JP3117773B2 - Silicon-integrated integrated light emitting device and method of manufacturing the same - Google Patents

Silicon-integrated integrated light emitting device and method of manufacturing the same

Info

Publication number
JP3117773B2
JP3117773B2 JP760492A JP760492A JP3117773B2 JP 3117773 B2 JP3117773 B2 JP 3117773B2 JP 760492 A JP760492 A JP 760492A JP 760492 A JP760492 A JP 760492A JP 3117773 B2 JP3117773 B2 JP 3117773B2
Authority
JP
Japan
Prior art keywords
light emitting
silicon
integrated
emitter
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP760492A
Other languages
Japanese (ja)
Other versions
JPH05198839A (en
Inventor
克幸 後藤
信雄 斎藤
勲 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP760492A priority Critical patent/JP3117773B2/en
Publication of JPH05198839A publication Critical patent/JPH05198839A/en
Application granted granted Critical
Publication of JP3117773B2 publication Critical patent/JP3117773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体材料を用いた電気
−光変換素子に係り、III −V族、II−VI族系半導体を
用いたレーザーダイオード(LD)や発光ダイオード
(LED)、エレクトロルミネセンス(EL)素子を用
いることなく、シリコン材料のみで構成される発光アレ
イ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-optical conversion device using a semiconductor material, and relates to a laser diode (LD), a light emitting diode (LED), an electro-optical device using a III-V or II-VI group semiconductor. The present invention relates to a light-emitting array element composed of only a silicon material without using a luminescence (EL) element.

【0002】本発明により、シリコン単体の微小光アレ
イ素子や、パネルディスプレイ、あるいは光−電子集積
回路(OEIC)、光結線への応用も可能である。
According to the present invention, it is also possible to apply the present invention to a micro optical array element made of silicon alone, a panel display, an optical-electronic integrated circuit (OEIC), and an optical connection.

【0003】[0003]

【発明の概要】この発明は、半導体シリコン材料を用い
た、一体型集積発光素子およびその構成法に関するもの
で、シリコン表面に陽極酸化法で作製された量子細線構
造による発光領域と、微小冷陰極カソードをシリコン基
板上に一体化して作製し、冷陰極カソードからの電子ビ
ームを、発光領域に照射することでルミネッサンスを行
わせ、シリコン単一材料の一体型の微小発光素子アレイ
を作製することにより、面発光素子アレイや、パネルデ
ィスプレイ、さらに光単一電子集積回路、光結線などを
実現できるようにするものである。
SUMMARY OF THE INVENTION The present invention relates to an integrated light-emitting device using a semiconductor silicon material and a method of constructing the same. A light-emitting region having a quantum wire structure formed on a silicon surface by anodization, Fabricating a cathode integrated on a silicon substrate, irradiating the light-emitting area with an electron beam from a cold cathode cathode to perform luminescence, and fabricating an integrated micro-light-emitting element array of single silicon material Thereby, a surface light emitting element array, a panel display, an optical single electronic integrated circuit, an optical connection, and the like can be realized.

【0004】[0004]

