JP3385630B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP3385630B2
JP3385630B2 JP27806792A JP27806792A JP3385630B2 JP 3385630 B2 JP3385630 B2 JP 3385630B2 JP 27806792 A JP27806792 A JP 27806792A JP 27806792 A JP27806792 A JP 27806792A JP 3385630 B2 JP3385630 B2 JP 3385630B2
Authority
JP
Japan
Prior art keywords
dielectric
porcelain
less
sample
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27806792A
Other languages
Japanese (ja)
Other versions
JPH05217425A (en
Inventor
野 晴 信 佐
地 幸 生 浜
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP27806792A priority Critical patent/JP3385630B2/en
Publication of JPH05217425A publication Critical patent/JPH05217425A/en
Application granted granted Critical
Publication of JP3385630B2 publication Critical patent/JP3385630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特にたとえば積層セラミックコンデンサな
どに用いられる非還元性誘電体磁器組成物に関する。 【0002】 【従来の技術】積層セラミックコンデンサを製造するに
は、まず、その表面に内部電極となる電極材料を塗布し
たシート状の誘電体材料が準備される。この誘電体材料
としては、たとえばBaTiO3 を主成分とする材料な
どが用いられる。この電極材料を塗布したシート状の誘
電体材料を積層して熱圧着し、一体化したものを自然雰
囲気中において1250〜1350℃で焼成して、内部
電極を有する誘電体磁器が得られる。そして、この誘電
体磁器の端面に、内部電極と導通する外部電極を焼き付
けて、積層セラミックコンデンサが製造される。 【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。 【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。 【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。 【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。 【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。 【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成される必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。 【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
考え出された。このような誘電体材料を使用することに
よって、還元性雰囲気中で焼成しても半導体化しない誘
電体磁器を得ることができ、内部電極としてニッケルな
どの卑金属を使用した積層セラミックコンデンサの製造
が可能となった。 【0010】 【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化の傾向が顕著になってき
た。積層セラミックコンデンサを小型化する方法として
は、一般的に大きな誘電率を有する材料を用いるか、誘
電体層を薄膜化することが知られている。しかし、大き
な誘電率を有する材料は結晶粒が大きく、10μm以下
のような薄膜になると、1つの層中に存在する結晶粒の
数が減少し、信頼性が低下してしまう。 【0011】一方、特開昭61−101459号公報に
示されるように、チタン酸バリウム固溶体にLa,N
d,Sm,Dyなどの希土類酸化物を添加した、結晶粒
径の小さい非還元性誘電体磁器が知られている。このよ
うに結晶粒径を小さくすることによって、1つの層中に
存在する結晶粒の数を増やすことができ、信頼性の低下
を防ぐことができる。 【0012】しかしながら、この希土類酸化物を添加し
た材料では、大きな誘電率を得ることができない上、焼
成するときに還元されやすくなり、特性の面で問題があ
った。 【0013】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られ、こ
れを用いることによって積層セラミックコンデンサを小
型化することができる、非還元性誘電体磁器組成物を提
供することである。 【0014】 【課題を解決するための手段】この発明は、その主成分
がBa,Sr,Ca,Mg,Ti,ZrおよびNbの各
酸化物からなり、次の一般式、{(Ba1-x-y-z Srx
Cay Mgz )O}m(Ti1-o-p Zro Nbp )O
2+p/2 で表され、x,y,z,o,pおよびmが、0.
05≦x≦0.30、0.005≦y≦0.10、0.
