JPH05194027A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPH05194027A
JPH05194027A JP4006503A JP650392A JPH05194027A JP H05194027 A JPH05194027 A JP H05194027A JP 4006503 A JP4006503 A JP 4006503A JP 650392 A JP650392 A JP 650392A JP H05194027 A JPH05194027 A JP H05194027A
Authority
JP
Japan
Prior art keywords
dielectric constant
temperature
component
oxide
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4006503A
Other languages
Japanese (ja)
Inventor
Taijirou Yamamoto
泰治郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4006503A priority Critical patent/JPH05194027A/en
Publication of JPH05194027A publication Critical patent/JPH05194027A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic composition sinterable at relatively low temperatures, having high reliability, good temperature characteristics and high dielectric constant by incorporating a specific composition consisting mainly of barium titanate with each specified amount of zirconate like lead zirconate, stannate and specific titanate. CONSTITUTION:The objective composition can be obtained by incorporating (A) 100mol of a dielectric composition comprising (1) 68.3-97.89mol% of BaTiO3, (2) 1-20mo1% of PbZrO3, (3) 0.6-3mol% of Cub, (4) 0.2-4mol% of ZnO, (5) 0.01-0.7mol% of Mn2O3, and (6) 0.3-4mol% of a rare earth metal oxide with (B) 1-20mol of at least one kind selected from zirconates except PbZrO3, stannates and titanates except BaTiO3. With addition of PbZrO3, the composition becomes highly flat in temperature characteristics, satisfying the F- characteristics in the JIS standard, realizing high dielectric constant, and being sinterable at temperatures as low as <=1200 deg.C. Furthermore, addition of at least one kind selected from zirconates except PbZrO3, stannates and titanates maintains the F-characteristics for the temperature characteristics as well as realizes a dielectric constant of >=20000 at ca.room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタン酸バリウムを主
成分とする誘電体セラミック組成物に関するものであ
り、さらに詳しくは、コンデンサー用途として適した強
誘電体組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition containing barium titanate as a main component, and more particularly to a ferroelectric composition suitable for use as a capacitor.

【0002】[0002]

【従来の技術】従来、チタン酸バリウムを主成分とする
強誘電体セラミック組成物は、焼結温度が、1300℃
以上と極めて高いため、積層コンデンサー用途として用
いる場合、内部電極材料として高温の焼結温度に耐え得
る高融点貴金属、例えば、白金、パラジウム、金、等が
用いられている。これらの貴金属は高価なものであるた
め、積層コンデンサーのコストも高いものとなる。また
高温で焼結するため、焼結炉の設計、焼結に要するエネ
ルギー等も問題となってくる。すなわち、積層コンデン
サーを製造する場合、コストの面から、内部電極材料と
して、安価な銀を主成分とすることが好ましく、また、
炉の設計が容易であるためにも、低温で焼結可能な強誘
電体セラミック組成物が強く望まれている。
2. Description of the Related Art Conventionally, a ferroelectric ceramic composition containing barium titanate as a main component has a sintering temperature of 1300 ° C.
Since it is extremely high as described above, a noble metal having a high melting point capable of withstanding a high sintering temperature, such as platinum, palladium, or gold, is used as an internal electrode material when it is used as a laminated capacitor. Since these noble metals are expensive, the cost of the multilayer capacitor is also high. Further, since the sintering is performed at a high temperature, the design of the sintering furnace, the energy required for sintering, etc. also become a problem. That is, when manufacturing a multilayer capacitor, from the viewpoint of cost, it is preferable to use inexpensive silver as a main component as the internal electrode material, and
Ferroelectric ceramic compositions that can be sintered at low temperatures are strongly desired because of the ease of furnace design.

