quantum wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP760492A
Other languages
Japanese (ja)
Other versions
JP3117773B2 (en
Inventor
Katsuyuki Goto
克幸 後藤
Nobuo Saito
信雄 斎藤
Isao Fujimoto
勲 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP760492A priority Critical patent/JP3117773B2/en
Publication of JPH05198839A publication Critical patent/JPH05198839A/en
Application granted granted Critical
Publication of JP3117773B2 publication Critical patent/JP3117773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a miniature light emitting array element, an opto-electronic integrated circuit on a silicon substrate by using a miniature electron beam radiation source and a silicon light emitting unit of a quantum wire structure. CONSTITUTION:A light emitting element is formed by integrally forming a light emitting unit 1 having a quantum wire structure formed on a surface of a semiconductor silicon substrate 5, a miniature cold-cathode emitter array 2 for emitting an electron beam to the unit 1, and a gate electrode 4 for controlling emission of the emitter array 2 on the substrate 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体材料を用いた電気
−光変換素子に係り、III −V族、II−VI族系半導体を
用いたレーザーダイオード(LD)や発光ダイオード
(LED)、エレクトロルミネセンス(EL)素子を用
いることなく、シリコン材料のみで構成される発光アレ
イ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-optical conversion element using a semiconductor material, and a laser diode (LD), a light emitting diode (LED) or an electro element using a III-V group or II-VI group semiconductor. The present invention relates to a light emitting array element composed only of a silicon material without using a luminescence (EL) element.

【0002】本発明により、シリコン単体の微小光アレ
イ素子や、パネルディスプレイ、あるいは光−電子集積
回路(OEIC)、光結線への応用も可能である。
The present invention can be applied to a minute optical array element made of silicon alone, a panel display, an opto-electronic integrated circuit (OEIC), and an optical connection.

【0003】[0003]

【発明の概要】この発明は、半導体シリコン材料を用い
た、一体型集積発光素子およびその構成法に関するもの
で、シリコン表面に陽極酸化法で作製された量子細線構
造による発光領域と、微小冷陰極カソードをシリコン基
板上に一体化して作製し、冷陰極カソードからの電子ビ
ームを、発光領域に照射することでルミネッサンスを行
わせ、シリコン単一材料の一体型の微小発光素子アレイ
を作製することにより、面発光素子アレイや、パネルデ
ィスプレイ、さらに光単一電子集積回路、光結線などを
実現できるようにするものである。
SUMMARY OF THE INVENTION The present invention relates to a monolithic integrated light emitting device using a semiconductor silicon material and a method of constructing the same, which includes a light emitting region having a quantum wire structure formed on a silicon surface by an anodic oxidation method, and a micro cold cathode. A cathode is integrally formed on a silicon substrate, and a luminescent area is irradiated with an electron beam from a cold cathode cathode to perform luminescence, and an integrated micro light-emitting element array made of a single silicon material is manufactured. Thus, a surface emitting element array, a panel display, an optical single electronic integrated circuit, an optical connection, etc. can be realized.

【0004】[0004]

