JP2001348288A - Particle-dispersed silicon material and method of producing the same - Google Patents

Particle-dispersed silicon material and method of producing the same

Info

Publication number
JP2001348288A
JP2001348288A JP2000166972A JP2000166972A JP2001348288A JP 2001348288 A JP2001348288 A JP 2001348288A JP 2000166972 A JP2000166972 A JP 2000166972A JP 2000166972 A JP2000166972 A JP 2000166972A JP 2001348288 A JP2001348288 A JP 2001348288A
Authority
JP
Japan
Prior art keywords
silicon
dispersed
particle
silicon material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000166972A
Other languages
Japanese (ja)
Other versions
JP3830733B2 (en
Inventor
Akiko Suyama
章子 須山
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000166972A priority Critical patent/JP3830733B2/en
Publication of JP2001348288A publication Critical patent/JP2001348288A/en
Application granted granted Critical
Publication of JP3830733B2 publication Critical patent/JP3830733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon material having reliability and durability by improving the mechanical characteristics of a ceramic or MMC. SOLUTION: A reinforcing base material is obtained by using silicon carbide having an average particle size of 0.1 to 10 μm. The particle-dispersed silicon material is composed of the reinforcing base material and a silicon matrix infiltrated into the reinforcing base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン材料の機械
的特性である強度、靭性を向上する材料に係り、特に、
高温域で用いられるガスタービンの構造部品、あるい
は、半導体部品に適用される粒子分散シリコン材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for improving strength and toughness which are mechanical properties of a silicon material.
The present invention relates to a particle-dispersed silicon material applied to a structural component of a gas turbine used in a high temperature range or a semiconductor component.

【0002】[0002]

【従来の技術】一般にセラミックスの一つであるシリコ
ン材料は、金属材料に比べて、強度および靭性等の機械
的特性が低く、破壊しやすいことから耐久性の面で問題
がある。そのため、上述の技術分野等の製品歩留まりの
向上、高信頼性が要求される部品や製品へのシリコン材
料の適用を可能にするため、高強度化および高靭性化を
図ったシリコン材料が求められている。この材料とし
て、炭化ケイ素セラミックスや金属基複合材料(MM
C:Metal Matrix Composite)が検討され、特に高温域
で使用されるガスタービンの構造部材である燃焼器や、
半導体部品やその関連製品であるヒートシンク、製造治
具、ダミーウエハへの適用が期待されている。
2. Description of the Related Art In general, a silicon material, which is one of ceramics, has low mechanical properties such as strength and toughness as compared with a metal material and is easily broken, and thus has a problem in durability. Therefore, in order to improve the product yield in the above-mentioned technical fields and to apply the silicon material to parts and products requiring high reliability, a silicon material with high strength and high toughness is required. ing. Such materials include silicon carbide ceramics and metal matrix composite materials (MM
C: Metal Matrix Composite) has been studied, and in particular, combustors that are structural members of gas turbines used in high-temperature regions,
It is expected to be applied to semiconductor components and related products such as heat sinks, manufacturing jigs, and dummy wafers.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、機械的
特性の低い既存のセラミックスやMMCによる材料を適
用した場合は強度を確保することで部品が大きな形状と
なり、また、耐久性が低いためコスト高となる。コスト
減の観点から、機器およびシステム全体をコンパクトに
するため、機器を構成する部品等の材料特性の見直しが
要請されているのが最近の傾向でもある。
However, when using existing ceramics or MMC materials having low mechanical properties, parts are formed in a large shape by securing strength, and cost is increased due to low durability. Become. From the viewpoint of cost reduction, it is a recent trend that a review of the material characteristics of components and the like constituting the device is demanded in order to make the device and the whole system compact.

【0004】本発明の目的は、セラミックスやMMCの
機械的特性を向上することにより、信頼性と耐久性を確
保したシリコン材料を得ることにある。
[0004] It is an object of the present invention to obtain a silicon material having improved reliability and durability by improving the mechanical properties of ceramics and MMC.

【0005】[0005]

【課題を解決するための手段】本発明の粒子分散シリコ
ン材料は、平均粒径0.1〜10μmの炭化ケイ素を用
いることにより得られた強化素材と、この強化素材に溶
浸されたシリコンマトリックスとからなることを特徴と
する。
The particle-dispersed silicon material of the present invention comprises a reinforcing material obtained by using silicon carbide having an average particle size of 0.1 to 10 μm, and a silicon matrix infiltrated into the reinforcing material. And characterized by the following.