0005≦z≦0.05、0<o≦0.20、0.00
05p≦0.02、1.000≦m≦1.03の関係
を満足し、前記主成分100モルに対して、Mn,F
e,Cr,Co,Niの各酸化物をMnO2 ,Fe2
3 ,Cr23 ,CoO,NiOと表したとき、各酸化
物の少なくとも一種類が合計量で0.02〜2.0モル
添加され、SiO2 ,ZnOの少なくとも一種類を合計
量で0.1〜2.0モル含む、非還元性誘電体磁器組成
物である。 【0015】 【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない非還元性誘電体磁
器組成物を得ることができる。したがって、この非還元
性誘電体磁器組成物を用いて磁器積層コンデンサを製造
すれば、電極材料として卑金属を用いることができ、1
300℃以下と比較的低温で焼成可能であるため、積層
セラミックコンデンサのコストダウンを図ることができ
る。 【0016】また、この非還元性誘電体磁器組成物を用
いた磁器では、誘電率が12000以上あり、しかもこ
のように高誘電率であるにもかかわらず、結晶粒が3μ
m以下と小さい。したがって、積層セラミックコンデン
サを製造するときに、誘電体層を薄膜化しても、従来の
積層セラミックコンデンサのように層中に存在する結晶
粒の量が少なくならない。このため、信頼性が高く、し
かも小型で大容量の積層セラミックコンデンサを得るこ
とができる。 【0017】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。 【0018】 【実施例】まず、原料として、純度99.8%以上のB
aCO3 ,SrCO3 ,CaCO3 ,MgCO3 ,Ti
2 ,ZrO2 ,Nb2 5 ,MnO2 ,Fe2 3
Cr2 3 ,CoO,NiO,SiO2 ,ZnOを準備
した。これらの原料を{ (Ba1-x-y-z Srx Cay
z ) O}m ( Ti1-o-p Zro Nbp ) O2+p/2の組
成式で表され、x,y,z,m,o,pが表1に示す割
合となるように配合して、配合原料を得た。この配合原
料をボールミルで湿式混合し、粉砕したのち乾燥し、空
気中において1100℃で2時間仮焼して仮焼物を得
た。この仮焼物を乾式粉砕機によって粉砕し、粒径が1
μm以下の粉砕物を得た。この粉砕物に純水と酢酸ビニ
ルバインダを加えて、ボールミルで16時間混合して混
合物を得た。 【0019】 【表1】【0020】この混合物を乾燥造粒した後、2000k
g/cm2 の圧力で成形し、直径10mm,厚さ0.5
mmの円板を得た。得られた円板を空気中において50
0℃まで加熱して有機バインダを燃焼させたのち、酸素
分圧が3×10-8〜3×10-10 atmのH2 −N2
空気ガスからなる還元雰囲気炉中において表2に示す温
度で2時間焼成し、円板状の磁器を得た。得られた磁器
の表面を、走査型電子顕微鏡で倍率1500倍で観察
し、グレインサイズを測定した。 【0021】 【表2】【0022】そして、得られた磁器の主表面に銀電極を
焼き付けて測定試料(コンデンサ)とした。得られた試
料について、室温での誘電率(ε),誘電損失(tan
δ)および温度変化に対する静電容量(C)の変化率を
測定した。なお、誘電率および誘電損失は、温度25
℃,1kHz,1Vrms の条件で測定した。また、温度
変化に対する静電容量の変化率については、20℃での
静電容量を基準とした−25℃と85℃での変化率(Δ
C/C20)および−25℃から85℃の範囲内で絶対値
としてその変化率が最大である値(|ΔC/C
20max )を示した。 【0023】さらに、また、絶縁抵抗計によって、50
0Vの直流電流を2分間印加したのちの絶縁抵抗値を測
定した。絶縁抵抗は、25℃および85℃の値を測定
し、それぞれの体積抵抗率の対数(logρ)を算出し
た。これらの測定結果を表2に示す。 【0024】次に、各組成の限定理由について説明す
る。 【0025】{ (Ba1-x-y-z Srx Cay Mgz )
O}m ( Ti1-o-p Zro Nbp ) O2+p/2 において、
試料番号1のように、ストロンチウム量xが0.05未
満の場合、誘電率が12000未満で、誘電損失が2.