【従来の技術】従来、LSIを中心とする電子素子材料
としてのシリコンは、間接遷移型半導体であるため発光
効率は極めて小さく、光素子材料として用いることはで
きなかった。このため、電気−光変換素子は直接遷移型
半導体であるIII −V族やII−VI族系の化合物半導体に
より作製されたLDやLED、さらにEL膜からのもの
に限られていた。このため、シリコン半導体基板に発光
機能をもたせるためには、シリコン基板上にガリウムヒ
素をヘテロエピタキシャル成長させる必要があっ。しか
しながら、シリコンとガリウムヒ素では格子定数が4%
も異なるため、このような結晶膜には結晶欠陥が多く、
製作が困難でかつ寿命が短い等の問題があった。
2. Description of the Related Art Conventionally, silicon, which is an electronic device material centering on LSI, is an indirect transition type semiconductor and therefore has a very low luminous efficiency and cannot be used as an optical device material. Therefore, the electro-optical conversion element has been limited to LDs and LEDs made of III-V group or II-VI group compound semiconductors, which are direct transition type semiconductors, and those made of EL films. Therefore, it is necessary to heteroepitaxially grow gallium arsenide on the silicon substrate in order for the silicon semiconductor substrate to have a light emitting function. However, with silicon and gallium arsenide, the lattice constant is 4%.
Therefore, there are many crystal defects in such a crystal film,
It was difficult to manufacture and had a short life.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
はシリコン基板上に電気−光集積回路を作ろうとする
と、直接遷移型半導体である化合物半導体を用いて、発
光部を作製しなければならなかった。これには、シリコ
ン基板上にガリウムヒ素をヘテロエピタキシャル成長さ
せる必要があった。しかしながら、この結晶膜は、結晶
欠陥が多く、信頼性が低く、寿命も短かった。
As described above, conventionally, when an electro-optical integrated circuit is to be formed on a silicon substrate, a light emitting portion must be formed by using a compound semiconductor which is a direct transition type semiconductor. There wasn't. This required heteroepitaxial growth of gallium arsenide on the silicon substrate. However, this crystal film had many crystal defects, had low reliability, and had a short life.

【0006】このため、間接遷移型の半導体であるシリ
コン材料単体で電気−光集積回路を作ることは事実上,
不可能であった。
Therefore, it is practically possible to manufacture an electro-optical integrated circuit from a silicon material simple substance which is an indirect transition type semiconductor.
It was impossible.

【0007】本発明は、微小な電子ビーム放射源と、量
子細線構造によるシリコン発光部を用いてシリコン基板
上に微小発光アレイ素子や、光−電子集積回路を作るこ
とを目的とする。
An object of the present invention is to fabricate a minute light emitting array element or an opto-electronic integrated circuit on a silicon substrate by using a minute electron beam radiation source and a silicon light emitting portion having a quantum wire structure.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による発光素子は半導体シリコン基板表面に
形成された量子細線構造をもつ発光部と、該発光部に電
子ビームを照射するための微小冷陰極エミッターアレイ
と、該エミッターアレイのエミッションを制御するため
のゲート電極がシリコン基板面上に一体化して形成され
ることを特徴とする。
In order to achieve the above object, a light emitting device according to the present invention includes a light emitting portion having a quantum wire structure formed on a surface of a semiconductor silicon substrate, and an electron beam irradiating the light emitting portion. The micro cold cathode emitter array and the gate electrode for controlling the emission of the emitter array are integrally formed on the surface of the silicon substrate.

【0009】本発明による製造方法はシリコン基板の表
面に突起部を形成する工程,前記基板表面に絶縁膜を形
成する工程,前記突起部以外の絶縁膜上にエミッター用
金属膜を堆積する工程,前記エミッター用金属膜の前記
突起部と対向する部位に複数のくさび状先端を形成する
工程,前記突起部表面の絶縁膜を除去し陽極酸化して量
子細線構造を形成する工程および前記突起部と前記エミ
ッター用金属との中間にゲート電極を形成する工程を有
することを特徴とする。
The manufacturing method according to the present invention comprises a step of forming a projection on the surface of a silicon substrate, a step of forming an insulating film on the surface of the substrate, a step of depositing a metal film for an emitter on an insulating film other than the projection, A step of forming a plurality of wedge-shaped tips at a portion of the emitter metal film facing the protrusion, a step of removing the insulating film on the surface of the protrusion and anodizing to form a quantum wire structure; The method further comprises the step of forming a gate electrode in the middle of the metal for the emitter.

【0010】[0010]

【作用】本発明においては、シリコン基板表面に形成し
た量子細線構造と、その量子細線構造と対向して先端が
複数のくさび状を有するエミッターを有する。それによ
ってシリコン基板上に発光素子を形成できる。
The present invention has a quantum wire structure formed on the surface of a silicon substrate and an emitter having a plurality of wedge-shaped tips facing the quantum wire structure. Thereby, the light emitting device can be formed on the silicon substrate.