【0003】特開平1−201069号公報には、チタ
ン酸バリウムに特定量の酸化亜鉛、酸化マンガン、希土
類酸化物、酸化銅を添加することにより、1200℃以
下の温度で焼結でき、グレインが均一であり電気特性
(例えば、誘電率、絶縁抵抗、誘電損失)が良好で同時
に信頼性を満足すること、さらに、スズ酸バリウムとス
ズ酸カルシウムを特定量添加することにより、上記特性
を損ねることなく室温付近の誘電率が12000以上に
まで高まることが開示されている。しかしこの方法で得
られる誘電体セラミックスは静電容量の温度特性(容量
変化率の温度依存性)が悪く、例えば、JISの各規格
に温度特性を適合させると高容量が得られなくなり、実
用上において重大な問題となる。また、近年積層セラミ
ックコンデンサーの高容量化・小型化に伴い、さらに高
誘電率の誘電体セラミック組成物が求められている。
In Japanese Patent Laid-Open No. 1-201069, by adding a specific amount of zinc oxide, manganese oxide, a rare earth oxide, and copper oxide to barium titanate, it is possible to sinter at a temperature of 1200.degree. Uniformity, good electrical characteristics (eg, dielectric constant, insulation resistance, dielectric loss) and at the same time satisfying reliability, and addition of barium stannate and calcium stannate in specific amounts impairs the above characteristics However, it is disclosed that the dielectric constant near room temperature increases to 12,000 or more. However, the dielectric ceramics obtained by this method have poor temperature characteristics of capacitance (temperature dependence of capacitance change rate). For example, if the temperature characteristics are adapted to JIS standards, high capacitance cannot be obtained, and practical use is impossible. Becomes a serious problem. In addition, in recent years, with the increase in capacity and size of multilayer ceramic capacitors, there has been a demand for a dielectric ceramic composition having a higher dielectric constant.

【0004】[0004]

【発明が解決しようとする課題】本発明は1200℃以
下の温度で焼結でき、グレインが均一で高信頼性である
と同時に、良好な温度特性とさらに一層の高誘電率を有
する誘電体セラミック組成物を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION According to the present invention, a dielectric ceramic which can be sintered at a temperature of 1200 ° C. or less, has a uniform grain and high reliability, and at the same time has a good temperature characteristic and an even higher dielectric constant. It is intended to provide a composition.

【0005】[0005]

【課題を解決するための手段】本発明者は鋭意検討を重
ねた結果、チタン酸バリウムにジルコン酸鉛、酸化銅、
酸化亜鉛、酸化マンガン、希土類酸化物から成る組成物
を主成分として、これにジルコン酸塩、スズ酸塩、チタ
ン酸塩の中から選ばれた一種以上を特定量添加した際
に、1200℃以下の温度で焼結でき、温度特性が平坦
となると同時に室温付近での誘電率が飛躍的に向上する
ことを見い出し本発明に到達した。
As a result of extensive studies, the present inventors have found that barium titanate, lead zirconate, copper oxide,
1200 ° C or less when a specific amount of one or more selected from zirconate, stannate, and titanate is added to a composition containing zinc oxide, manganese oxide, and a rare earth oxide as a main component The inventors have found that the sintering can be performed at the above temperature, the temperature characteristics can be flattened, and at the same time, the dielectric constant near room temperature can be dramatically improved, and the present invention has been achieved.

【0006】すなわち、本発明は、第一成分として6
8.3〜97.89mol%のチタン酸バリウム、第二
成分として1〜20mol%のジルコン酸鉛、第三成分
として0.6〜3mol%の酸化銅、第四成分として
0.2〜4mol%の酸化亜鉛、第五成分として0.0
1〜0.7mol%の酸化マンガン、第六成分として
0.3〜4mol%の希土類酸化物からなる誘電性セラ
ミック組成物100molに対し、第七成分として、ジ
ルコン酸塩、スズ酸塩、チタン酸塩の中から選ばれた一
種以上を1〜20mol含有する誘電体セラミック組成
物に関するものである。
That is, the present invention provides 6 as the first component.
8.3 to 97.89 mol% barium titanate, 1 to 20 mol% lead zirconate as the second component, 0.6 to 3 mol% copper oxide as the third component, and 0.2 to 4 mol% as the fourth component. Zinc oxide, 0.0 as the fifth component
To 100 mol of the dielectric ceramic composition consisting of 1 to 0.7 mol% of manganese oxide and 0.3 to 4 mol% of a rare earth oxide as the sixth component, as the seventh component, zirconate, stannate, titanic acid The present invention relates to a dielectric ceramic composition containing 1 to 20 mol of one or more kinds selected from salts.