0%を超え、静電容量の温度変化率も大きくなり好まし
くない。また、試料番号18のように、ストロンチウム
量xが0.30を超えると、磁器の焼結性が悪く、誘電
率が12000未満で、静電容量の温度変化率がJIS
規格のF特性を満足しなくなり好ましくない。 【0026】さらに、試料番号2のように、カルシウム
量yが0.005未満であれば、磁器の焼結性が悪く、
誘電損失が2.0%を超え、絶縁抵抗の低下が生じ好ま
しくない。一方、試料番号19のように、カルシウム量
yが0.10を超えると、焼結性が悪くなり、誘電率が
低下し好ましくない。 【0027】また、試料番号3のように、マグネシウム
量zが0.0005未満であれば、25℃,85℃での
絶縁抵抗値が低下し好ましくない。一方、試料番号20
のように、マグネシウム量zが0.05を超えると、誘
電率が12000未満に低下するだけでなく、絶縁性も
低下し、粒径が3μmより大きくなり好ましくない。 【0028】試料番号4のように、ジルコニウム量oが
0の場合、誘電率が12000未満になり、静電容量の
温度変化率が大きくなり好ましくない。一方、試料番号
21のように、ジルコニウム量oが0.20を超える
と、焼結性が低下し、誘電率が12000未満になり好
ましくない。 【0029】試料番号5のように、ニオブ量pが0.0
005未満の場合、誘電率が12000未満になり、結
晶粒径が3μmより大きくなり、積層セラミックコンデ
ンサにした場合、誘電体層を薄膜化できず好ましくな
い。一方、試料番号22のように、ニオブ量pが0.0
2を超えると、還元性雰囲気で焼成したときに、磁器が
還元され、半導体化して絶縁抵抗が大幅に低下し好まし
くない。 【0030】試料番号6のように、{ (Ba1-x-y-z
x Cay Mgz ) O}m ( Ti1-o-p Zro Nbp )
2+p/2 のモル比mが1.000未満では、還元性雰囲
気中で焼成したときに磁器が還元され、半導体化して絶
縁抵抗が低下してしまい好ましくない。一方、試料番号
23のように、モル比mが1.03を超えると、焼結性
が極端に悪くなり好ましくない。 【0031】さらに、試料番号7のように、添加物
(A)としてのMnO2 ,Fe23 ,Cr23 ,C
oOおよびNiOの添加量が0.02モル未満の場合、
85℃以上での絶縁抵抗が小さくなり、高温中における
長時間使用の信頼性が低下し好ましくない。一方、試料
番号24のように、これらの添加物の量が2.0モルを
超えると、誘電損失が2.0%を超えて大きくなり、同
時に絶縁抵抗も劣化し好ましくない。 【0032】また、試料番号8のように、添加物(B)
としてのSiO2 およびZnOの添加量が0.1モル未
満の場合、焼結性が悪くなり、誘電損失が2.0%を超
えて好ましくない。一方、試料番号25のように、これ
らの添加物の量が2.0モルを超えると、誘電率が12
000未満に低下するとともに、結晶粒径が3μmより
大きくなり、同時に絶縁抵抗も劣化し好ましくない。 【0033】それに対して、この発明の非還元性誘電体
磁器組成物を用いれば、誘電率が12000以上と高
く、誘電損失が2.0%以下で、温度に対する静電容量
の変化率が、−25℃〜85℃の範囲でJIS規格に規
定するF特性規格を満足する誘電体磁器を得ることがで
きる。さらに、この誘電体磁器では、25℃,85℃に
おける絶縁抵抗は、体積抵抗率の対数で表したときに1
2以上と高い値を示す。また、この発明の非還元性誘電
体磁器組成物は、焼成温度も1300℃以下と比較的低
温で焼結可能であり、粒径についても3μm以下と小さ
い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition used for a multilayer ceramic capacitor and the like. 2. Description of the Related Art In order to manufacture a multilayer ceramic capacitor, first, a sheet-shaped dielectric material having an electrode material serving as an internal electrode applied to the surface thereof is prepared. As the dielectric material, for example, a material mainly containing BaTiO 3 is used. The sheet-shaped dielectric material coated with the electrode material is laminated, thermocompression-bonded, and the integrated material is fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric porcelain having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is baked on the end face of the dielectric ceramic to manufacture a multilayer ceramic capacitor. Therefore, the material of the internal electrode must satisfy the following conditions. (A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain has a melting point higher than the temperature at which the dielectric porcelain is fired. (B) It is not oxidized even in an oxidizing high-temperature atmosphere and does not react with a dielectric. As an electrode material satisfying such conditions, noble metals such as platinum, gold, palladium and alloys thereof have been used. However, these electrode materials have excellent characteristics, but are expensive. Therefore, the ratio of the electrode material cost to the multilayer ceramic capacitor is 30 to 7%.
It reached 0%, which was the biggest factor in increasing the manufacturing cost. [0008] In addition to the noble metals, N
There are base metals such as i, Fe, Co, W, and Mo. However, these base metals are easily oxidized in a high-temperature oxidizing atmosphere, and do not serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the multilayer ceramic capacitor, they must be fired in a neutral or reducing atmosphere together with the dielectric porcelain. However, the conventional dielectric porcelain material has a drawback that when it is fired in such a reducing atmosphere, it is significantly reduced and becomes a semiconductor. In order to overcome such a drawback, for example, as disclosed in Japanese Patent Publication No. 57-42588, in a barium titanate solid solution, the ratio of barium site / titanium site is set to be larger than the stoichiometric ratio. Body material has been devised. By using such a dielectric material, it is possible to obtain a dielectric ceramic which does not turn into a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a multilayer ceramic capacitor using a base metal such as nickel as an internal electrode. It became. [0010] With the development of electronics in recent years, the miniaturization of electronic components has rapidly progressed, and the tendency of miniaturization of multilayer ceramic capacitors has also become remarkable. As a method of reducing the size of the multilayer ceramic capacitor, it is generally known to use a material having a large dielectric constant or to reduce the thickness of the dielectric layer. However, a material having a large dielectric constant has a large crystal grain, and when the material is formed into a thin film having a thickness of 10 μm or less, the number of crystal grains existing in one layer is reduced, and reliability is reduced. On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 61-101449, La, N
Non-reducing dielectric ceramics having a small crystal grain size to which rare earth oxides such as d, Sm, and Dy are added are known. By reducing the crystal grain size in this way, the number of crystal grains existing in one layer can be increased, and a decrease in reliability can be prevented. [0012] However, the material to which the rare earth oxide is added cannot obtain a large dielectric constant, and is easily reduced during firing, and has a problem in characteristics. [0013] Therefore, a main object of the present invention is to obtain a large dielectric constant despite the fact that it does not turn into a semiconductor even when fired in a reducing atmosphere and has a small crystal grain size. An object of the present invention is to provide a non-reducing dielectric ceramic composition that can reduce the size of a multilayer ceramic capacitor. According to the present invention, the main component is composed of oxides of Ba, Sr, Ca, Mg, Ti, Zr and Nb, and has the following general formula: {(Ba 1− xyz Sr x
Ca y Mg z) O} m (Ti 1-op Zr o Nb p) O
2 + p / 2 , where x, y, z, o, p and m are 0.
05 ≦ x ≦ 0.30, 0.005 ≦ y ≦ 0.10, 0.
0005 ≦ z ≦ 0.05, 0 <o ≦ 0.20, 0.00
05 p ≦ 0.02, 1.000 ≦ m ≦ 1.03, and Mn, F
e, Cr, Co, and Ni oxides as MnO 2 , Fe 2 O
3 , Cr 2 O 3 , CoO, NiO, at least one of the oxides is added in a total amount of 0.02 to 2.0 mol, and at least one of SiO 2 and ZnO is added in total.
It is a non-reducing dielectric porcelain composition containing 0.1 to 2.0 moles in amount . According to the present invention, it is possible to obtain a non-reducing dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not turn into a semiconductor. Therefore, if a porcelain multilayer capacitor is manufactured using this non-reducing dielectric porcelain composition, a base metal can be used as an electrode material, and
Since firing can be performed at a relatively low temperature of 300 ° C. or less, the cost of the multilayer ceramic capacitor can be reduced. The porcelain using this non-reducing dielectric porcelain composition has a dielectric constant of 12,000 or more, and despite having such a high dielectric constant, has crystal grains of 3 μm.
m or less. Therefore, when manufacturing a multilayer ceramic capacitor, even if the dielectric layer is thinned, the amount of crystal grains present in the layer does not decrease as in the conventional multilayer ceramic capacitor. Therefore, a highly reliable, small-sized, large-capacity multilayer ceramic capacitor can be obtained. The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments. EXAMPLE First, as a raw material, B having a purity of 99.8% or more was used.
aCO 3, SrCO 3, CaCO 3 , MgCO 3, Ti
O 2 , ZrO 2 , Nb 2 O 5 , MnO 2 , Fe 2 O 3 ,
Cr 2 O 3 , CoO, NiO, SiO 2 and ZnO were prepared. These raw materials {(Ba 1-xyz Sr x Ca y M
g z) O} expressed by a composition formula m (Ti 1-op Zr o Nb p) O 2 + p / 2, as x, y, z, m, o, p is the proportion shown in Table 1 It was blended to obtain a blended raw material. This compounded raw material was wet-mixed with a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. This calcined product is pulverized by a dry pulverizer, and the particle size is 1
A ground product having a size of not more than μm was obtained. Pure water and a vinyl acetate binder were added to the pulverized product, and mixed with a ball mill for 16 hours to obtain a mixture. [Table 1] After this mixture is dried and granulated,
g / cm 2 under pressure, diameter 10mm, thickness 0.5
mm discs were obtained. The obtained disk is placed in air for 50 minutes.
After heating to 0 ° C. to burn the organic binder, H 2 —N 2 — with an oxygen partial pressure of 3 × 10 −8 to 3 × 10 −10 atm.
It was fired in a reducing atmosphere furnace made of air gas at the temperature shown in Table 2 for 2 hours to obtain a disc-shaped porcelain. The surface of the obtained porcelain was observed with a scanning electron microscope at a magnification of 1500 times, and the grain size was measured. [Table 2] Then, a silver electrode was baked on the main surface of the obtained porcelain to obtain a measurement sample (capacitor). About the obtained sample, the dielectric constant (ε) at room temperature, the dielectric loss (tan)
δ) and the rate of change of the capacitance (C) with respect to the temperature change. The dielectric constant and the dielectric loss were measured at a temperature of 25.
C., 1 kHz, 1 V rms . The rate of change of the capacitance with respect to the temperature change is the rate of change (−ΔC at −25 ° C. and 85 ° C. based on the capacitance at 20 ° C.)
C / C 20 ) and a value (│ΔC / C) at which the rate of change is maximum as an absolute value in the range of −25 ° C. to 85 ° C.
20 | max ). [0023] Further, the insulation resistance is measured by 50.
The insulation resistance value was measured after applying a direct current of 0 V for 2 minutes. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (log ρ) of each volume resistivity was calculated. Table 2 shows the measurement results. Next, the reasons for limiting each composition will be described. [0025] {(Ba 1-xyz Sr x Ca y Mg z)
In O} m (Ti 1-op Zr o Nb p) O 2 + p / 2,
When the strontium amount x is less than 0.05 as in sample No. 1, the dielectric constant is less than 12,000 and the dielectric loss is 2.
If it exceeds 0%, the rate of change in capacitance with temperature also increases, which is not preferable. When the strontium content x exceeds 0.30 as in sample No. 18, the sinterability of the porcelain is poor, the dielectric constant is less than 12,000, and the temperature change rate of the capacitance is JIS
It is not preferable because the standard F characteristic is not satisfied. Further, when the amount of calcium y is less than 0.005 as in sample No. 2, the sinterability of the porcelain is poor,
The dielectric loss exceeds 2.0%, and the insulation resistance is undesirably reduced. On the other hand, when the amount y of calcium exceeds 0.10 as in Sample No. 19, the sinterability deteriorates and the dielectric constant decreases, which is not preferable. If the amount of magnesium z is less than 0.0005 as in Sample No. 3, the insulation resistance values at 25 ° C. and 85 ° C. decrease, which is not preferable. On the other hand, sample number 20
When the amount z of magnesium exceeds 0.05, not only the dielectric constant is reduced to less than 12000, but also the insulating property is reduced, and the particle diameter is larger than 3 μm, which is not preferable. When the zirconium amount o is 0 as in Sample No. 4, the dielectric constant is less than 12,000, and the temperature change rate of the capacitance is undesirably large. On the other hand, when the zirconium amount o exceeds 0.20 as in Sample No. 21, the sinterability decreases, and the dielectric constant becomes less than 12,000, which is not preferable. As shown in Sample No. 5, the niobium amount p was 0.0
If it is less than 005, the dielectric constant will be less than 12000, and the crystal grain size will be greater than 3 μm. If a multilayer ceramic capacitor is used, the dielectric layer cannot be made thin, which is not preferable. On the other hand, as in Sample No. 22, the niobium amount p is 0.0
If it exceeds 2, the porcelain is reduced when fired in a reducing atmosphere and turned into a semiconductor, and the insulation resistance is greatly reduced, which is not preferable. As shown in sample No. 6, {(Ba 1-xyz S
r x Ca y Mg z) O } m (Ti 1-op Zr o Nb p)
If the molar ratio m of O 2 + p / 2 is less than 1.000, the porcelain is reduced when sintering in a reducing atmosphere, and the porcelain is turned into a semiconductor to lower the insulation resistance. On the other hand, when the molar ratio m exceeds 1.03 as in Sample No. 23, the sinterability becomes extremely poor, which is not preferable. Further, as shown in sample 7, MnO 2 , Fe 2 O 3 , Cr 2 O 3 , C as additives (A)
When the added amount of oO and NiO is less than 0.02 mol,
The insulation resistance at a temperature of 85 ° C. or more is reduced, and the reliability of long-time use at high temperatures is undesirably reduced. On the other hand, when the amount of these additives exceeds 2.0 mol, as in Sample No. 24, the dielectric loss increases beyond 2.0%, and at the same time, the insulation resistance deteriorates, which is not preferable. Further, as shown in Sample No. 8, the additive (B)
If the added amount of SiO 2 and ZnO is less than 0.1 mol, the sinterability deteriorates, and the dielectric loss exceeds 2.0%, which is not preferable. On the other hand, as shown in Sample No. 25, when the amount of these additives exceeds 2.0 mol, the dielectric constant becomes 12%.
In addition to the decrease to less than 000, the crystal grain size becomes larger than 3 μm, and at the same time, the insulation resistance also deteriorates, which is not preferable. On the other hand, when the non-reducing dielectric ceramic composition of the present invention is used, the dielectric constant is as high as 12000 or more, the dielectric loss is 2.0% or less, and the rate of change of capacitance with temperature is A dielectric porcelain satisfying the F characteristic standard defined by the JIS standard in the range of −25 ° C. to 85 ° C. can be obtained. Furthermore, in this dielectric porcelain, the insulation resistance at 25 ° C. and 85 ° C. is 1 when expressed in logarithm of volume resistivity.
It shows a high value of 2 or more. Further, the non-reducing dielectric ceramic composition of the present invention can be sintered at a relatively low firing temperature of 1300 ° C. or less, and has a small particle size of 3 μm or less.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−19005(JP,A) 特開 昭61−39314(JP,A) 特開 平4−115409(JP,A) 特開 平5−217424(JP,A) 特開 平5−205523(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-19005 (JP, A) JP-A-61-39314 (JP, A) JP-A-4-115409 (JP, A) JP-A-5-195 217424 (JP, A) JP-A-5-205523 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358

Claims (1)

(57)【特許請求の範囲】 【請求項1】 その主成分がBa,Sr,Ca,Mg,
Ti,ZrおよびNbの各酸化物からなり、次の一般式 {(Ba1-x-y-z Srx Cay Mgz )O}m (Ti1-o-p Zro Nbp )O2+p/2 で表され、x,y,z,o,pおよびmが、 0.05≦x≦0.30 0.005≦y≦0.10 0.0005≦z≦0.05 0<o≦0.20 0.0005p≦0.02 1.000≦m≦1.03 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO2 ,F
23 ,Cr23 ,CoO,NiOと表したとき、
各酸化物の少なくとも一種類が合計量で0.02〜2.
0モル添加され、SiO2 ,ZnOの少なくとも一種類
合計量で0.1〜2.0モル含む、非還元性誘電体磁
器組成物。
(57) [Claims 1] The main component is Ba, Sr, Ca, Mg,
Ti, made from the oxides of Zr and Nb, tables by the following general formula {(Ba 1-xyz Sr x Ca y Mg z) O} m (Ti 1-op Zr o Nb p) O 2 + p / 2 And x, y, z, o, p and m are: 0.05 ≦ x ≦ 0.30 0.005 ≦ y ≦ 0.10 0.0005 ≦ z ≦ 0.05 0 <o ≦ 0.20 0 .0005 p ≤ 0.02 1.000 ≤ m ≤ 1.03, and M
The oxides of n, Fe, Cr, Co, and Ni were converted to MnO 2 , F
When expressed as e 2 O 3 , Cr 2 O 3 , CoO, NiO,
At least one of the oxides has a total amount of 0.02 to 2.
A non-reducible dielectric porcelain composition, which is added in an amount of 0 mol and contains at least one of SiO 2 and ZnO in a total amount of 0.1 to 2.0 mol.
JP27806792A 1991-09-25 1992-09-22 Non-reducing dielectric porcelain composition Expired - Lifetime JP3385630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27806792A JP3385630B2 (en) 1991-09-25 1992-09-22 Non-reducing dielectric porcelain composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27458791 1991-09-25
JP3-274587 1991-09-25
JP27806792A JP3385630B2 (en) 1991-09-25 1992-09-22 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH05217425A JPH05217425A (en) 1993-08-27
JP3385630B2 true JP3385630B2 (en) 2003-03-10

Family

ID=26551092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27806792A Expired - Lifetime JP3385630B2 (en) 1991-09-25 1992-09-22 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3385630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435607B2 (en) * 1992-05-01 2003-08-11 株式会社村田製作所 Non-reducing dielectric porcelain composition
KR100395089B1 (en) * 2000-12-20 2003-08-21 삼성전기주식회사 A dielectric compositions for Y5V type multilayer ceramic Chip Capacitors having the inner electrode of Ni

Also Published As

Publication number Publication date
JPH05217425A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP3227859B2 (en) Non-reducing dielectric ceramic composition
JP3435607B2 (en) Non-reducing dielectric porcelain composition
JP2958817B2 (en) Non-reducing dielectric porcelain composition
JP3368602B2 (en) Non-reducing dielectric porcelain composition
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2958819B2 (en) Non-reducing dielectric porcelain composition
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JPH04115409A (en) Non-reducing dielectric ceramic composite
JP3064518B2 (en) Dielectric porcelain composition
JP3362408B2 (en) Dielectric porcelain composition
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JP3109171B2 (en) Non-reducing dielectric porcelain composition
JP3120500B2 (en) Non-reducing dielectric porcelain composition
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2958826B2 (en) Dielectric porcelain composition
JPS61251563A (en) High permittivity ceramic composition
JP2958822B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10