【従来の技術】従来、LSIを中心とする電子素子材料
としてのシリコンは、間接遷移型半導体であるため発光
効率は極めて小さく、光素子材料として用いることはで
きなかった。このため、電気−光変換素子は直接遷移型
半導体であるIII −V族やII−VI族系の化合物半導体に
より作製されたLDやLED、さらにEL膜からのもの
に限られていた。このため、シリコン半導体基板に発光
機能をもたせるためには、シリコン基板上にガリウムヒ
素をヘテロエピタキシャル成長させる必要があっ。しか
しながら、シリコンとガリウムヒ素では格子定数が4%
も異なるため、このような結晶膜には結晶欠陥が多く、
製作が困難でかつ寿命が短い等の問題があった。
2. Description of the Related Art Conventionally, silicon as an electronic element material mainly for LSI is an indirect transition type semiconductor, so its luminous efficiency is extremely low, and it has not been possible to use it as an optical element material. For this reason, the electro-optical conversion elements have been limited to LDs and LEDs made of direct transition semiconductors such as III-V and II-VI compound semiconductors, and also EL elements. Therefore, gallium arsenide needs to be heteroepitaxially grown on a silicon substrate in order to provide a light emitting function to the silicon semiconductor substrate. However, silicon and gallium arsenide have a lattice constant of 4%.
Therefore, such a crystal film has many crystal defects,
There are problems such as difficulty in manufacturing and short life.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
はシリコン基板上に電気−光集積回路を作ろうとする
と、直接遷移型半導体である化合物半導体を用いて、発
光部を作製しなければならなかった。これには、シリコ
ン基板上にガリウムヒ素をヘテロエピタキシャル成長さ
せる必要があった。しかしながら、この結晶膜は、結晶
欠陥が多く、信頼性が低く、寿命も短かった。
As described above, conventionally, when an electro-optical integrated circuit is to be manufactured on a silicon substrate, a light emitting portion must be manufactured using a compound semiconductor which is a direct transition type semiconductor. Did not. This required the heteroepitaxial growth of gallium arsenide on a silicon substrate. However, this crystal film had many crystal defects, low reliability, and short life.

【0006】このため、間接遷移型の半導体であるシリ
コン材料単体で電気−光集積回路を作ることは事実上,
不可能であった。
For this reason, it is practically impossible to form an electro-optical integrated circuit using only a silicon material which is an indirect transition type semiconductor.
It was impossible.

【0007】本発明は、微小な電子ビーム放射源と、量
子細線構造によるシリコン発光部を用いてシリコン基板
上に微小発光アレイ素子や、光−電子集積回路を作るこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to produce a micro light emitting array element or an opto-electronic integrated circuit on a silicon substrate using a micro electron beam radiation source and a silicon light emitting portion having a quantum wire structure.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による発光素子は半導体シリコン基板表面に
形成された量子細線構造をもつ発光部と、該発光部に電
子ビームを照射するための微小冷陰極エミッターアレイ
と、該エミッターアレイのエミッションを制御するため
のゲート電極がシリコン基板面上に一体化して形成され
ることを特徴とする。
In order to achieve the above object, a light emitting device according to the present invention has a light emitting portion having a quantum wire structure formed on the surface of a semiconductor silicon substrate, and a light emitting portion for irradiating the light emitting portion with an electron beam. The micro cold cathode emitter array and a gate electrode for controlling the emission of the emitter array are integrally formed on a silicon substrate surface.

【0009】本発明による製造方法はシリコン基板の表
面に突起部を形成する工程,前記基板表面に絶縁膜を形
成する工程,前記突起部以外の絶縁膜上にエミッター用
金属膜を堆積する工程,前記エミッター用金属膜の前記
突起部と対向する部位に複数のくさび状先端を形成する
工程,前記突起部表面の絶縁膜を除去し陽極酸化して量
子細線構造を形成する工程および前記突起部と前記エミ
ッター用金属との中間にゲート電極を形成する工程を有
することを特徴とする。
The manufacturing method according to the present invention includes a step of forming a projection on the surface of a silicon substrate, a step of forming an insulating film on the surface of the substrate, a step of depositing a metal film for an emitter on the insulating film other than the projection. Forming a plurality of wedge-shaped tips in a portion of the metal film for the emitter opposite to the protrusion; removing an insulating film on the surface of the protrusion and anodizing to form a quantum wire structure; A step of forming a gate electrode in the middle of the emitter metal.

【0010】[0010]

【作用】本発明においては、シリコン基板表面に形成し
た量子細線構造と、その量子細線構造と対向して先端が
複数のくさび状を有するエミッターを有する。それによ
ってシリコン基板上に発光素子を形成できる。
According to the present invention, there is provided a quantum wire structure formed on the surface of a silicon substrate, and an emitter having a plurality of wedge-shaped tips facing the quantum wire structure. Thereby, a light emitting element can be formed on the silicon substrate.