【0007】本発明の第二成分として、ジルコン酸鉛を
添加した誘電体セラミック組成物は、無添加の場合に比
べ温度特性は極めて平坦になり、JIS規格のF特性
(−25〜+85℃の温度範囲で容量変化率が+30〜
−80%以内)を満足すると同時に、室温付近で160
00以上の高誘電率が得られる。さらにジルコン酸鉛の
添加量により温度特性の制御が容易であり、温度特性を
平坦にしJIS規格のE特性(−25〜+85℃の温度
範囲で容量変化率が+20〜−55%以内)を満足させ
ても、室温付近の誘電率は8000以上に保つことがで
きる。これら各特性における誘電率は従来に比べ極めて
高く、かつ、1200℃以下の低温で焼結可能である。
また、第七成分として、ジルコン酸バリウムを特定量添
加すると、温度特性はF特性を維持し、同時に室温付近
で20000以上の誘電率が得られる。
The dielectric ceramic composition to which lead zirconate is added as the second component of the present invention has an extremely flat temperature characteristic as compared with the case where it is not added, and the JIS standard F characteristic (at −25 to + 85 ° C.). Capacity change rate +30 ~ in temperature range
(At less than -80%) and 160 at room temperature
A high dielectric constant of 00 or more can be obtained. Furthermore, the temperature characteristics can be controlled easily by the amount of lead zirconate added, and the temperature characteristics are flattened to satisfy the JIS standard E characteristics (capacity change rate within +20 to -55% within the temperature range of -25 to + 85 ° C). Even if it is made, the dielectric constant near room temperature can be maintained at 8000 or more. The dielectric constant in each of these characteristics is extremely higher than in the past, and it is possible to sinter at a low temperature of 1200 ° C. or less.
Further, when barium zirconate is added in a specific amount as the seventh component, the temperature characteristic maintains the F characteristic, and at the same time, a dielectric constant of 20,000 or more is obtained near room temperature.

【0008】本発明のセラミック組成物中のチタン酸バ
リウムの割合は、68.3〜97.89mol%の範囲
である。その割合が、97.89mol%より多いと1
200℃以下の温度で焼結が困難となり、68.3mo
l%より少ないと焼結時に著しい素地の変形が生じる。
ジルコン酸鉛の割合は、PbZrO3 の形として1〜2
0mol%の範囲である。その量が1mol%未満で
は、添加効果はあまり顕著ではなく、誘電率の温度特性
も平坦にならない。また、20mol以上では誘電率が
著しく低下する。
The proportion of barium titanate in the ceramic composition of the present invention is in the range of 68.3 to 97.89 mol%. 1 when the ratio is more than 97.89 mol%
Sintering becomes difficult at a temperature of 200 ° C or lower, and 68.3mo
If it is less than 1%, significant deformation of the base material occurs during sintering.
The proportion of lead zirconate is 1-2 in the form of PbZrO 3.
It is in the range of 0 mol%. If the amount is less than 1 mol%, the effect of addition is not so remarkable and the temperature characteristic of the dielectric constant is not flat. Further, when it is 20 mol or more, the dielectric constant is remarkably lowered.

【0009】酸化銅の割合はCuOとして0.6〜3m
ol%の範囲である。3mol%より多い場合はデラミ
ネーションが著しく、誘電損失の値も大きくなる。ま
た、焼結時のグレインサイズが不均一で大きくなり、信
頼性も極めて悪化する。0.6mol%より少ない場合
は低温焼結が困難となる。酸化亜鉛の割合はZnOの形
として0.2〜4mol%の範囲である。4mol%を
越えると1200℃以下での焼結が困難であり、グレイ
ンの不均一性、絶縁抵抗の低下を招く。0.2mol%
未満では添加効果がほとんど認められず、また、誘電損
失も増大する。
The proportion of copper oxide is 0.6 to 3 m as CuO.
It is in the range of ol%. When it is more than 3 mol%, delamination is remarkable and the value of dielectric loss becomes large. Further, the grain size at the time of sintering becomes nonuniform and large, and reliability is extremely deteriorated. When it is less than 0.6 mol%, low temperature sintering becomes difficult. The proportion of zinc oxide is in the range of 0.2 to 4 mol% in the form of ZnO. If it exceeds 4 mol%, it becomes difficult to sinter at 1200 ° C. or less, resulting in non-uniformity of grains and reduction in insulation resistance. 0.2 mol%
If it is less than the above, the effect of addition is hardly recognized, and the dielectric loss increases.

【0010】酸化マンガンの割合は、Mn2 3 の形と
して0.01〜0.7mol%の範囲である。0.7m
ol%より多い場合は1200℃以下での焼結が困難で
あり、積層コンデンサーを製造する場合内部電極と誘電
体層間でのデラミネーションが著しい。また、0.01
mol%以下の場合では添加効果がほとんど認められ
ず、信頼性が低い。
The proportion of manganese oxide in the form of Mn 2 O 3 is in the range 0.01 to 0.7 mol%. 0.7m
When it is more than ol%, it is difficult to sinter at 1200 ° C. or less, and when manufacturing a multilayer capacitor, delamination between the internal electrode and the dielectric layer is remarkable. Also, 0.01
If it is less than mol%, almost no effect of addition is recognized, and the reliability is low.