【0011】[0011]

【実施例】まず、本発明の基本的構造について説明す
る。シリコン基板上の特定された領域に量子細線構造の
発光部を作り、この近傍に微小冷陰極エミッターアレイ
を作製する。このエミッターからシリコン基板へ電界放
射を行い、発光部への電子ビーム励起により発光を行わ
せる。
First, the basic structure of the present invention will be described. A light emitting part having a quantum wire structure is formed in a specified region on a silicon substrate, and a micro cold cathode emitter array is formed in the vicinity thereof. Electric field emission is performed from this emitter to the silicon substrate, and light is emitted by exciting the electron beam to the light emitting portion.

【0012】次に本発明の実施例について図面を参照し
て説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0013】本発明によるシリコン微小発光素子アレイ
の1画素を図1,図2および図3に示す。図1は断面
図、図2は平面図、図3はエミッター先端部の部分拡大
平面図である。図1および図2を参照すると、シリコン
基板5上に作製された量子細線構造を用いた光発生部1
と、その周辺の絶縁膜3上に形成された電子放射部2
と、その間に形成された制御用ゲート電極4とを備えた
ものを1画素単位とし、これを真空中で動作させる。
One pixel of the silicon micro light emitting device array according to the present invention is shown in FIGS. 1, 2 and 3. FIG. 1 is a sectional view, FIG. 2 is a plan view, and FIG. 3 is a partially enlarged plan view of a tip portion of an emitter. Referring to FIGS. 1 and 2, a light generating part 1 using a quantum wire structure formed on a silicon substrate 5.
And the electron emitting portion 2 formed on the insulating film 3 around the
And a control gate electrode 4 formed between them are set as one pixel unit, and this is operated in vacuum.

【0014】次にこの素子の作成方法、および動作につ
いて説明する。
Next, a method of manufacturing this element and its operation will be described.

【0015】光発生部1は例えば、シリコン基板5をH
F溶液中で低電流密度の陽極酸化を行い作製する。この
陽極酸化でシリコン表面は、ポーラスな膜となりこれが
量子細線構造としての機能をもつことになる(例えば、
L.T Canham,Appl.Phys.Let
t.57(10),3 September 1990
“Sillicon quantum wire ar
ray fabrication by electo
rochemical and chemical d
issolution of wafers”)。図4
に、我々が測定したこの量子細線構造からのカソードル
ミネッセンスによる発光スペクトルの一例を示す。この
量子細線構造による発光部は、上に述べた作製方法のみ
ならず量子細線構造による発光構造に作製できれば発光
させることができる。
The light generating section 1 is, for example, a silicon substrate 5 with a H
It is manufactured by performing anodic oxidation with a low current density in the F solution. By this anodic oxidation, the silicon surface becomes a porous film, which has a function as a quantum wire structure (for example,
L. T Canham, Appl. Phys. Let
t. 57 (10), 3 September 1990
"Silicon quantum wire ar
ray fabrication by electo
rochemical and chemical d
isolation of wafers ").
Fig. 1 shows an example of the emission spectrum by cathode luminescence from this quantum wire structure that we measured. The light emitting portion having the quantum wire structure can emit light as long as it can be manufactured by the light emitting structure having the quantum wire structure in addition to the manufacturing method described above.