【0011】[0011]

【実施例】まず、本発明の基本的構造について説明す
る。シリコン基板上の特定された領域に量子細線構造の
発光部を作り、この近傍に微小冷陰極エミッターアレイ
を作製する。このエミッターからシリコン基板へ電界放
射を行い、発光部への電子ビーム励起により発光を行わ
せる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic structure of the present invention will be described. A light emitting portion having a quantum wire structure is formed in a specified region on a silicon substrate, and a micro cold cathode emitter array is formed in the vicinity thereof. Electric field emission is performed from the emitter to the silicon substrate, and light emission is performed by exciting the light emitting section with an electron beam.

【0012】次に本発明の実施例について図面を参照し
て説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0013】本発明によるシリコン微小発光素子アレイ
の1画素を図1,図2および図3に示す。図1は断面
図、図2は平面図、図3はエミッター先端部の部分拡大
平面図である。図1および図2を参照すると、シリコン
基板5上に作製された量子細線構造を用いた光発生部1
と、その周辺の絶縁膜3上に形成された電子放射部2
と、その間に形成された制御用ゲート電極4とを備えた
ものを1画素単位とし、これを真空中で動作させる。
FIGS. 1, 2 and 3 show one pixel of the silicon micro light emitting element array according to the present invention. 1 is a cross-sectional view, FIG. 2 is a plan view, and FIG. 3 is a partially enlarged plan view of the tip of the emitter. Referring to FIG. 1 and FIG. 2, a light generating unit 1 using a quantum wire structure manufactured on a silicon substrate 5
And the electron emitting portion 2 formed on the insulating film 3 around the
And the control gate electrode 4 formed between them are made into one pixel unit, which is operated in a vacuum.

【0014】次にこの素子の作成方法、および動作につ
いて説明する。
Next, a description will be given of a method of producing this element and its operation.

【0015】光発生部1は例えば、シリコン基板5をH
F溶液中で低電流密度の陽極酸化を行い作製する。この
陽極酸化でシリコン表面は、ポーラスな膜となりこれが
量子細線構造としての機能をもつことになる(例えば、
L.T Canham,Appl.Phys.Let
t.57(10),3 September 1990
“Sillicon quantum wire ar
ray fabrication by electo
rochemical and chemical d
issolution of wafers”)。図4
に、我々が測定したこの量子細線構造からのカソードル
ミネッセンスによる発光スペクトルの一例を示す。この
量子細線構造による発光部は、上に述べた作製方法のみ
ならず量子細線構造による発光構造に作製できれば発光
させることができる。
The light generating unit 1 is, for example, an H
A low current density anodic oxidation is carried out in the F solution to produce. By this anodization, the silicon surface becomes a porous film, which has a function as a quantum wire structure (for example,
L. T Canham, Appl. Phys. Let
t. 57 (10), 3 September 1990
“Silicon quantum wire ar
ray fabrication by electo
rochemical and chemical d
isolation of wafers "). FIG.
An example of an emission spectrum measured by the cathode luminescence from this quantum wire structure measured by us is shown below. The light emitting portion having the quantum wire structure can emit light if it can be manufactured not only in the above-described manufacturing method but also in a light emitting structure having the quantum wire structure.

【0016】次に、冷陰極エミッターアレイ2に関して
は、図1、図2および図3に示す通り、薄膜電極2を櫛
形に形成し、エミッターとなる各櫛形の先端の曲率半径
を、電界放射ができるように小さく作製する。この微小
な突起のアレイが電界放射部を形成する(例えば、It
oh and Kanemaru “Metal−Fi
lm−Edge Field Emitter Arr
ay With ASelf−Aligned Gat
e” Technical Digeston IVM
C91,Nagahama)。このときのフィールドエ
ミッション電流は冷陰極カソードの表面の障壁ポテンシ
ャルを電子がトンネリングすることによって流れ、電流
密度は、Fowler−Nordheimトンネル電流
により支配され、エミッターにかかる電界に対して指数
関数的に増加する。
Next, as for the cold cathode emitter array 2, as shown in FIGS. 1, 2 and 3, the thin film electrode 2 is formed in a comb shape, and the radius of curvature of the tip of each comb shape as an emitter is determined by the field emission. Make it as small as possible. This array of minute projections forms a field emission part (for example, It
oh and Kanemaru “Metal-Fi
lm-Edge Field Emitter Arr
ay With ASelf-Aligned Gat
e ”Technical Digeston IVM
C91, Nagahama). At this time, the field emission current flows due to the tunneling of electrons through the barrier potential on the surface of the cold cathode, and the current density is dominated by the Fowler-Nordheim tunnel current and increases exponentially with respect to the electric field applied to the emitter. .