【0006】本発明の粒子分散シリコン材料の製造方法
は、平均粒径0.1〜10μmの炭化ケイ素粉末と平均
粒径0.03〜3μmのカーボン粉末とを溶媒に分散す
ることによりのスラリーを得る第一工程と、このスラリ
ーを0.1〜10MPaの圧力で加圧した後に乾燥させ
る第二工程と、ここで乾燥した成形体を600〜800
℃の不活性な雰囲気中で一定時間保持し成形助剤を脱脂
する第三工程と、ここで脱脂した成形体を減圧下または
不活性な雰囲気中で1400℃以上に加熱し、これにシ
リコンを溶浸させる第四工程とを備えたことを特徴とす
る。
The method for producing a particle-dispersed silicon material according to the present invention is characterized in that a slurry obtained by dispersing silicon carbide powder having an average particle diameter of 0.1 to 10 μm and carbon powder having an average particle diameter of 0.03 to 3 μm in a solvent is used. A first step of obtaining the slurry; a second step of drying the slurry after pressurizing the slurry at a pressure of 0.1 to 10 MPa;
A third step of degreasing the molding aid by holding the molding aid in an inert atmosphere at a constant temperature of 1 ° C., and heating the degreased molded body to 1400 ° C. or more under reduced pressure or in an inert atmosphere, and silicon is added thereto. And a fourth step of infiltrating.

【0007】また、本発明の粒子分散シリコン材料は、
上述の製法により作製された粒子分散シリコン材料であ
って、分散粒子である炭化ケイ素の含有量を含浸させる
シリコンに対して50〜95重量%としたことを特徴と
する。
[0007] The particle-dispersed silicon material of the present invention comprises:
A particle-dispersed silicon material produced by the above-mentioned method, wherein the content of silicon carbide as dispersed particles is set to 50 to 95% by weight based on silicon to be impregnated.

【0008】まず、第二工程でスラリーを0.1〜10
MPaの圧力で加圧するのは大きく複雑な形状のものま
で均質に高速に成形するためでである。そして、脱脂し
た成形体の加熱温度を1400℃以上としたのは、シリ
コンが溶融し成形体に均質に溶浸できるためである。
First, in the second step, the slurry is 0.1 to 10%.
The reason why the pressure is applied at the pressure of MPa is to uniformly and rapidly form a large and complicated shape. The reason why the heating temperature of the degreased molded body is set to 1400 ° C. or higher is that silicon can be melted and uniformly infiltrated into the molded body.

【0009】次に、分散粒子である炭化ケイ素の含有量
が50重量%未満である場合は、十分な機械的特性が得
られず、逆に、95重量%を超える場合は機械的特性が
向上する反面、製造プロセス上、粒子の適正な分散が望
めないことから所定の値の範囲にしている。この範囲と
することで、粒子間の平均距離が2μmという概ね均質
に分散したシリコン材料を得ることができる。
Next, when the content of the silicon carbide particles as the dispersed particles is less than 50% by weight, sufficient mechanical properties cannot be obtained. Conversely, when the content exceeds 95% by weight, the mechanical properties are improved. On the other hand, since the dispersion of the particles cannot be expected due to the production process, the range is set to a predetermined value. Within this range, it is possible to obtain a substantially homogeneously dispersed silicon material having an average distance between particles of 2 μm.

【0010】一方、分散粒子の平均粒径が0.1μm未
満である場合は、製造プロセスにおいて、分散粒子が凝
集し易いため適正な分散が望めず、逆に、10μmを超
えると機械的特性である強度、靭性の向上が十分に発現
しないことから所定の値の範囲にしている。この範囲と
することで、粒子間の平均距離が2μmという概ね均質
に分散したシリコン材料を得ることができる。
On the other hand, when the average particle size of the dispersed particles is less than 0.1 μm, proper dispersion cannot be expected because the dispersed particles are easily aggregated in the manufacturing process. Since a certain improvement in strength and toughness is not sufficiently exhibited, the range is set to a predetermined value. Within this range, it is possible to obtain a substantially homogeneously dispersed silicon material having an average distance between particles of 2 μm.

【0011】また、本発明による粒子分散シリコン材料
は、シリコンおよび炭化ケイ素に含有する不純物の量を
0.001〜2重量%以下の範囲とする。これは、不純
物の含有量が0.001重量%未満である場合、分散粒
子である炭化ケイ素とマトリックスのシリコンとのぬれ
性が向上し、安定した機械的特性が得られる。逆に、2
重量%を超えると機械的特性等の低下をきたす。
In the particle-dispersed silicon material according to the present invention, the amount of impurities contained in silicon and silicon carbide is in the range of 0.001 to 2% by weight or less. When the content of the impurities is less than 0.001% by weight, the wettability between silicon carbide as the dispersed particles and silicon as the matrix is improved, and stable mechanical properties are obtained. Conversely, 2
If the content exceeds% by weight, mechanical properties and the like will be reduced.