【0016】次に、冷陰極エミッターアレイ2に関して
は、図1、図2および図3に示す通り、薄膜電極2を櫛
形に形成し、エミッターとなる各櫛形の先端の曲率半径
を、電界放射ができるように小さく作製する。この微小
な突起のアレイが電界放射部を形成する(例えば、It
oh and Kanemaru “Metal−Fi
lm−Edge Field Emitter Arr
ay With ASelf−Aligned Gat
e” Technical Digeston IVM
C91,Nagahama)。このときのフィールドエ
ミッション電流は冷陰極カソードの表面の障壁ポテンシ
ャルを電子がトンネリングすることによって流れ、電流
密度は、Fowler−Nordheimトンネル電流
により支配され、エミッターにかかる電界に対して指数
関数的に増加する。
Next, regarding the cold cathode emitter array 2, as shown in FIGS. 1, 2 and 3, the thin film electrode 2 is formed in a comb shape, and the radius of curvature of the tip of each comb shape serving as the emitter is set by the field emission. Make it as small as possible. This array of small protrusions forms a field emission portion (for example, It).
oh and Kanemaru "Metal-Fi"
lm-Edge Field Emitter Arr
ay With ASelf-Aligned Gat
e "Technical Digeston IVM
C91, Nagahama). The field emission current at this time flows by electrons tunneling through the barrier potential on the surface of the cold cathode, and the current density is controlled by the Fowler-Nordheim tunnel current and increases exponentially with respect to the electric field applied to the emitter. ..

【0017】次に、動作について説明する。Next, the operation will be described.

【0018】冷陰極エミッター2と発光部1に電界放射
が可能な電圧が加えられたとき、電子ビームがエミッタ
ー2から発光部1へ到達し電子ビーム励起が行われ発光
する。このとき、電子ビームを制御するためゲート4に
バイアス電圧が加えられビーム電流が制御される。
When a voltage capable of field emission is applied to the cold cathode emitter 2 and the light emitting portion 1, an electron beam reaches the light emitting portion 1 from the emitter 2 and is excited by the electron beam to emit light. At this time, in order to control the electron beam, a bias voltage is applied to the gate 4 to control the beam current.

【0019】このような発光素子は、ここで説明した形
状のものだけでなく、上に示した動作ができれば任意の
形状のものでも可能である。
Such a light emitting element is not limited to the shape described here, but may have any shape as long as the above-described operation can be performed.

【0020】図5には、図1および図2で示した素子を
アレイ化するときの一例を示す。
FIG. 5 shows an example of forming the elements shown in FIGS. 1 and 2 into an array.

【0021】次に、製作工程の一例を、図6(a)〜
(k)を用いて具体的に説明する。図6(a)に示すよ
うにシリコン単結晶ウエハーを基板11としてその上に
フォトレジストパターン12を形成し、フォトリソグラ
フィーおよびドライエッチングプロセスで発光部となる
部分を凸型11Aに形成する(図6(b))。次に、絶
縁膜13(例えば、シリコン酸化膜)をこの上に堆積さ
せ(図6(c))、この上にカソード部形成用高融点金
属薄膜14(例えば、W薄膜)を堆積する(図6
(d))。この金属薄膜をフォトリソグラフィーおよび
ドライエッチング加工を用いてカソード部15を形成す
る。このときカソードの先端15Aをドライエッチング
法によりくさび型に加工した後、先端部の曲率半径をさ
らに小さくするためにウエットエッチング法でオーバー
エッチングを行う。次に、フォトリソグラフィーの後、
エッチングによりこのカソード部以外の絶縁膜を適度の
膜厚にエッチングを行い図6(f)に示す形状とする。
この後、ゲート用の高融点金属薄膜16を堆積し(図6
(g))、図6(h)に示すセルファライン型のゲート
電極17を形成する。最後に、ポーラスシリコン膜形成
のため、発光部の絶縁膜13を取り去り(図6
(i))、フォトレジスト18を用いフォトリソグラフ
ィー(図6(j))および陽極酸化による量子細線構造
19(図6(k))を形成し、発光部とする。
Next, an example of the manufacturing process is shown in FIGS.
A specific description will be given using (k). As shown in FIG. 6A, a silicon single crystal wafer is used as a substrate 11 and a photoresist pattern 12 is formed thereon, and a light emitting portion is formed on the convex mold 11A by photolithography and dry etching processes (FIG. 6). (B)). Next, an insulating film 13 (for example, a silicon oxide film) is deposited on this (FIG. 6C), and a refractory metal thin film 14 for forming a cathode portion (for example, W thin film) is deposited on this (FIG. 6C). 6
(D)). The cathode portion 15 is formed on the metal thin film by photolithography and dry etching. At this time, the tip 15A of the cathode is processed into a wedge shape by a dry etching method, and then overetching is performed by a wet etching method in order to further reduce the radius of curvature of the tip portion. Then, after photolithography,
By etching, the insulating film other than the cathode portion is etched to an appropriate thickness to form the shape shown in FIG. 6 (f).
After that, a refractory metal thin film 16 for the gate is deposited (see FIG. 6).
(G)), and the self-aligned gate electrode 17 shown in FIG. 6 (h) is formed. Finally, the insulating film 13 of the light emitting portion is removed to form the porous silicon film (see FIG. 6).
(I)), the photolithography (FIG. 6 (j)) using the photoresist 18, and the quantum wire structure 19 (FIG. 6 (k)) by anodic oxidation are formed, and it is set as a light emitting part.