【0017】次に、動作について説明する。Next, the operation will be described.

【0018】冷陰極エミッター2と発光部1に電界放射
が可能な電圧が加えられたとき、電子ビームがエミッタ
ー2から発光部1へ到達し電子ビーム励起が行われ発光
する。このとき、電子ビームを制御するためゲート4に
バイアス電圧が加えられビーム電流が制御される。
When a voltage allowing electric field emission is applied to the cold cathode emitter 2 and the light emitting section 1, an electron beam reaches the light emitting section 1 from the emitter 2 and is excited by the electron beam to emit light. At this time, a bias voltage is applied to the gate 4 to control the electron beam, and the beam current is controlled.

【0019】このような発光素子は、ここで説明した形
状のものだけでなく、上に示した動作ができれば任意の
形状のものでも可能である。
Such a light emitting element can be not only of the shape described here but also of any shape as long as the above operation can be performed.

【0020】図5には、図1および図2で示した素子を
アレイ化するときの一例を示す。
FIG. 5 shows an example in which the elements shown in FIGS. 1 and 2 are arrayed.

【0021】次に、製作工程の一例を、図6(a)〜
(k)を用いて具体的に説明する。図6(a)に示すよ
うにシリコン単結晶ウエハーを基板11としてその上に
フォトレジストパターン12を形成し、フォトリソグラ
フィーおよびドライエッチングプロセスで発光部となる
部分を凸型11Aに形成する(図6(b))。次に、絶
縁膜13(例えば、シリコン酸化膜)をこの上に堆積さ
せ(図6(c))、この上にカソード部形成用高融点金
属薄膜14(例えば、W薄膜)を堆積する(図6
(d))。この金属薄膜をフォトリソグラフィーおよび
ドライエッチング加工を用いてカソード部15を形成す
る。このときカソードの先端15Aをドライエッチング
法によりくさび型に加工した後、先端部の曲率半径をさ
らに小さくするためにウエットエッチング法でオーバー
エッチングを行う。次に、フォトリソグラフィーの後、
エッチングによりこのカソード部以外の絶縁膜を適度の
膜厚にエッチングを行い図6(f)に示す形状とする。
この後、ゲート用の高融点金属薄膜16を堆積し(図6
(g))、図6(h)に示すセルファライン型のゲート
電極17を形成する。最後に、ポーラスシリコン膜形成
のため、発光部の絶縁膜13を取り去り(図6
(i))、フォトレジスト18を用いフォトリソグラフ
ィー(図6(j))および陽極酸化による量子細線構造
19(図6(k))を形成し、発光部とする。
Next, an example of the manufacturing process will be described with reference to FIGS.
A specific description will be given using (k). As shown in FIG. 6A, a silicon single crystal wafer is used as a substrate 11, a photoresist pattern 12 is formed thereon, and a portion to be a light emitting portion is formed in a convex 11A by photolithography and dry etching processes (FIG. 6). (B)). Next, an insulating film 13 (for example, a silicon oxide film) is deposited thereon (FIG. 6C), and a refractory metal thin film 14 for forming a cathode portion (for example, a W thin film) is deposited thereon (FIG. 6C). 6
(D)). The cathode portion 15 is formed from the metal thin film by using photolithography and dry etching. At this time, after the tip 15A of the cathode is processed into a wedge shape by dry etching, overetching is performed by wet etching in order to further reduce the radius of curvature of the tip. Next, after photolithography,
The insulating film other than the cathode portion is etched to an appropriate thickness by etching to obtain a shape shown in FIG.
Thereafter, a high melting point metal thin film 16 for a gate is deposited (FIG. 6).
(G)), a self-aligned gate electrode 17 shown in FIG. 6 (h) is formed. Finally, to form a porous silicon film, the insulating film 13 of the light emitting portion is removed (FIG. 6).
(I)), a photolithography (FIG. 6 (j)) using the photoresist 18 and a quantum wire structure 19 (FIG. 6 (k)) by anodic oxidation are formed to form a light emitting portion.

【0022】[0022]

【発明の効果】本発明は、量子細線構造による電気−光
変換と、微小冷陰極エミッターとを組み合わせること
で、シリコン単一材料で微小発光アレイ素子を作製でき
る。このため、シリコン集積回路技術をそのまま応用で
き、超微細な発光素子アレイの作製も可能となる。
According to the present invention, by combining electro-optical conversion with a quantum wire structure and a micro cold cathode emitter, a micro light emitting array element can be manufactured from a single silicon material. For this reason, the silicon integrated circuit technology can be applied as it is, and it becomes possible to manufacture an ultra-fine light emitting element array.

【0023】これにより、微小発光素子をはじめ、シリ
コン一体型パネルディスプレイや、光−電子集積回路、
光結線の実現など幅広い応用が可能である。
[0023] Thus, a small light emitting element, a silicon integrated panel display, an opto-electronic integrated circuit,
A wide variety of applications are possible, such as the realization of optical connections.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例においてシリコン基板上に作製
された1画素分の断面を示す図である。
FIG. 1 is a diagram showing a cross section of one pixel manufactured on a silicon substrate in an example of the present invention.

【図2】図1に示した1画素のレイアウト図を示す平面
図である。
FIG. 2 is a plan view showing a layout diagram of one pixel shown in FIG. 1;

【図3】エミッター先端部を示す拡大平面図である。FIG. 3 is an enlarged plan view showing a tip portion of an emitter.

【図4】シリコン表面に陽極酸化により作製した量子細
線構造からのカソードルミネッセンスのスペクトル特性
の一例を示す特性図である。
FIG. 4 is a characteristic diagram showing an example of cathodoluminescence spectral characteristics from a quantum wire structure formed on a silicon surface by anodic oxidation.

【図5】図1および図2に示した素子を画素集積させた
ときのレイアウトの例を示す平面図である。
FIG. 5 is a plan view showing a layout example when the elements shown in FIGS. 1 and 2 are integrated in pixels.

【図6】本発明による発光素子の製造工程の一例を説明
する断面図である。
FIG. 6 is a sectional view illustrating an example of a manufacturing process of a light emitting device according to the present invention.

【符号の説明】[Explanation of symbols]

1 発光部(量子細線構造) 2 冷陰極エミッターアレイ 3 絶縁膜 4 制御用ゲート 5 Si基板 DESCRIPTION OF SYMBOLS 1 Light-emitting part (quantum wire structure) 2 Cold cathode emitter array 3 Insulating film 4 Control gate 5 Si substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−188980(JP,A) 特開 平5−159696(JP,A) 1991年秋季第52回応物学会予稿集 9 p−D−12 p.634 (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/00 - 5/50 H01J 1/30 - 1/316 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-188980 (JP, A) JP-A-5-159696 (JP, A) Proceedings of the 52nd Autumn Meeting of the Correspondence Society of Japan in 1991 9 p-D-12 p. 634 (58) Field surveyed (Int.Cl. 7 , DB name) H01L 33/00 H01S 5/00-5/50 H01J 1/30-1/316