【0011】希土類酸化物REm n (RE=La、C
e、Nd、Sm、Gd、Dy、Ho、Er、Tm、等)
の割合は、REとして0.3〜4mol%の範囲であ
る。添加量の増加に従い信頼性は向上するが、4mol
%を越えると微構造が不均一になり易く粒成長も認めら
れる。さらに増加すると1200℃以下での焼結が困難
になる。0.3mol%以下では添加効果がほとんど認
められず信頼性も低い。
Rare earth oxide RE m O n (RE = La, C
e, Nd, Sm, Gd, Dy, Ho, Er, Tm, etc.)
Is in the range of 0.3 to 4 mol% as RE. The reliability improves as the amount of addition increases, but 4 mol
If it exceeds%, the microstructure tends to be nonuniform and grain growth is also observed. If it is further increased, it becomes difficult to sinter at 1200 ° C or lower. If it is 0.3 mol% or less, the effect of addition is hardly recognized and the reliability is low.

【0012】第七成分としてのジルコン酸鉛を除くジル
コン酸塩、スズ酸塩、チタン酸バリウムを除くチタン酸
塩の中から選ばれた、一種以上の酸化物の割合は、第一
成分、第二成分、第三成分、第四成分、第五成分、第六
成分の和100molに対して、1〜20molの範囲
である。その量が1mol未満では、添加効果はあまり
顕著ではなく、室温付近の誘電率も低い。また、20m
ol以上では1200℃以下での焼結が困難となる。
The proportion of one or more oxides selected from zirconates excluding lead zirconate as the seventh component, stannates, and titanates excluding barium titanate is as follows. It is in the range of 1 to 20 mol based on 100 mol of the sum of the second component, the third component, the fourth component, the fifth component and the sixth component. If the amount is less than 1 mol, the effect of addition is not so remarkable and the dielectric constant near room temperature is low. In addition, 20m
If it is ol or more, sintering at 1200 ° C. or less becomes difficult.

【0013】本発明で使用するチタン酸バリウムは固相
法、液相法(例えば蓚酸塩法、アルコキシド法)等いず
れの方法で製造されたものでもよい。平均粒径が1μm
以下と小さく、粒度分布の均一なものを用いた場合、一
層均一な微構造を持ち、電気特性の良好な信頼性の高い
セラミック誘電体が得られる。本発明では、酸化銅とし
ては一価、二価、および一価、二価の共存しているも
の、いずれのものも使用できる。酸化マンガンとして
は、二価、三価、四価、七価およびそれらが共存してい
るもの、いずれのものも使用できる。希土類酸化物とし
ては酸化ランタン、酸化セリウム、酸化ネオジウム、酸
化サマリウム、酸化ガドリニウム、酸化ジスプロシウ
ム、酸化ホルミウム、酸化エルビウム、酸化ツリウム等
いずれのものも使用できる。
The barium titanate used in the present invention may be produced by any method such as a solid phase method and a liquid phase method (eg, oxalate method, alkoxide method). Average particle size is 1 μm
When a material having a small particle size and a uniform particle size distribution is used, it is possible to obtain a highly reliable ceramic dielectric having a more uniform microstructure and good electric characteristics. In the present invention, as the copper oxide, monovalent, divalent, and monovalent and divalent coexisting ones can be used. As manganese oxide, any of divalent, trivalent, tetravalent, heptavalent and those in which they coexist can be used. As the rare earth oxide, any of lanthanum oxide, cerium oxide, neodymium oxide, samarium oxide, gadolinium oxide, dysprosium oxide, holmium oxide, erbium oxide and thulium oxide can be used.

【0014】第七成分のジルコン酸鉛を除くジルコン酸
塩としてはジルコン酸バリウム、ジルコン酸カリウム等
が、スズ酸塩としてはスズ酸バリウム、スズ酸カルシウ
ム等が、チタン酸バリウムを除くチタン酸塩としてはチ
タン酸ストロンチウム、チタン酸カルシウム、チタン酸
マグネシウム等が好ましい例として挙げられる。また、
本発明で第二成分および、第七成分として添加する酸化
物においては、ジルコン酸塩、スズ酸塩、チタン酸塩の
通常の複合酸化物の形のものおよび、それらを構成する
単独酸化物および/または複合酸化物を混合して添加す
ることもできる。前記酸化物については水酸化物、炭酸
塩などの無機酸塩や、蓚酸塩、アルコキシドなどの有機
塩等、焼結温度以下で分解して酸化物となるものならば
いずれも使用できる。
Barium zirconate, potassium zirconate and the like are used as the zirconate salts excluding lead zirconate as the seventh component, and barium stannate and calcium stannate are used as the stannate salts, and titanate other than barium titanate are used. Preferred examples thereof include strontium titanate, calcium titanate, magnesium titanate, and the like. Also,
The second component and the oxide added as the seventh component in the present invention, in the form of a usual complex oxide of zirconate, stannate, and titanate, and the single oxides and the constituents thereof. It is also possible to add mixed oxides. As the oxide, any inorganic acid salt such as hydroxide or carbonate, or organic salt such as oxalate or alkoxide may be used as long as it decomposes to an oxide at a temperature equal to or lower than the sintering temperature.

【0015】[0015]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0016】[0016]

【実施例1〜4および比較例1〜2】チタン酸バリウ
ム、ジルコン酸鉛、酸化銅、酸化亜鉛、酸化マンガン、
希土類酸化物として酸化サマリウム、および、スズ酸バ
リウム、スズ酸カルシウム、ジルコン酸バリウムを表1
に示す割合になるように正確に秤量し、純水を加え、湿
式ボールミルにより混合した。混合物を充分乾燥、粗砕
した後、アクリル樹脂をバインダーにトリクロロエタン
を溶媒として、ボールメディアにジルコニアを使用しペ
ーストを調製した。得られたペーストから、ドクターブ
レード法で厚み20μmのグリーンシートを作成し、ス
クリーン印刷法により有効層50層の積層コンデンサー
を試作した。内部電極としてAg/Pd=70/30の
材料を使用した。このチップを脱バインダーした後、1
100℃、6時間焼結した。次に外部電極として銀電極
を焼き付け、電気特性を測定した。
Examples 1-4 and Comparative Examples 1-2 Barium titanate, lead zirconate, copper oxide, zinc oxide, manganese oxide,
Table 1 shows samarium oxide, barium stannate, calcium stannate, and barium zirconate as rare earth oxides.
Accurately weighed so as to have the ratio shown in Table 1, pure water was added, and the mixture was mixed by a wet ball mill. After sufficiently drying and roughly crushing the mixture, a paste was prepared by using acrylic resin as a binder, trichloroethane as a solvent, and zirconia as a ball medium. A green sheet having a thickness of 20 μm was prepared from the obtained paste by the doctor blade method, and a laminated capacitor having 50 effective layers was manufactured as a prototype by the screen printing method. The material of Ag / Pd = 70/30 was used as the internal electrode. After debinding this chip, 1
It sintered at 100 degreeC for 6 hours. Next, a silver electrode was baked as an external electrode and the electrical characteristics were measured.

【0017】誘電率はLCRメーター〔(株)安藤電気
社製、AG−4304〕を用いて、1KHz、1V、2
0℃の条件下で測定した静電容量と積層コンデンサーの
断面を研磨し、光学顕微鏡写真を撮影して求めた誘電体
厚み、有効内部電極面積より算出した。温度特性はJI
S規格に従い、20℃での静電容量を基準として−25
℃と+85℃での静電容量の変化率として求めた。ま
た、信頼性の評価として高温負荷試験を行い、寿命は1
55℃、100VDC負荷条件下、故障率63%に到達
する時間で表した。
The permittivity was measured using an LCR meter [AG-4304 manufactured by Ando Electric Co., Ltd.] at 1 KHz, 1 V and 2
The capacitance measured under the condition of 0 ° C. and the cross section of the multilayer capacitor were polished, and calculated from the dielectric thickness and the effective internal electrode area obtained by taking an optical micrograph. Temperature characteristics are JI
According to the S standard, the capacitance at 20 ° C is used as a reference -25
It was determined as the rate of change in capacitance at ° C and + 85 ° C. In addition, a high temperature load test was performed to evaluate reliability, and the life was 1
The time required to reach a failure rate of 63% under conditions of 55 ° C. and 100 VDC load was expressed.

【0018】測定結果を表2に示した。比較例1では1
4000以上の誘電率が得られるが、容量変化率の温度
依存性は大きく、+85℃ではJIS規格のF特性を満
足しない。また、温度特性を改善した比較例2では、高
い誘電率が得られない。これに対してジルコン酸鉛を添
加した実施例1〜4では温度特性は平坦になると同時
に、16000以上の誘電率が得られる。さらに、特定
量のジルコン酸鉛とジルコン酸バリウムの組み合わせに
よる実施例2では、F特性を満足する温度特性を有し、
かつ、20000以上の誘電率が得られる。また、ジル
コン酸鉛の添加量により温度特性をさらに平坦にし、E
特性を満足する実施例4においても、誘電率は8000
以上を維持する。信頼性については、155℃、100
VDC負荷条件下においていずれも長寿命であり、高信
頼性の積層コンデンサーが得られることがわかる。
The measurement results are shown in Table 2. 1 in Comparative Example 1
Although a dielectric constant of 4000 or more can be obtained, the temperature dependence of the capacitance change rate is large, and the F characteristic of JIS standard is not satisfied at + 85 ° C. Further, in Comparative Example 2 having improved temperature characteristics, a high dielectric constant cannot be obtained. On the other hand, in Examples 1 to 4 in which lead zirconate was added, the temperature characteristics became flat and at the same time, a dielectric constant of 16000 or more was obtained. Furthermore, in Example 2 in which a specific amount of lead zirconate and barium zirconate are combined, the temperature characteristics satisfy the F characteristics,
Moreover, a dielectric constant of 20,000 or more is obtained. In addition, the temperature characteristic is further flattened by the addition amount of lead zirconate, and E
Even in Example 4 satisfying the characteristics, the dielectric constant was 8000.
Keep above. For reliability, 155 ℃, 100
It can be seen that a multilayer capacitor having a long life and a high reliability can be obtained under the VDC load condition.

【0019】以上の実施例において、チタン酸バリウム
はBaとTiのmol比がほぼ1のものを用いたが、
0.05mol程度その比率がずれていても良好な特性
を得ることができる。
In the above examples, barium titanate having a molar ratio of Ba and Ti of about 1 was used.
Good characteristics can be obtained even if the ratio is shifted by about 0.05 mol.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上述べたことから、本発明の強誘電体
セラミック組成物は1200℃以下の温度で焼結可能で
あり、平坦な温度特性と室温付近で16000以上の高
誘電率を有し、高信頼性である。また、温度特性の制御
も容易である。したがって、本発明の強誘電体セラミッ
ク組成物を用いて積層セラミックコンデンサーを作成し
た場合、EIAJ等のコンデンサー規格に対応した製品
の設計が容易であり、かつ、小型・高容量で高信頼性の
積層セラミックコンデンサーが安価に得られる。
As described above, the ferroelectric ceramic composition of the present invention can be sintered at a temperature of 1200 ° C. or less, has a flat temperature characteristic and a high dielectric constant of 16000 or more near room temperature. , High reliability. In addition, it is easy to control the temperature characteristics. Therefore, when a monolithic ceramic capacitor is produced using the ferroelectric ceramic composition of the present invention, it is easy to design a product conforming to the capacitor standard such as EIAJ, and a small-sized, high-capacity and highly reliable laminated Ceramic capacitors can be obtained at low cost.

【0023】これらのことは、積層セラミックコンデン
サー用誘電体組成物として極めて有用であり、その産業
的価値は大きいものである。
These are extremely useful as a dielectric composition for a laminated ceramic capacitor and have great industrial value.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月19日[Submission date] February 19, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】第七成分のジルコン酸鉛を除くジルコン酸
塩としてはジルコン酸バリウム、ジルコン酸カルシウム
等が、スズ酸塩としてはスズ酸バリウム、スズ酸カルシ
ウム等が、チタン酸バリウムを除くチタン酸塩としては
チタン酸ストロンチウム、チタン酸カルシウム、チタン
酸マグネシウム等が好ましい例として挙げられる。ま
た、本発明で第二成分および、第七成分として添加する
酸化物においては、ジルコン酸塩、スズ酸塩、チタン酸
塩の通常の複合酸化物の形のものおよび、それらを構成
する単独酸化物および/または複合酸化物を混合して添
加することもできる。前記酸化物については水酸化物、
炭酸塩などの無機酸塩や、蓚酸塩、アルコキシドなどの
有機塩等、焼結温度以下で分解して酸化物となるものな
らばいずれも使用できる。
Barium zirconate, calcium zirconate and the like are used as zirconates excluding lead zirconate as the seventh component, and barium stannate, calcium stannate and the like are used as stannates and barium titanate. Preferred examples of the titanate to be removed include strontium titanate, calcium titanate and magnesium titanate. Further, in the second component and the oxide added as the seventh component in the present invention, zirconates, stannates, titanates in the form of ordinary complex oxides, and the single oxidation constituting them It is also possible to add a substance and / or a complex oxide by mixing. For the oxide, hydroxide,
Inorganic acid salts such as carbonates, organic salts such as oxalates and alkoxides, and the like can be used as long as they decompose to oxides at a temperature below the sintering temperature.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【実施例1〜4および比較例1〜2】チタン酸バリウ
ム、ジルコン酸鉛、酸化銅、酸化亜鉛、酸化マンガン、
希土類酸化物として酸化サマリウム、および、スズ酸バ
リウム、スズ酸カルシウム、ジルコン酸バリウム、チタ
ン酸ストロンチウムを表1に示す割合になるように正確
に秤量し、純水を加え、湿式ボールミルにより混合し
た。混合物を充分乾燥、粗砕した後、アクリル樹脂をバ
インダーにトリクロロエタンを溶媒として、ボールメデ
ィアにジルコニアを使用しペーストを調製した。得られ
たペーストから,ドクターブレード法で厚み20μmの
グリーンシートを作成し、スクリーン印刷法により有効
層50層の積層コンデンサーを試作した。内部電極とし
てAg/Pd=70/30の材料を使用した。このチッ
プを脱バインダーした後、1100℃、6時間焼結し
た。次に外部電極として銀電極を焼き付け、電気特性を
測定した。
Examples 1-4 and Comparative Examples 1-2 Barium titanate, lead zirconate, copper oxide, zinc oxide, manganese oxide,
Samarium oxide as a rare earth oxide, and barium stannate, calcium stannate, barium zirconate, titanate
Strontium acidate was accurately weighed so that the ratio shown in Table 1 was obtained, pure water was added, and the mixture was mixed by a wet ball mill. After sufficiently drying and roughly crushing the mixture, a paste was prepared by using acrylic resin as a binder, trichloroethane as a solvent, and zirconia as a ball medium. A green sheet having a thickness of 20 μm was prepared from the obtained paste by a doctor blade method, and a laminated capacitor having 50 effective layers was manufactured by a screen printing method. The material of Ag / Pd = 70/30 was used as the internal electrode. After debinding the chip, it was sintered at 1100 ° C. for 6 hours. Next, a silver electrode was baked as an external electrode and the electrical characteristics were measured.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】測定結果を表2に示した。比較例1では1
4000以上の誘電率が得られるが、容量変化率の温度
依存性は大きく、+85℃ではJIS規格のF特性を満
足しない。また、温度特性を改善した比較例2では、高
い誘電率が得られない。これに対してジルコン酸鉛を添
加した実施例1〜4では温度特性は平坦になると同時
に、16000以上の誘電率が得られる。さらに、特定
量のジルコン酸鉛とジルコン酸バリウムの組み合わせに
よる実施例では、F特性を満足する温度特性を有し、
かつ、20000以上の誘電率が得られる。また、ジル
コン酸鉛の添加量により温度特性をさらに平坦にし、E
特性を満足する実施例においても、誘電率は8000
以上を維持する。信頼性については、155℃、100
VDC負荷条件下においていずれも長寿命であり、高信
頼性の積層コンデンサーが得られることがわかる。
The measurement results are shown in Table 2. 1 in Comparative Example 1
Although a dielectric constant of 4000 or more can be obtained, the temperature dependence of the capacitance change rate is large, and the F characteristic of JIS standard is not satisfied at + 85 ° C. Further, in Comparative Example 2 having improved temperature characteristics, a high dielectric constant cannot be obtained. On the other hand, in Examples 1 to 4 in which lead zirconate was added, the temperature characteristics became flat and at the same time, a dielectric constant of 16000 or more was obtained. Further, in Example 3 in which a specific amount of lead zirconate and barium zirconate are combined, the temperature characteristics satisfy the F characteristics,
Moreover, a dielectric constant of 20,000 or more is obtained. In addition, the temperature characteristic is further flattened by the addition amount of lead zirconate, and E
Also in Example 5 satisfying the characteristics, the dielectric constant was 8000.
Keep above. For reliability, 155 ℃, 100
It can be seen that a multilayer capacitor having a long life and a high reliability can be obtained under the VDC load condition.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】[0022]

【発明の効果】以上述べたことから、本発明の強誘電体
セラミック組成物は1200℃以下の温度で焼結可能で
あり、平坦な温度特性と室温付近で16000以上の高
誘電率を有し、高信頼性である。また、温度特性の制御
も容易である。したがって、本発明の強誘電体セラミッ
ク組成物を用いて積層セラミックコンデンサーを作成し
た場合、JIS等のコンデンサー規格に対応した製品の
設計が容易であり、かつ、小型・高容量で高信頼性の積
層セラミックコンデンサーが安価に得られる。
As described above, the ferroelectric ceramic composition of the present invention can be sintered at a temperature of 1200 ° C. or less, has a flat temperature characteristic and a high dielectric constant of 16000 or more near room temperature. , High reliability. In addition, it is easy to control the temperature characteristics. Therefore, when a laminated ceramic capacitor is prepared using the ferroelectric ceramic composition of the present invention, it is easy to design a product that conforms to the capacitor standard such as JIS , and is a small-sized, high-capacity, highly reliable laminated Ceramic capacitors can be obtained at low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一成分として68.3〜97.89m
ol%のチタン酸バリウム、第二成分として1〜20m
ol%のジルコン酸鉛、第三成分として 0.6〜3m
ol%の酸化銅、第四成分として0.2〜4mol%の
酸化亜鉛、第五成分として0.01〜0.7mol%の
酸化マンガン、第六成分として0.3〜4mol%の希
土類酸化物からなる誘電性セラミック組成物100mo
lに対し、第七成分として、ジルコン酸鉛を除くジルコ
ン酸塩、スズ酸塩、チタン酸バリウムを除くチタン酸塩
の中から選ばれた一種以上を1〜20mol含有する誘
電体セラミック組成物。
1. A first component of 68.3 to 97.89 m
ol% barium titanate, 1 to 20 m as the second component
ol% lead zirconate, 0.6-3m as the third component
ol% copper oxide, 0.2 to 4 mol% zinc oxide as the fourth component, 0.01 to 0.7 mol% manganese oxide as the fifth component, 0.3 to 4 mol% rare earth oxide as the sixth component Dielectric ceramic composition consisting of 100mo
Dielectric ceramic composition containing 1 to 20 mol of at least one selected from zirconates excluding lead zirconate, stannates, and titanates excluding barium titanate as a seventh component with respect to 1.
JP4006503A 1992-01-17 1992-01-17 Dielectric ceramic composition Withdrawn JPH05194027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4006503A JPH05194027A (en) 1992-01-17 1992-01-17 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006503A JPH05194027A (en) 1992-01-17 1992-01-17 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPH05194027A true JPH05194027A (en) 1993-08-03

Family

ID=11640243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006503A Withdrawn JPH05194027A (en) 1992-01-17 1992-01-17 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH05194027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003058A1 (en) * 2003-07-07 2005-01-13 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
WO2006006333A1 (en) * 2004-07-08 2006-01-19 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003058A1 (en) * 2003-07-07 2005-01-13 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
US7239501B2 (en) 2003-07-07 2007-07-03 Murata Manufacturing Co., Ltd Dielectric ceramic composition and laminated ceramic capacitor
WO2006006333A1 (en) * 2004-07-08 2006-01-19 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and laminated ceramic capacitor
US7271115B2 (en) 2004-07-08 2007-09-18 Murata Manufacturing Co., Ltd. Dielectric ceramic composition and monolithic ceramic capacitor
JPWO2006006333A1 (en) * 2004-07-08 2008-04-24 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP4525680B2 (en) * 2004-07-08 2010-08-18 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP4626892B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4521387B2 (en) Reduction-resistant dielectric ceramic composition
JP2001089231A (en) Dielectric porcelain composition and electronic parts
JP6753221B2 (en) Dielectric composition and laminated electronic components
JPH11100263A (en) Dielectric ceramic composition
JPH0684692A (en) Multilayer ceramic chip capacitor
JP2003160378A (en) Dielectric ceramic composition and electronic part
JP2005029423A (en) Dielectric ceramic composition and electronic component
KR20170078064A (en) Dielectric composition and multilayer ceramic capacitor comprising the same
JP3520053B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP2003176172A (en) Dielectric ceramic composition and electronic parts
JPH05213669A (en) Dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JPH06342735A (en) Laminated type ceramic chip capacitor
JPH05194027A (en) Dielectric ceramic composition
JP2002080279A (en) Method of manufacturing dielectric ceramic composition and method of manufacturing electronic component
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JP2002087879A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2005272262A (en) Dielectric ceramic composition, multilayer ceramic capacitor and method of manufacturing the same
JP2583091B2 (en) Dielectric ceramic composition
JP3600701B2 (en) Dielectric porcelain composition
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408