【0022】[0022]

【発明の効果】本発明は、量子細線構造による電気−光
変換と、微小冷陰極エミッターとを組み合わせること
で、シリコン単一材料で微小発光アレイ素子を作製でき
る。このため、シリコン集積回路技術をそのまま応用で
き、超微細な発光素子アレイの作製も可能となる。
According to the present invention, by combining the electro-optical conversion by the quantum wire structure and the minute cold cathode emitter, the minute light emitting array element can be manufactured with a single silicon material. Therefore, the silicon integrated circuit technology can be applied as it is, and an ultrafine light emitting element array can be manufactured.

【0023】これにより、微小発光素子をはじめ、シリ
コン一体型パネルディスプレイや、光−電子集積回路、
光結線の実現など幅広い応用が可能である。
As a result, in addition to the minute light emitting element, a silicon integrated panel display, an opto-electronic integrated circuit,
Wide range of applications such as realization of optical connections are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例においてシリコン基板上に作製
された1画素分の断面を示す図である。
FIG. 1 is a diagram showing a cross section of one pixel formed on a silicon substrate in an example of the present invention.

【図2】図1に示した1画素のレイアウト図を示す平面
図である。
FIG. 2 is a plan view showing a layout diagram of one pixel shown in FIG.

【図3】エミッター先端部を示す拡大平面図である。FIG. 3 is an enlarged plan view showing a tip of an emitter.

【図4】シリコン表面に陽極酸化により作製した量子細
線構造からのカソードルミネッセンスのスペクトル特性
の一例を示す特性図である。
FIG. 4 is a characteristic diagram showing an example of spectral characteristics of cathode luminescence from a quantum wire structure formed on a silicon surface by anodic oxidation.

【図5】図1および図2に示した素子を画素集積させた
ときのレイアウトの例を示す平面図である。
FIG. 5 is a plan view showing an example of a layout when the elements shown in FIGS. 1 and 2 are pixel-integrated.

【図6】本発明による発光素子の製造工程の一例を説明
する断面図である。
FIG. 6 is a cross-sectional view illustrating an example of a manufacturing process of a light emitting device according to the present invention.

【符号の説明】[Explanation of symbols]