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体シリコン基板表面に形成された量
子細線構造をもつ発光部と、該発光部に電子ビームを照
射するための微小冷陰極エミッターアレイと、該エミッ
ターアレイのエミッションを制御するためのゲート電極
がシリコン基板面上に一体化して形成されていることを
特徴とするシリコン一体型集積発光素子。
1. A light emitting unit having a quantum wire structure formed on a surface of a semiconductor silicon substrate, a micro cold cathode emitter array for irradiating the light emitting unit with an electron beam, and an emission control unit for controlling the emission of the emitter array. A silicon-integrated integrated light emitting device, wherein a gate electrode is formed integrally on a silicon substrate surface.
【請求項2】 シリコン基板の表面に突起部を形成する
工程,前記基板表面に絶縁膜を形成する工程,前記突起
部以外の絶縁膜上にエミッター用金属膜を堆積する工
程,前記エミッター用金属膜の前記突起部と対向する部
位に複数のくさび状先端を形成する工程,前記突起部表
面の絶縁膜を除去し陽極酸化して量子細線構造を形成す
る工程および前記突起部と前記エミッター用金属との中
間にゲート電極を形成する工程を有することを特徴とす
るシリコン一体型集積発光素子の製造方法。
2. A step of forming a projection on the surface of a silicon substrate, a step of forming an insulating film on the surface of the substrate, a step of depositing a metal film for an emitter on the insulating film other than the projection, Forming a plurality of wedge-shaped tips on a portion of the film opposed to the protrusions, removing an insulating film on the surface of the protrusions and anodizing to form a quantum wire structure, and forming the protrusions and the metal for the emitter. Forming a gate electrode in the middle of the method for manufacturing a silicon-integrated integrated light emitting device.
JP760492A 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same Expired - Fee Related JP3117773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP760492A JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP760492A JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05198839A JPH05198839A (en) 1993-08-06
JP3117773B2 true JP3117773B2 (en) 2000-12-18

Family

ID=11670409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP760492A Expired - Fee Related JP3117773B2 (en) 1992-01-20 1992-01-20 Silicon-integrated integrated light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3117773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174263B1 (en) 1996-07-18 2001-01-16 Toyota Jidosha Kabushiki Kaisha Automotive vehicle control apparatus including means for preventing between running stability control means and controls of devices in power transmitting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI260669B (en) * 2005-07-26 2006-08-21 Ind Tech Res Inst Field emission light-emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1991年秋季第52回応物学会予稿集 9p−D−12 p.634

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174263B1 (en) 1996-07-18 2001-01-16 Toyota Jidosha Kabushiki Kaisha Automotive vehicle control apparatus including means for preventing between running stability control means and controls of devices in power transmitting system
US6216081B1 (en) 1996-07-18 2001-04-10 Toyota Jidosha Kabushiki Kaisha Automotive vehicle control apparatus including means for preventing between running stability control means and controls of devices in power transmitting system

Also Published As

Publication number Publication date
JPH05198839A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
JP4230669B2 (en) Flat panel solid light source
US5604763A (en) Group III nitride compound semiconductor laser diode and method for producing same
JP3226745B2 (en) Semiconductor cold electron-emitting device and device using the same
US5807764A (en) Vertical cavity electron beam pumped semiconductor lasers and methods
JPH0562589A (en) Flectronic source and its preparation
KR930010732B1 (en) Light element
JP2763248B2 (en) Method for manufacturing silicon electron-emitting device
EP0434330A2 (en) Field emission device and process for producing the same
JP3117773B2 (en) Silicon-integrated integrated light emitting device and method of manufacturing the same
JPH09199001A (en) Electron discharging device
JP2006148059A (en) Array-type light emitting diode
JP3195547B2 (en) Vacuum sealed field emission type electron source device and manufacturing method thereof
US5949182A (en) Light-emitting, nanometer scale, micromachined silicon tips
JP3489395B2 (en) Semiconductor light emitting device
JP3078004B2 (en) Manufacturing method of semiconductor laser
JP3212686B2 (en) Semiconductor light emitting device
US6063644A (en) Light-emitting element and array with etched surface, and fabrication method thereof
JPH05218589A (en) Electron beam excited semiconductor light-emitting element
US6579735B1 (en) Method for fabricating GaN field emitter arrays
US6781159B2 (en) Field emission display device
JP3260502B2 (en) Electron-emitting device
KR20010009602A (en) Gan semiconductor white light emitting device
US6011291A (en) Video display with integrated control circuitry formed on a dielectric substrate
JP2005268725A (en) Semiconductor device and method for manufacturing the same
JP3321986B2 (en) Laser CRT and method of manufacturing light emitting element used therein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees