JPH05186802A - Molybdenum multiple powder, molybdenum composite sheet and their production - Google Patents

Molybdenum multiple powder, molybdenum composite sheet and their production

Info

Publication number
JPH05186802A
JPH05186802A JP4003056A JP305692A JPH05186802A JP H05186802 A JPH05186802 A JP H05186802A JP 4003056 A JP4003056 A JP 4003056A JP 305692 A JP305692 A JP 305692A JP H05186802 A JPH05186802 A JP H05186802A
Authority
JP
Japan
Prior art keywords
powder
molybdenum
sintered body
copper
molybdenum composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4003056A
Other languages
Japanese (ja)
Inventor
Mitsuru Tsuchiya
満 土屋
Narimitsu Tanabe
成光 田辺
Masahiko Mizukami
正彦 水上
Tadashi Arikawa
正 有川
Akira Ichida
晃 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11546671&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05186802(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP4003056A priority Critical patent/JPH05186802A/en
Publication of JPH05186802A publication Critical patent/JPH05186802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a molybdenum multiple powder capable of easily obtaining a high-density sintered body by agitating a molybdenum powder in the soln. of copper salts, drying the powder and reducing the dried material to form the specified amt. of copper layer on the surface of a molybdenum matrix. CONSTITUTION:Molybdenum powder or molybdenum oxide power is agitated in the aq. of copper salts (CuCl2), the powder is dried, and the dried material is reduced to form 20-50wt.% of copper layer on the surface of a molybdenum metrix, and a Cu-Mo composite powder is obtained. The multiple powder is press-formed at a specified pressure, and the formed product is sintered at 1100-1300 deg.C to obtain the sintered body having >=90% relative density. The sintered body is rolled to obtain a densified molybdenum composite sheet excellent in strength, heat conductivity, thermal expansion coefficient, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はモリブデン複合板材及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molybdenum composite plate material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、モリブデン(Mo)及び銅(C
u)が複合された板材が知られており(以下単にMo−
Cu板材という)、このようなMo−Cu板材は、例え
ば、半導体用ヒートシンク材、電気接点、及び放電用電
極に用いられている。
2. Description of the Related Art Conventionally, molybdenum (Mo) and copper (C
A plate material in which u) is compounded is known (hereinafter simply referred to as Mo-
Such a Cu-plate material), such a Mo-Cu plate material is used, for example, as a heat sink material for semiconductors, electrical contacts, and discharge electrodes.

【0003】上記のMo−Cu板材を製造する際には、
一般に、まず、Mo焼結体を製造した後、Mo焼結体中
にCuを溶融含浸して、Mo−Cu焼結体を得て、この
Mo−Cu焼結体を板材に加工している(以下含浸法と
いう)。一方、予めMo粉とCu粉とを準備して、これ
らMo粉とCu粉とを所定の割合で混合して混合粉を得
て、この混合粉をプレス成型及び焼結によってMo−C
u焼結体とし、Mo−Cu焼結体を板材に加工すること
も行われている(以下混合法という)。
When manufacturing the above Mo-Cu plate,
In general, first, after manufacturing a Mo sintered body, Cu is melt-impregnated into the Mo sintered body to obtain a Mo-Cu sintered body, and the Mo-Cu sintered body is processed into a plate material. (Hereinafter referred to as impregnation method). On the other hand, Mo powder and Cu powder are prepared in advance, the Mo powder and Cu powder are mixed at a predetermined ratio to obtain a mixed powder, and the mixed powder is subjected to press molding and sintering to obtain Mo-C.
A u-sintered body and a Mo-Cu sintered body are also processed into a plate material (hereinafter referred to as a mixing method).

【0004】[0004]

【発明が解決しようとする課題】ところで、上記の含浸
方法では、Mo焼結体中にCuを含浸する際の含浸調整
が極めて難しく、このため、Cu含浸量のばらつきが発
生してしまう。つまり、Mo焼結体における気孔率の調
整が困難であるから、予め設定した量のCuをモリブデ
ン焼結体に溶融含浸させることが難しいという問題点が
あり、板材とした際の歩留まりが低下してしまう。さら
に、溶融含浸の際、かなり処理温度を上げる必要があ
り、含浸炉周辺部材がCu等で汚染されてしまうという
問題点がある。
By the way, in the above-mentioned impregnation method, it is extremely difficult to adjust the impregnation when impregnating the Mo sintered body with Cu, and therefore the Cu impregnation amount varies. That is, since it is difficult to adjust the porosity of the Mo sintered body, there is a problem that it is difficult to melt-impregnate a molybdenum sintered body with a preset amount of Cu. Will end up. Further, during the melt impregnation, it is necessary to raise the treatment temperature considerably, and there is a problem that the peripheral members of the impregnation furnace are contaminated with Cu or the like.

【0005】さらに、含浸方法の場合には、Mo−Mo
の結合が存在し、このMo−Mo結合力によって加工性
が悪くなってしまう。つまり、Mo−Mo結合力が加工
を阻むことになってしまう。加えて、含浸方法では内部
の空孔をなくすため、余剰の銅素材を接し、含浸させる
必要があり、このため、表層の余剰銅部が存在すること
のなる。このことは実質的に切削加工の量(全加工量に
対する)を増大させ、しいては本質的に特性を左右する
銅量のバラツキも生じさせることになる。
Further, in the case of the impregnation method, Mo--Mo
Exists, and this Mo—Mo bonding force deteriorates the workability. That is, the Mo—Mo bonding force hinders the processing. In addition, in the impregnation method, in order to eliminate internal voids, it is necessary to contact and impregnate an excess copper material, and therefore, an excess copper portion on the surface layer will exist. This substantially increases the amount of cutting work (relative to the total amount of work), which in turn causes variations in the amount of copper that essentially affect the properties.

【0006】一方、混合法では、焼結体の密度を上げる
ためには、焼結温度を高く設定する必要があるが、焼結
温度を高く設定すると、Cuが溶出してしまうという問
題点がある。Cuの溶出を防止するため、焼結温度を低
しすぎると、上述のように焼結体の密度が低くなってし
まい、強度、熱伝導度、及び熱膨脹率等の特性が著しく
低下してしまう。さらに、焼結体を塑性加工する際、端
部に割れが生じるばかりでなく中央部にクラックガ生じ
てしまうことが多く、歩留まりが低下してしまうという
問題点もある。
On the other hand, in the mixing method, in order to increase the density of the sintered body, it is necessary to set the sintering temperature high. However, if the sintering temperature is set high, Cu will elute. is there. If the sintering temperature is too low to prevent the elution of Cu, the density of the sintered body becomes low as described above, and the properties such as strength, thermal conductivity, and coefficient of thermal expansion are significantly reduced. .. Further, when the sintered body is plastically processed, not only cracks are generated at the end portions but also cracks are often generated at the central portion, which causes a problem that the yield is reduced.

【0007】さらに、混合法では、緻密化の完全性を求
めるために高温処理しなければならず、この結果、表層
へのCu浸み出しによって余剰銅部が存在することにな
る。このことは実質的に切削加工の量(全加工量に対す
る)を増大させ、しいては本質的に特性を左右する銅量
のバラツキも生じさせることになる。
Further, in the mixing method, high temperature treatment must be performed in order to obtain the completeness of densification, and as a result, Cu leaching to the surface layer causes an excess copper portion to exist. This substantially increases the amount of cutting work (relative to the total amount of work), which in turn causes variations in the amount of copper that essentially affect the properties.

【0008】本発明の目的は強度、熱伝導度、及び熱膨
脹率等の特性が良好な緻密化したモリブデン複合板材を
提供することにある。
An object of the present invention is to provide a densified molybdenum composite sheet material having excellent properties such as strength, thermal conductivity and coefficient of thermal expansion.

【0009】本発明の他の目的は歩留まりの極めて良い
モリブデン複合板材の製造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing a molybdenum composite sheet material having an extremely high yield.

【0010】[0010]

【課題を解決するための手段】本発明によれば、モリブ
デン基表面上に銅層が形成され、該銅の含有量が5乃至
50重量%であることを特徴とするモリブデン複合粉が
得られる。このモリブデン複合粉は所定の圧力でプレス
成型された後、温度1100℃乃至1300℃で焼結さ
れ、さらに、圧延加工によってモリブデン複合板材に製
造される。なお、プレス加工に当たって、モリブデン複
合粉に所定量の銅粉を混合して混合粉とした後、この混
合粉をプレス加工するようにしてもよい。そして、上述
のようにして製造された焼結体は相対密度が90%以上
であり、モリブデン複合板材は5乃至50重量%の銅を
含有する。
According to the present invention, a molybdenum composite powder characterized in that a copper layer is formed on a molybdenum-based surface and the content of the copper is 5 to 50% by weight is obtained. .. This molybdenum composite powder is press-molded at a predetermined pressure, then sintered at a temperature of 1100 ° C. to 1300 ° C., and further rolled into a molybdenum composite plate material. In the pressing, the molybdenum composite powder may be mixed with a predetermined amount of copper powder to form a mixed powder, and then the mixed powder may be pressed. The sintered body manufactured as described above has a relative density of 90% or more, and the molybdenum composite plate material contains 5 to 50% by weight of copper.

【0011】また、モリブデン複合粉の製造に当たって
は、モリブデン粉又はモリブデン酸化物粉を銅塩類溶液
中に入れて、攪拌乾燥して乾燥物を得、この乾燥物を還
元してモリブデン基表面上に5乃至50重量%の銅層を
形成する。なお、電解メッキ法又は無電解メッキ法を用
いてモリブデン粉表面上に5乃至50重量%の銅層を形
成するようにしてもよい。
Further, in producing the molybdenum composite powder, molybdenum powder or molybdenum oxide powder is put into a copper salt solution and dried by stirring to obtain a dried product. A copper layer of 5 to 50% by weight is formed. A copper layer of 5 to 50% by weight may be formed on the surface of the molybdenum powder by using the electrolytic plating method or the electroless plating method.

【0012】[0012]

【実施例】以下本発明について実施例によって説明す
る。
EXAMPLES The present invention will be described below with reference to examples.

【0013】(1).まず、200gの銅(Cu)を含
有するCuCl水溶液を準備して、このCuCl
溶液中に粒径3μmのモリブデン(Mo)粉を800g
を入れ、攪拌しつつ乾燥させた(以下乾燥物という、工
程1)。次に、この乾燥物を温度750℃の水素炉中で
還元してCuを含有するMo粉末を生成した(以下Cu
−Mo複合粉という、工程2)。
(1). First, a CuCl 2 aqueous solution containing 200 g of copper (Cu) was prepared, and 800 g of molybdenum (Mo) powder having a particle size of 3 μm was added to the CuCl 2 aqueous solution.
And was dried with stirring (hereinafter referred to as a dried product, step 1). Next, this dried product was reduced in a hydrogen furnace at a temperature of 750 ° C. to produce Mo powder containing Cu (hereinafter Cu
-Step 2) called Mo composite powder.

【0014】さらに、電解銅200gと粒径3μmのM
o粉800gとをボールミルで混合して、Cu−Mo混
合粉を生成した。
Further, 200 g of electrolytic copper and M having a particle size of 3 μm
800 g of o powder was mixed with a ball mill to produce a Cu-Mo mixed powder.

【0015】これらCu−Mo複合粉及びCu−Mo混
合粉をそれぞれ294MPaの圧力でプレス成型して複
合粉プレス成型体及び混合粉プレス成型体を得た。そし
て、これら複合粉プレス成型体及び混合粉プレス成型体
を焼結温度を変化させてそれぞれ2時間焼結して複合粉
焼結体及び混合粉焼結体を得た。これら複合粉焼結体及
び混合粉焼結体の密度を測定したところ、図1に示す結
果が得られた。
The Cu-Mo composite powder and the Cu-Mo mixed powder were press-molded at a pressure of 294 MPa to obtain a composite powder press-molded body and a mixed powder press-molded body. Then, the composite powder press-molded body and the mixed powder press-molded body were sintered at different sintering temperatures for 2 hours to obtain a composite powder sintered body and a mixed powder sintered body. When the densities of the composite powder sintered body and the mixed powder sintered body were measured, the results shown in FIG. 1 were obtained.

【0016】図1に示すように、焼結温度を高くするに
つれて複合粉焼結体及び混合粉焼結体ともにその密度が
上昇して行くが、混合粉焼結体の方が密度の上昇率が大
きいことがわかる。つまり、複合粉焼結体では焼結温度
の違いによってその密度があまり変化せず、焼結温度が
低くても高い密度が得られることが容易に理解できる。
As shown in FIG. 1, the densities of both the composite powder sintered body and the mixed powder sintered body increase as the sintering temperature is increased, but the mixed powder sintered body has a higher density increase rate. It turns out that is large. That is, it can be easily understood that the density of the composite powder sintered body does not change much depending on the difference of the sintering temperature, and a high density can be obtained even if the sintering temperature is low.

【0017】さらに、これら焼結温度1100℃で焼結
された複合粉焼結体及び混合粉焼結体の組成を光学顕微
鏡で観察したところ、複合粉焼結体では混合粉焼結体に
比べて空孔が極めて少ない。
Furthermore, when the compositions of the composite powder sintered body and the mixed powder sintered body sintered at the sintering temperature of 1100 ° C. were observed with an optical microscope, the composite powder sintered body was compared with the mixed powder sintered body. Very few holes.

【0018】(2).次に、上記(1)で用いたCu−
Mo複合粉800gに電解銅粉114.3gを入れ、V
ミキサーで混合して、30%のCuをとなるCu−Mo
複合粉を生成した(以下30%Cu−Mo複合粉とい
う)。そして、この30%Cu−Mo複合粉を圧力29
4MPaでプレス成型して、プレス成型体とし、水素雰
囲気中で種々の焼結温度に変化させて2時間焼結した。
そして、焼結温度の相違による密度の変化を比較した。
その結果を図2に示す。図2に示すように焼結体の密度
は焼結温度が高くなるに従って高くなるが、焼結温度が
約1000℃でも相対密度は約88%であり、十分な密
度に焼結できることがわかる。
(2). Next, Cu-used in (1) above
Add 114.3g of electrolytic copper powder to 800g of Mo composite powder, and add V
Cu-Mo mixed with a mixer to obtain 30% Cu
A composite powder was produced (hereinafter referred to as 30% Cu-Mo composite powder). Then, this 30% Cu-Mo composite powder is pressed to a pressure of 29.
It was press-molded at 4 MPa to obtain a press-molded body, which was then sintered in a hydrogen atmosphere at various sintering temperatures for 2 hours.
Then, changes in density due to differences in sintering temperature were compared.
The result is shown in FIG. As shown in FIG. 2, the density of the sintered body increases as the sintering temperature increases, but even if the sintering temperature is about 1000 ° C., the relative density is about 88%, and it can be seen that the sintered body can be sintered to a sufficient density.

【0019】(3).上記の(1)で得られた複合粉焼
結体及び混合粉焼結体を圧延加工してそれぞれ複合粉板
材及び混合粉板材を作成したところ、複合粉板材ではク
ラック及び割れ等がほとんど発生しなかったのに対して
混合粉板材ではクラック及び割れが多量に発生し使い物
にならなかった。
(3). When the composite powder plate and the mixed powder plate obtained by the above (1) were rolled to form a composite powder plate and a mixed powder plate, respectively, almost all cracks and cracks were generated in the composite powder plate. On the other hand, in the mixed powder plate material, a large amount of cracks and cracks were generated and it was not usable.

【0020】(4)上記の(1)と同様の方法を用いる
ことによって5%乃至50%のCuを含有するCu−M
o複合粉を生成して、これら複合粉を所定の焼結温度で
焼結して焼結体を得、これら焼結体を圧延して複数の圧
延体(板材)を得た。そして、これら圧延体の熱伝導度
及び熱膨脹係数を測定した。さらに、参考のため、純モ
リブデン粉を用いた圧延体及び純銅を用いた圧延体を作
成し、これら圧延体の熱伝導度及び熱膨脹係数を測定し
た。この測定結果を図3に示す。図3に示すように、銅
の含有量が増加するに従って熱伝導度及び熱膨脹係数が
増加することがわかる。
(4) Cu-M containing 5% to 50% Cu by using the same method as (1) above.
o Composite powder was produced, these composite powders were sintered at a predetermined sintering temperature to obtain a sintered body, and these sintered bodies were rolled to obtain a plurality of rolled bodies (plate materials). Then, the thermal conductivity and the coefficient of thermal expansion of these rolled bodies were measured. Further, for reference, a rolled body using pure molybdenum powder and a rolled body using pure copper were prepared, and the thermal conductivity and thermal expansion coefficient of these rolled bodies were measured. The measurement result is shown in FIG. As shown in FIG. 3, it can be seen that the thermal conductivity and the coefficient of thermal expansion increase as the copper content increases.

【0021】上述のように、本実施例では、Mo粉表面
上にCu層を形成する際、Cu塩類水溶液中にMo粉を
入れて攪拌しつつ乾燥させてMo粉表面上にCu塩類を
付着させている。そして、この乾燥粉を還元雰囲気中で
還元してMo粉表面上にCu層を形成している。このよ
うに、Mo粉をCu塩類水溶液でドープしているから、
Mo粉表面上の凹部にまでCu塩類水溶液がゆきわた
る。つまり、Mo粉表面上の凹部にもCu塩類が形成さ
れることになり、還元後にはMo粉表面上にまんべんな
くCu層が形成されることになる。従って、このような
Cu−Mo複合粉をプレス成型後焼結すると、CuとM
oとの濡れ性がよく、実質的に銅単体の焼結体と類似す
るものが得られる。このため、焼結温度は低くて高密度
の焼結体が得られることになる。さらに、焼結温度が低
くて済むから、焼結時においてCuの浸み出しがなく、
またCuの揮散もほとんどない。このように、本実施例
では、Cuの浸み出しがないから、切削加工の量(全加
工量に対する)が低下し、しいては本質的に特性を左右
する銅量のバラツキも生じさせることがない。また、上
記のCu−Mo複合粉にCu粉を混合した後、プレス成
型を行い、焼結した焼結体においても同様に低い焼結温
度で高密度とすることができる。
As described above, in this embodiment, when the Cu layer is formed on the surface of the Mo powder, the Mo powder is put in an aqueous solution of Cu salts and dried with stirring to deposit the Cu salts on the surface of the Mo powder. I am letting you. Then, this dry powder is reduced in a reducing atmosphere to form a Cu layer on the surface of the Mo powder. Thus, since the Mo powder is doped with the Cu salt aqueous solution,
The Cu salt aqueous solution reaches the recesses on the surface of the Mo powder. That is, Cu salts are also formed in the recesses on the Mo powder surface, and after the reduction, the Cu layer is evenly formed on the Mo powder surface. Therefore, when such Cu-Mo composite powder is pressed and sintered, Cu and M are mixed.
A material having good wettability with o and substantially similar to a sintered body of copper alone can be obtained. Therefore, the sintering temperature is low and a high-density sintered body can be obtained. Furthermore, since the sintering temperature is low, there is no leaching of Cu during sintering,
Also, there is almost no volatilization of Cu. As described above, in this embodiment, since there is no leaching of Cu, the amount of cutting work (relative to the total amount of work) is reduced, and thus variations in the amount of copper that essentially affect the characteristics also occur. There is no. Further, after the Cu powder is mixed with the Cu-Mo composite powder, press molding is performed and the sintered body can also be sintered to a high density at a low sintering temperature.

【0022】さらに、本実施例では、Mo粒子の周囲
(表面)にCuが配置されているから、Cu−Moのス
ベリ及びCuの易加工性がそのまま材質の特長となる。
Further, in this embodiment, since Cu is arranged around the Mo particles (on the surface), the smoothness of Cu-Mo and the easy workability of Cu are the characteristics of the material.

【0023】なお、Cu−Mo複合粉の製造に当たって
は、電解メッキ法又は無電解メッキ法を用いても同様に
Cu−Mo複合粉を製造することができる。また、Cu
の含有量は5重量%乃至50重量%であれば、焼結後の
熱膨張率は満足できるものであり、焼結温度は1100
℃乃至1300℃であればよい。
In producing the Cu-Mo composite powder, the Cu-Mo composite powder can be produced in the same manner by using an electrolytic plating method or an electroless plating method. Also, Cu
If the content of 5% by weight to 50% by weight, the coefficient of thermal expansion after sintering is satisfactory, and the sintering temperature is 1100.
The temperature may be between 1 ° C and 1300 ° C.

【0024】[0024]

【発明の効果】以上説明したように、本発明によるCu
−Mo複合粉を用いれば、高密度の焼結体を簡単に得る
ことができ、しかも板材に加工した際、割れ及びクラッ
クが発生することがほとんどなく、強度、熱伝導度、及
び熱膨脹率等の特性が良好で歩留まりが極めて高くなる
という効果がある。
As described above, the Cu according to the present invention
By using the Mo composite powder, a high-density sintered body can be easily obtained, and when processed into a plate material, cracks and cracks hardly occur, and strength, thermal conductivity, thermal expansion coefficient, etc. The characteristics are excellent and the yield is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合粉焼結体及び混合粉焼結体の焼結温度と密
度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a sintering temperature and a density of a composite powder sintered body and a mixed powder sintered body.

【図2】複合粉+銅粉の焼結体の焼結温度と密度との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a sintering temperature and a density of a sintered body of composite powder + copper powder.

【図3】本発明による圧延体の熱伝導率及び熱膨脹率を
説明するための図である。
FIG. 3 is a diagram for explaining thermal conductivity and thermal expansion coefficient of the rolled body according to the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月13日[Submission date] February 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有川 正 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内 (72)発明者 市田 晃 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Arikawa 2 Iwase Koshi-cho, Toyama City, Toyama Prefecture Tokyo Tangusten Co., Ltd. Toyama Works (72) Inventor Akira Ichida 2 Iwase Koshi-cho, Toyama City, Toyama Prefecture Tokyo Tan Gusten Co., Ltd. Toyama Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 モリブデン基表面上に銅層が形成され、
該銅の含有量が5乃至50重量%であることを特徴とす
るモリブデン複合粉。
1. A copper layer is formed on a molybdenum-based surface,
A molybdenum composite powder, wherein the content of the copper is 5 to 50% by weight.
【請求項2】 請求項1に記載されたモリブデン複合粉
を所定の圧力でプレス成型したプレス成型体を得る第1
の工程と、該プレス成型体を温度1100℃乃至130
0℃で焼結して焼結体を得る第2の工程と、該焼結体を
圧延加工してモリブデン複合板材を得る第3の工程とを
有することを特徴とするモリブデン複合板材の製造方
法。
2. A press-molded body obtained by press-molding the molybdenum composite powder according to claim 1 at a predetermined pressure.
And the press molding at a temperature of 1100 ° C to 130 ° C.
A method for producing a molybdenum composite plate material, comprising: a second step of sintering at 0 ° C. to obtain a sintered body; and a third step of rolling the sintered body to obtain a molybdenum composite plate material. ..
【請求項3】 請求項2に記載されたモリブデン複合板
材の製造方法において、前記第1の工程では前記モリブ
デン複合粉に所定量の銅粉が混合され、該混合粉がプレ
スされることを特徴とするモリブデン複合板材の製造方
法。
3. The method of manufacturing a molybdenum composite plate material according to claim 2, wherein in the first step, a predetermined amount of copper powder is mixed with the molybdenum composite powder, and the mixed powder is pressed. A method for manufacturing a molybdenum composite plate material.
【請求項4】 請求項1に記載されたモリブデン複合粉
を所定の圧力でプレス成型したプレス成型体が温度11
00℃乃至1300℃で焼結され、5乃至50重量%の
銅を含有し、相対密度が90%以上であるモリブデン複
合焼結体。
4. A press-molded body obtained by press-molding the molybdenum composite powder according to claim 1 at a predetermined pressure has a temperature of 11.
A molybdenum composite sintered body, which is sintered at 00 ° C to 1300 ° C, contains 5 to 50% by weight of copper, and has a relative density of 90% or more.
【請求項5】 請求項4に記載された焼結体が圧延加工
され、5乃至50重量%の銅を含有することを特徴とす
るモリブデン複合板材。
5. A molybdenum composite plate material, wherein the sintered body according to claim 4 is rolled and contains 5 to 50% by weight of copper.
【請求項6】 モリブデン粉又はモリブデン酸化物粉を
銅塩類溶液中に入れて、攪拌乾燥して乾燥物を得る第1
の工程と、該乾燥物を還元してモリブデン基表面上に5
乃至50重量%の銅層を形成する第2の工程とを有する
ことを特徴とするモリブデン複合粉の製造方法。
6. A molybdenum powder or a molybdenum oxide powder is put in a copper salt solution and dried by stirring to obtain a dried product.
And the dried product is reduced to 5 on the molybdenum-based surface.
A second step of forming a copper layer of 50% by weight to 50% by weight.
【請求項7】 電解メッキ法又は無電解メッキ法を用い
てモリブデン粉表面上に5乃至50重量%の銅層を形成
してモリブデン複合粉を得ることを特徴とするモリブデ
ン複合粉の製造方法。
7. A method for producing a molybdenum composite powder, which comprises forming a 5 to 50 wt% copper layer on the surface of the molybdenum powder using an electrolytic plating method or an electroless plating method to obtain a molybdenum composite powder.
JP4003056A 1992-01-10 1992-01-10 Molybdenum multiple powder, molybdenum composite sheet and their production Pending JPH05186802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4003056A JPH05186802A (en) 1992-01-10 1992-01-10 Molybdenum multiple powder, molybdenum composite sheet and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4003056A JPH05186802A (en) 1992-01-10 1992-01-10 Molybdenum multiple powder, molybdenum composite sheet and their production

Publications (1)

Publication Number Publication Date
JPH05186802A true JPH05186802A (en) 1993-07-27

Family

ID=11546671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003056A Pending JPH05186802A (en) 1992-01-10 1992-01-10 Molybdenum multiple powder, molybdenum composite sheet and their production

Country Status (1)

Country Link
JP (1) JPH05186802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493153A (en) * 1992-11-26 1996-02-20 Tokyo Tungsten Co., Ltd. Plastic-packaged semiconductor device having a heat sink matched with a plastic package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825851A (en) * 1971-08-12 1973-04-04
JPH04180534A (en) * 1990-11-15 1992-06-26 Tokyo Tungsten Co Ltd Metallic member having high thermal conductivity and low coefficient of thermal expansion and its production
JPH05125407A (en) * 1991-11-05 1993-05-21 Tokyo Tungsten Co Ltd Production of cu-mo composite rolled sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825851A (en) * 1971-08-12 1973-04-04
JPH04180534A (en) * 1990-11-15 1992-06-26 Tokyo Tungsten Co Ltd Metallic member having high thermal conductivity and low coefficient of thermal expansion and its production
JPH05125407A (en) * 1991-11-05 1993-05-21 Tokyo Tungsten Co Ltd Production of cu-mo composite rolled sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493153A (en) * 1992-11-26 1996-02-20 Tokyo Tungsten Co., Ltd. Plastic-packaged semiconductor device having a heat sink matched with a plastic package

Similar Documents

Publication Publication Date Title
US5826159A (en) Process for retarding spontaneous combustion of powdery mixtures
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
US4909841A (en) Method of making dimensionally reproducible compacts
DE112015001562B4 (en) Process for producing a silicon nitride substrate
JP5054854B2 (en) Electrode for electrical discharge machining
JP3825275B2 (en) Electrical contact member and its manufacturing method
US5889220A (en) Copper-tungsten alloys and their manufacturing methods
US20030217828A1 (en) Metal matrix composite having improved microstructure and the process for making the same
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
JPH05186804A (en) Tungsten multiple powder, tungsten composite sheet and their production
JPS6337072B2 (en)
JPH05186802A (en) Molybdenum multiple powder, molybdenum composite sheet and their production
JP6222620B2 (en) Electrical resistance material and manufacturing method thereof
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JPH0499146A (en) Powder sintered material and its manufacture
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JPS62127448A (en) Electrode material for electric discharge machining and its production
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
US6589310B1 (en) High conductivity copper/refractory metal composites and method for making same
JPH05125407A (en) Production of cu-mo composite rolled sheet
JP2004174705A (en) Electrode material for electrical discharge processing
JPS59177305A (en) Production of molybdenum powder and molybdenum material
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960220