【0012】さらにまた、本発明による粒子分散シリコ
ン材料は、開気孔率を3%以下とする。これは、開気孔
率が3%を超えると、強度のバラツキが生じるためであ
り、3%以下とすることで、強度低下の原因となる欠陥
の数や大きさを減らすことで、所望の機械的特性を備え
たシリコン材料を得ることができる。
Further, the particle-dispersed silicon material according to the present invention has an open porosity of 3% or less. This is because if the open porosity exceeds 3%, there is a variation in strength. By setting the porosity to 3% or less, the number and size of defects that cause a decrease in strength can be reduced, and the desired mechanical strength can be reduced. A silicon material having a characteristic characteristic can be obtained.

【0013】ここで、分散粒子間の平均距離の測定は以
下のように行う。得られたシリコン材料を減圧下187
3Kに加熱してシリコンを除去した後、水銀圧入法を用
いて気孔径を測定し、平均気孔径を分散粒子間の平均距
離とした。気孔径(D)は、気孔に水銀を圧入する圧力
P、水銀と試料の接触角(θ)を130゜、水銀の表面
張力(γ)を0.48N/mとして式(1)を用いて計
算した。
Here, the average distance between the dispersed particles is measured as follows. The obtained silicon material was removed under reduced pressure for 187 minutes.
After heating to 3K to remove silicon, the pore size was measured using a mercury intrusion method, and the average pore size was taken as the average distance between dispersed particles. The pore diameter (D) is obtained by using the formula (1), where the pressure P at which mercury is injected into the pores, the contact angle (θ) between mercury and the sample is 130 °, and the surface tension (γ) of mercury is 0.48 N / m. Calculated.

【0014】〔数1〕 D=−4・γ・cosθ/P (1) そして、全気孔体積のd50値の気孔径を平均気孔径と
した。
[Equation 1] D = −4 · γ · cos θ / P (1) Then, the pore diameter of the d50 value of the total pore volume was defined as the average pore diameter.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明に係る粒子分
散シリコン材料1の組成を拡大して示す断面図である。
表1に、以下に示す実施例および比較例の一覧を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged sectional view showing the composition of the particle-dispersed silicon material 1 according to the present invention.
Table 1 shows a list of the following examples and comparative examples.

【0016】[実施例1〜4]平均粒径1〜3μmの炭
化ケイ素粉末100重量部(昭和電工(株)製グリーン
デンシックGC粉末)とカーボン粉末10〜50重量部
(三菱化成(株)製カーボンブラック)を、溶媒中に分
散して、低粘度のスラリーを作製した。次に、このスラ
リーを圧力鋳込み成形機を用いて、成形型に加圧しなが
ら充填した。成形圧力を0.1〜10MPaの間で変化
させて、成形体密度の異なる4種類の成形体を作製し
た。さらに自然乾燥した後に、不活性な雰囲気である窒
素ガス中、温度600〜800℃で2時間保持し、成形
助剤として添加した有機物を脱脂した後に、減圧下また
は不活性雰囲気中において温度1400℃以上に加熱
し、成形体中にシリコンを溶浸させた。こうして得られ
た焼結体は表面加工を施して、それぞれ実施例1〜4と
して粒子分散強化シリコン材料1を製造した。この実施
例1〜4の材料組成比(シリコン:分散粒子)は、実施
例1が45:55〜50:50、実施例2が30:70
〜35:65、実施例3が15:85〜20:80、実
施例4は5:95〜10:90である。この材料組成比
は、出発原料に添加するカーボン粉末の量と、スラリー
から作製した成形体密度によって、調整可能である。
Examples 1 to 4 100 parts by weight of silicon carbide powder having an average particle diameter of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (Mitsubishi Chemical Corporation) Carbon black) was dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. By changing the molding pressure between 0.1 and 10 MPa, four types of molded bodies having different molded body densities were produced. Further, after natural drying, the mixture is kept at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas which is an inert atmosphere, and after degreased organic substances added as a molding aid, the temperature is reduced to 1400 ° C. under reduced pressure or in an inert atmosphere. The above heating was performed to infiltrate silicon into the molded body. The sintered body thus obtained was subjected to surface processing to produce a particle dispersion strengthened silicon material 1 as Examples 1 to 4, respectively. The material composition ratio (silicon: dispersed particles) of Examples 1 to 4 was 45:55 to 50:50 in Example 1, and 30:70 in Example 2.
35:65, Example 3 is 15:85 to 20:80, and Example 4 is 5:95 to 10:90. This material composition ratio can be adjusted by the amount of the carbon powder added to the starting material and the density of the compact formed from the slurry.

【0017】[実施例5〜6]平均粒径0.2〜0.5μ
m、または6〜9μmの炭化ケイ素粉末100重量部
(昭和電工(株)製グリーンデンシックGC粉末)とカ
ーボン粉末10〜50重量部(三菱化成(株)製カーボ
ンブラック)を、溶媒中に分散して、低粘度のスラリー
を作製した。次に、このスラリーを圧力鋳込み成形機を
用いて、成形型に加圧しながら充填した。成形圧力を
0.1〜10MPaの間で変化させて、成形体密度の異
なる2種類の成形体を作製した。さらに自然乾燥した後
に、窒素ガス雰囲気中温度600〜800℃で2時間保
持し、成形助剤として添加した有機物を脱脂した後に、
減圧下または不活性雰囲気中において温度1400℃以
上に加熱し、成形体中にシリコンを溶浸させた。こうし
て得られた焼結体は表面加工を施し、それぞれ実施例5
〜6として粒子分散シリコン材料1を製造した。
[Examples 5 and 6] Average particle size 0.2 to 0.5 µm
m or 6 to 9 μm of silicon carbide powder (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (Mitsubishi Chemical Corporation carbon black) are dispersed in a solvent. Thus, a slurry having a low viscosity was produced. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. By changing the molding pressure between 0.1 and 10 MPa, two types of molded bodies having different molded body densities were produced. After further air drying, the mixture was held at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas atmosphere to degrease organic substances added as a molding aid.
Heating was performed at a temperature of 1400 ° C. or higher under reduced pressure or in an inert atmosphere to infiltrate silicon into the molded body. The sintered body thus obtained was subjected to a surface treatment, and the sintered body was obtained in Example 5
As No.-6, the particle-dispersed silicon material 1 was produced.

【0018】[実施例7]平均粒径1〜3μmの炭化ケ
イ素粉末100重量部(昭和電工(株)製グリーンデン
シックGC粉末)とカーボン粉末10〜50重量部(三
菱化成(株)製カーボンブラック)を酸洗いによる純化
処理をした後、溶媒中に分散して、低粘度のスラリーを
作製した。次に、このスラリーを圧力鋳込み成形機を用
いて、成形型に加圧しながら充填した。成形圧力は0.
1〜10MPaの間で、成形体を作製した。さらに自然
乾燥した後に、窒素ガス雰囲気中温度600〜800℃
で2時間保持し、成形助剤として添加した有機物を脱脂
した後に、塩素ガス雰囲気で加熱処理による純化処理を
施した。そして、減圧下または不活性雰囲気中において
温度1400℃以上に加熱し、成形体中にシリコンを溶
浸させた。こうして得られた焼結体は表面加工を施し、
実施例7として粒子分散シリコン材料1を製造した。
Example 7 100 parts by weight of silicon carbide powder having an average particle diameter of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (carbon manufactured by Mitsubishi Kasei KK) Black) was subjected to a purification treatment by pickling, and then dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. The molding pressure is 0.
A molded body was prepared at a pressure of 1 to 10 MPa. After further air drying, the temperature in a nitrogen gas atmosphere is 600 to 800 ° C.
For 2 hours, and degreased organic matter added as a molding aid, and then subjected to a purification treatment by a heat treatment in a chlorine gas atmosphere. Then, it was heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere to infiltrate the molded body with silicon. The sintered body thus obtained is subjected to surface processing,
Example 7 A particle-dispersed silicon material 1 was produced.

【0019】[実施例8]平均粒径1〜3μmの炭化ケ
イ素粉末100重量部(昭和電工(株)製グリーンデン
シックGC粉末)とカーボン粉末10〜50重量部(三
菱化成(株)製カーボンブラック)後、溶媒中に分散し
て、低粘度のスラリーを作製した。次に、このスラリー
を圧力鋳込み成形機を用いて、成形型に加圧しながら充
填した。成形圧力は0.1〜10MPaの間で、成形体
を作製した。さらに自然乾燥した後に、窒素ガス雰囲気
中温度600〜800℃で2時間保持し、成形助剤とし
て添加した有機物を脱脂した後に、減圧下または不活性
雰囲気中において温度1400℃以上に加熱し、成形体
中にシリコン(実施例1〜4に用いたものより若干純度
の低いもの)を溶浸させた。こうして得られた焼結体は
表面加工を施し、実施例8として粒子分散シリコン材料
1を製造した。
Example 8 100 parts by weight of silicon carbide powder having an average particle diameter of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (carbon manufactured by Mitsubishi Kasei KK) Black), and then dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. A molding was produced at a molding pressure of 0.1 to 10 MPa. After natural drying, the mixture was kept at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas atmosphere to degrease organic substances added as a molding aid, and then heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere to form The body was infiltrated with silicon (those having a slightly lower purity than those used in Examples 1 to 4). The sintered body thus obtained was subjected to surface processing, and as Example 8, a particle-dispersed silicon material 1 was produced.

【0020】[比較例1〜2]平均粒径1〜3μmの炭
化ケイ素粉末100重量部(昭和電工(株)製グリーン
デンシックGC粉末)とカーボン粉末10〜50重量部
(三菱化成(株)製カーボンブラック)を、溶媒中に分
散して、低粘度のスラリーを作製した。次に、このスラ
リーを圧力鋳込み成形機を用いて、成形型に加圧しなが
ら充填した。成形圧力を0.1〜10MPaの間で変化
させて、成形体密度の異なる2種類の成形体を作製し
た。さらに自然乾燥した後に、窒素ガス雰囲気中温度6
00〜800℃で2時間保持し、成形助剤として添加し
た有機物を脱脂した後に、減圧下または不活性雰囲気中
において温度1400℃以上に加熱し、成形体中に溶融
したシリコンを含浸させた。こうして得られた焼結体は
表面加工を施し、それぞれ比較例1〜2として粒子分散
シリコン材料を製造した。比較例1〜2の材料組成比
(シリコン:分散粒子)は、比較例1が50:50〜6
0:40、比較例2が<5:>95である。この材料組
成比は、出発原料に添加するカーボン粉末の量と、スラ
リーから作製した成形体密度によって、調整可能であ
る。特に、比較例2は出発原料として添加したカーボン
粉末が分散粒子へ転化せずにそのままの状態で残る場合
がある。
Comparative Examples 1 and 2 100 parts by weight of silicon carbide powder having an average particle diameter of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (Mitsubishi Chemical Corporation) Carbon black) was dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. By changing the molding pressure between 0.1 and 10 MPa, two types of molded bodies having different molded body densities were produced. After air drying, the temperature in the nitrogen gas atmosphere
After holding at 00 to 800 ° C. for 2 hours to degrease organic substances added as a molding aid, the molded body was heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere to impregnate molten silicon into the molded body. The sintered body thus obtained was subjected to surface processing to produce particle-dispersed silicon materials as Comparative Examples 1 and 2, respectively. The material composition ratio (silicon: dispersed particles) of Comparative Examples 1 and 2 is 50:50 to 6 in Comparative Example 1.
0:40, Comparative Example 2 <5:> 95. This material composition ratio can be adjusted by the amount of the carbon powder added to the starting material and the density of the compact formed from the slurry. In particular, in Comparative Example 2, the carbon powder added as a starting material sometimes remains as it is without being converted into dispersed particles.

【0021】[比較例3〜4]平均粒径20μm、また
は40μmの炭化ケイ素粉末100重量部(昭和電工
(株)製グリーンデンシックGC粉末)とカーボン粉末
10〜50重量部(三菱化成(株)製カーボンブラッ
ク)を、溶媒中に分散して、低粘度のスラリーを作製し
た。次に、このスラリーを圧力鋳込み成形機を用いて、
成形型に加圧しながら充填した。成形圧力を0.1〜1
0MPaの間で変化させて、成形体密度の異なる2種類
の成形体を作製した。さらに自然乾燥した後に、窒素ガ
ス雰囲気中温度600〜800℃で2時間保持し、成形
助剤として添加した有機物を脱脂した後に、減圧下また
は不活性雰囲気中において温度1400℃以上に加熱
し、成形体中にシリコンを溶浸させた。こうして得られ
た焼結体は表面加工を施し、それぞれ比較例3〜4とし
て粒子分散シリコン材料を製造した。
Comparative Examples 3 and 4 100 parts by weight of silicon carbide powder having an average particle diameter of 20 μm or 40 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (Mitsubishi Chemical Corporation) ) Produced carbon black) was dispersed in a solvent to prepare a low viscosity slurry. Next, using a pressure casting molding machine, this slurry,
The mold was filled under pressure. Molding pressure is 0.1 ~ 1
By changing the pressure between 0 MPa, two types of compacts having different compact densities were produced. After natural drying, the mixture was kept at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas atmosphere to degrease organic substances added as a molding aid, and then heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere to form Silicon was infiltrated into the body. The sintered body thus obtained was subjected to surface processing to produce particle-dispersed silicon materials as Comparative Examples 3 and 4, respectively.

【0022】[比較例5]平均粒径1〜3μmの炭化ケ
イ素粉末100重量部(昭和電工(株)製グリーンデン
シックGC粉末)とカーボン粉末10〜50重量部(三
菱化成(株)製カーボンブラック)を、溶媒中に分散し
て、低粘度のスラリーを作製した。次に、このスラリー
を圧力鋳込み成形機を用いて、成形型に加圧しながら充
填した。成形圧力は0.1〜10MPaの間で、成形体
を作製した。さらに自然乾燥した後に、窒素ガス雰囲気
中温度600〜800℃で2時間保持し、成形助剤とし
て添加した有機物を脱脂した後に、減圧下または不活性
雰囲気中において温度1400℃以上に加熱し、成形体
中にシリコン(実施例8で用いたシリコンよりさらに純
度の低いもの)を溶浸させた。こうして得られた焼結体
は表面加工を施し、比較例5として粒子分散シリコン材
料を製造した。
Comparative Example 5 100 parts by weight of silicon carbide powder having an average particle size of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (carbon manufactured by Mitsubishi Chemical Corporation) Black) was dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. A molding was produced at a molding pressure of 0.1 to 10 MPa. After natural drying, the mixture was kept at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas atmosphere to degrease organic substances added as a molding aid, and then heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere to form The body was infiltrated with silicon (which had a lower purity than the silicon used in Example 8). The sintered body thus obtained was subjected to surface processing to produce a particle-dispersed silicon material as Comparative Example 5.

【0023】[比較例6]平均粒径1〜3μmの炭化ケ
イ素粉末100重量部(昭和電工(株)製グリーンデン
シックGC粉末)とカーボン粉末10〜50重量部(三
菱化成(株)製カーボンブラック)と、シリコン粉末1
0〜100重量部((株)高純度化学研究所)を、溶媒
中に分散して、低粘度のスラリーを作製した。次に、こ
のスラリーを圧力鋳込み成形機を用いて、成形型に加圧
しながら充填した。成形圧力は0.1〜10MPaの間
で、成形体を作製した。さらに自然乾燥した後に、窒素
ガス雰囲気中温度600〜800℃で2時間保持し、成
形助剤として添加した有機物を脱脂した後に、減圧下ま
たは不活性雰囲気中において温度1400℃以上に加熱
した。得られた焼結体は表面加工を施し、比較例6とし
て粒子分散シリコン材料を製造した。
Comparative Example 6 100 parts by weight of silicon carbide powder having an average particle diameter of 1 to 3 μm (Green Densic GC powder manufactured by Showa Denko KK) and 10 to 50 parts by weight of carbon powder (carbon manufactured by Mitsubishi Chemical Corporation) Black) and silicon powder 1
0 to 100 parts by weight (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dispersed in a solvent to prepare a low-viscosity slurry. Next, this slurry was filled into a molding die while applying pressure using a pressure casting molding machine. A molding was produced at a molding pressure of 0.1 to 10 MPa. After air drying, the mixture was held at a temperature of 600 to 800 ° C. for 2 hours in a nitrogen gas atmosphere to degrease organic substances added as a molding aid, and then heated to a temperature of 1400 ° C. or more under reduced pressure or in an inert atmosphere. The obtained sintered body was subjected to surface processing to produce a particle-dispersed silicon material as Comparative Example 6.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明によれば、シリコンマトリックス
に炭化ケイ素を適正に分散させ、セラミックスやMMC
の機械的特性を向上することにより、信頼性と耐久性を
確保した粒子分散シリコン材料が提供できる。
According to the present invention, silicon carbide is appropriately dispersed in a silicon matrix, and ceramics and MMC are dispersed.
By improving the mechanical properties of the particles, it is possible to provide a particle-dispersed silicon material that ensures reliability and durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る粒子分散シリコン材料1の組成を
拡大して示す断面図である。
FIG. 1 is an enlarged sectional view showing the composition of a particle-dispersed silicon material 1 according to the present invention.

【符号の説明】[Explanation of symbols]

1…粒子分散シリコン材料、2…シリコン、3…炭化ケ
イ素強化素材。
1 ... particle-dispersed silicon material, 2 ... silicon, 3 ... silicon carbide reinforced material.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.1〜10μmの炭化ケイ素
を用いることにより得られた強化素材と、この強化素材
に溶浸されたシリコンマトリックスとからなることを特
徴とする粒子分散シリコン材料。
1. A particle-dispersed silicon material comprising a reinforcing material obtained by using silicon carbide having an average particle size of 0.1 to 10 μm, and a silicon matrix infiltrated into the reinforcing material.
【請求項2】 請求項1に記載の粒子分散シリコン材料
であって、分散粒子である炭化ケイ素の含有量を含浸さ
せるシリコンに対して50〜95重量%としたことを特
徴とする粒子分散シリコン材料。
2. The particle-dispersed silicon material according to claim 1, wherein the content of silicon carbide as the dispersed particles is 50 to 95% by weight based on silicon to be impregnated. material.
【請求項3】 請求項1に記載の粒子分散シリコン材料
であって、その室温における3点曲げ強度が500〜1
300MPaであることを特徴とする粒子分散シリコン
材料。
3. The particle-dispersed silicon material according to claim 1, wherein the three-point bending strength at room temperature is 500 to 1.
A particle-dispersed silicon material having a pressure of 300 MPa.
【請求項4】 請求項1に記載の粒子分散シリコン材料
であって、その室温における熱伝導率が100〜200
W/m・Kであることを特徴とする粒子分散シリコン材
料。
4. The particle-dispersed silicon material according to claim 1, which has a thermal conductivity of 100 to 200 at room temperature.
A particle-dispersed silicon material having a W / m · K ratio.
【請求項5】 請求項1に記載の粒子分散シリコン材料
であって、その破壊靭性値が2〜4MPam1/2である
ことを特徴とする粒子分散シリコン材料。
5. The particle-dispersed silicon material according to claim 1, wherein the fracture toughness value is 2 to 4 MPam 1/2 .
【請求項6】 請求項1に記載の製法により作製された
粒子分散シリコン材料であって、そのビッカース硬さ
(Hv)が1300〜2000であることを特徴とする
粒子分散シリコン材料。
6. A particle-dispersed silicon material produced by the method according to claim 1, wherein the Vickers hardness (Hv) is 1300 to 2000.
【請求項7】 平均粒径0.1〜10μmの炭化ケイ素
粉末と平均粒径0.03〜3μmのカーボン粉末とを水
または有機溶媒に分散することによりスラリーを得る第
一工程と、このスラリーを0.1〜10MPaの圧力で
加圧した後に乾燥させる第二工程と、ここで乾燥した成
形体を600〜800℃の不活性な雰囲気中で一定時間
保持して脱脂する第三工程と、ここで脱脂した成形体を
減圧下または不活性な雰囲気中で1400℃以上に加熱
して、これにシリコンを溶浸させる第四工程とを備えた
ことを特徴とする粒子分散シリコン材料の製造方法。
7. A first step of obtaining a slurry by dispersing a silicon carbide powder having an average particle size of 0.1 to 10 μm and a carbon powder having an average particle size of 0.03 to 3 μm in water or an organic solvent; A second step of drying after pressing at a pressure of 0.1 to 10 MPa, and a third step of degreasing by holding the dried body here for a certain time in an inert atmosphere at 600 to 800 ° C. Heating the degreased molded body to 1400 ° C. or more under reduced pressure or in an inert atmosphere, and infiltrating silicon into the molded body. .
JP2000166972A 2000-06-05 2000-06-05 Particle-dispersed silicon material and manufacturing method thereof Expired - Lifetime JP3830733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000166972A JP3830733B2 (en) 2000-06-05 2000-06-05 Particle-dispersed silicon material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166972A JP3830733B2 (en) 2000-06-05 2000-06-05 Particle-dispersed silicon material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001348288A true JP2001348288A (en) 2001-12-18
JP3830733B2 JP3830733B2 (en) 2006-10-11

Family

ID=18670201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166972A Expired - Lifetime JP3830733B2 (en) 2000-06-05 2000-06-05 Particle-dispersed silicon material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3830733B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853732A1 (en) * 2003-04-14 2004-10-15 Nec Toshiba Space Sys Ltd Mirror substrate for optical device, is composed of silicon carbide and silicon and including reflecting surface polished with specular finish, and sufficient Vickers hardness, thermal conductivity and resistance to flexion
JP2007022914A (en) * 2006-10-31 2007-02-01 Toshiba Corp Method for manufacturing silicon/silicon carbide composite material
JP2007055897A (en) * 2006-10-31 2007-03-08 Toshiba Corp Silicon/silicon carbide composite material
EP2258672A1 (en) 2009-06-01 2010-12-08 NEC TOSHIBA Space Systems, Ltd. Optical device
US8568650B2 (en) 2002-06-18 2013-10-29 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747772A (en) * 1980-07-17 1982-03-18 Kennecott Corp Silicon carbide, silicon composite material and manufacture
JPS5782177A (en) * 1980-11-10 1982-05-22 Nippon Tungsten Manufacture of high density silicon carbide sintered body
JPH01172290A (en) * 1987-12-25 1989-07-07 Ibiden Co Ltd Heat resistant complex body and production thereof
JPH08208336A (en) * 1995-02-03 1996-08-13 Ngk Insulators Ltd Si-sic sintered compact having oxidation and creep resistance
JPH10130056A (en) * 1996-10-29 1998-05-19 Hitachi Ltd Silicon carbide ceramic and its production
JPH10251086A (en) * 1997-03-07 1998-09-22 Sumitomo Special Metals Co Ltd Material for magnetic head slider and its production
JPH11171671A (en) * 1997-12-10 1999-06-29 Tokai Konetsu Kogyo Co Ltd Production of plate silicon carbide-silicon composite ceramic
JP2000143359A (en) * 1998-11-09 2000-05-23 Bridgestone Corp Production of silicon carbide sintered product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747772A (en) * 1980-07-17 1982-03-18 Kennecott Corp Silicon carbide, silicon composite material and manufacture
JPS5782177A (en) * 1980-11-10 1982-05-22 Nippon Tungsten Manufacture of high density silicon carbide sintered body
JPH01172290A (en) * 1987-12-25 1989-07-07 Ibiden Co Ltd Heat resistant complex body and production thereof
JPH08208336A (en) * 1995-02-03 1996-08-13 Ngk Insulators Ltd Si-sic sintered compact having oxidation and creep resistance
JPH10130056A (en) * 1996-10-29 1998-05-19 Hitachi Ltd Silicon carbide ceramic and its production
JPH10251086A (en) * 1997-03-07 1998-09-22 Sumitomo Special Metals Co Ltd Material for magnetic head slider and its production
JPH11171671A (en) * 1997-12-10 1999-06-29 Tokai Konetsu Kogyo Co Ltd Production of plate silicon carbide-silicon composite ceramic
JP2000143359A (en) * 1998-11-09 2000-05-23 Bridgestone Corp Production of silicon carbide sintered product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568650B2 (en) 2002-06-18 2013-10-29 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
FR2853732A1 (en) * 2003-04-14 2004-10-15 Nec Toshiba Space Sys Ltd Mirror substrate for optical device, is composed of silicon carbide and silicon and including reflecting surface polished with specular finish, and sufficient Vickers hardness, thermal conductivity and resistance to flexion
US7080915B2 (en) 2003-04-14 2006-07-25 Nec Toshiba Space Systems, Ltd. Mirror substrate, mirror body using the same, and optical device using mirror body
JP2007022914A (en) * 2006-10-31 2007-02-01 Toshiba Corp Method for manufacturing silicon/silicon carbide composite material
JP2007055897A (en) * 2006-10-31 2007-03-08 Toshiba Corp Silicon/silicon carbide composite material
JP4612608B2 (en) * 2006-10-31 2011-01-12 株式会社東芝 Method for producing silicon / silicon carbide composite material
EP2258672A1 (en) 2009-06-01 2010-12-08 NEC TOSHIBA Space Systems, Ltd. Optical device
US8444281B2 (en) 2009-06-01 2013-05-21 Nec Toshiba Space Systems, Ltd. Optical device
CN115956064A (en) * 2020-09-07 2023-04-11 日本碍子株式会社 Refractory material

Also Published As

Publication number Publication date
JP3830733B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
CN114436661A (en) Silicon nitride ceramic radome and additive manufacturing method thereof
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPWO2003076363A1 (en) Manufacturing method of silicon carbide sintered body jig and silicon carbide sintered body jig obtained by the manufacturing method
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
JP2007314423A (en) Aluminum-ceramic composite and its producing method
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JPH08175871A (en) Silicon carbide-based sintered body and its production
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP2009051705A (en) Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation
JPS5918165A (en) Manufacture of silicon nitride sintered body
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JP2004323291A (en) Aluminum-ceramic composite and its producing method
JP2002293673A (en) Metal-ceramic composite material
JPH08151268A (en) Production of silicon carbide sintered compact
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP2007055897A (en) Silicon/silicon carbide composite material
JP4342143B2 (en) Method for producing Si-SiC material
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JP2004250264A (en) High strength boron nitride sintered compact and method of manufacturing the same
KR20220107841A (en) Method of forming a silicon carbide coating film on a porous carbon structure
KR20210043945A (en) Method for Fabricating Rapid Heating Elements of Silicon Carbide for Semiconductor Packaging Equipments
JPH1053466A (en) Production of highly precise inorganic sintered compact
JPH1180860A (en) Production of metal-ceramics composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R151 Written notification of patent or utility model registration

Ref document number: 3830733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term