1 発光部(量子細線構造) 2 冷陰極エミッターアレイ 3 絶縁膜 4 制御用ゲート 5 Si基板 1 Light emitting part (quantum wire structure) 2 Cold cathode emitter array 3 Insulating film 4 Control gate 5 Si substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体シリコン基板表面に形成された量
子細線構造をもつ発光部と、該発光部に電子ビームを照
射するための微小冷陰極エミッターアレイと、該エミッ
ターアレイのエミッションを制御するためのゲート電極
がシリコン基板面上に一体化して形成されていることを
特徴とするシリコン一体型集積発光素子。
1. A light emitting part having a quantum wire structure formed on the surface of a semiconductor silicon substrate, a micro cold cathode emitter array for irradiating the light emitting part with an electron beam, and an emission control of the emitter array. A silicon integrated light emitting device, wherein a gate electrode is integrally formed on a surface of a silicon substrate.
【請求項2】 シリコン基板の表面に突起部を形成する
工程,前記基板表面に絶縁膜を形成する工程,前記突起
部以外の絶縁膜上にエミッター用金属膜を堆積する工
程,前記エミッター用金属膜の前記突起部と対向する部
位に複数のくさび状先端を形成する工程,前記突起部表
面の絶縁膜を除去し陽極酸化して量子細線構造を形成す
る工程および前記突起部と前記エミッター用金属との中
間にゲート電極を形成する工程を有することを特徴とす
るシリコン一体型集積発光素子の製造方法。
2. A step of forming a protrusion on a surface of a silicon substrate, a step of forming an insulating film on the surface of the substrate, a step of depositing a metal film for an emitter on an insulating film other than the protrusion, the metal for an emitter. A step of forming a plurality of wedge-shaped tips on a portion of the film facing the protrusion, a step of removing the insulating film on the surface of the protrusion and anodizing to form a quantum wire structure, and the protrusion and the metal for the emitter And a step of forming a gate electrode in the middle thereof, and a method for manufacturing a silicon integrated light emitting device.
JP760492A 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same Expired - Fee Related JP3117773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP760492A JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP760492A JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05198839A true JPH05198839A (en) 1993-08-06
JP3117773B2 JP3117773B2 (en) 2000-12-18

Family

ID=11670409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP760492A Expired - Fee Related JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3117773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809466B1 (en) * 2005-07-26 2008-03-03 인더스트리얼 테크놀로지 리서치 인스티튜트 Field emission display device and method of operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038067A (en) 1996-07-18 1998-02-13 Toyota Motor Corp Control device of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809466B1 (en) * 2005-07-26 2008-03-03 인더스트리얼 테크놀로지 리서치 인스티튜트 Field emission display device and method of operating the same

Also Published As

Publication number Publication date
JP3117773B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
US5739552A (en) Semiconductor light emitting diode producing visible light
JP4230669B2 (en) Flat panel solid light source
US9455373B2 (en) Light emitting element, method of manufacturing the same, and light emitting device
JP3226745B2 (en) Semiconductor cold electron-emitting device and device using the same
JP2005197718A (en) Light-emitting device and method for manufacturing the same
KR930010732B1 (en) Light element
US5807764A (en) Vertical cavity electron beam pumped semiconductor lasers and methods
US20020067750A1 (en) Electron beam pumped semiconductor laser screen and associated fabrication method
EP0434330A2 (en) Field emission device and process for producing the same
JPH05283796A (en) Surface emission type semiconductor laser
JP3117773B2 (en) Silicon-integrated integrated light emitting device and method of manufacturing the same
JPH0594762A (en) Field emission type electron source and manufacture thereof
US5949182A (en) Light-emitting, nanometer scale, micromachined silicon tips
JP3489395B2 (en) Semiconductor light emitting device
US6340425B2 (en) Method of manufacturing cold cathode device having porous emitter
JPH05218589A (en) Electron beam excited semiconductor light-emitting element
US6063644A (en) Light-emitting element and array with etched surface, and fabrication method thereof
JP2000149765A (en) Fluorescent display device
US5404025A (en) Semiconductor vacuum device with planar structure
JP3260502B2 (en) Electron-emitting device
JPH10270753A (en) Semiconductor light-emitting device and display apparatus
JP2002015658A (en) Electric field emission type cold cathode device and its manufacturing method, as well as vacuum microdevice
JP2003008055A (en) Method of manufacturing semiconductor light-emitting element
JP4630596B2 (en) Manufacturing method of semiconductor laser device
JP3321986B2 (en) Laser CRT and method of manufacturing light emitting element used therein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees