JPH05186531A - Production of polyacetylenic conjugated polymer - Google Patents

Production of polyacetylenic conjugated polymer

Info

Publication number
JPH05186531A
JPH05186531A JP4005226A JP522692A JPH05186531A JP H05186531 A JPH05186531 A JP H05186531A JP 4005226 A JP4005226 A JP 4005226A JP 522692 A JP522692 A JP 522692A JP H05186531 A JPH05186531 A JP H05186531A
Authority
JP
Japan
Prior art keywords
group
substrate
film
polyacetylene
conjugated polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4005226A
Other languages
Japanese (ja)
Other versions
JPH08846B2 (en
Inventor
Sanemori Soga
眞守 曽我
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4005226A priority Critical patent/JPH08846B2/en
Priority to US07/993,022 priority patent/US5270417A/en
Priority to DE69322176T priority patent/DE69322176T2/en
Priority to EP93100300A priority patent/EP0552637B1/en
Publication of JPH05186531A publication Critical patent/JPH05186531A/en
Publication of JPH08846B2 publication Critical patent/JPH08846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F38/00Homopolymers and copolymers of compounds having one or more carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Abstract

PURPOSE:To obtain a polyacetylenic superlong conjugated polymer stable in an oxygenic atmosphere by making the surface of a substrate chemisorb a chemisorbable substance containing an acetylene group and a chlorosilyl group and polymerizing the part of the acetylene group in a solvent containing a Ziegler/Natta catalyst. CONSTITUTION:A substrate 1 with a hydrophilic surface is immersed in a first organic solvent containing a dissolved chemisorbable substance containing an acetylene group and a chlorosilyl group (e.g. omega-nonadecynyltrichlorosilane) to form a monomolecular film 2 of the above substance on the substrate 1 by chemisorption, and the substrate is immersed in a second organic solvent containing a Ziegler/Natta catalyst to polymerize the part of the acetylene group of the monomolecular film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリアセチレン型(超
長)共役ポリマーの製造方法に関する。更に詳しくは、
導電性や非線形光学効果を示し電気材料等に有用なポリ
アセチレン結合を有する有機物質に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a polyacetylene type (ultra-long) conjugated polymer. For more details,
The present invention relates to an organic substance having a polyacetylene bond which exhibits conductivity and a nonlinear optical effect and is useful as an electric material and the like.

【0002】[0002]

【従来の技術】アセチレン誘導体のポリマ−は、パイ電
子共役系を持つ一次元の主鎖を分子内に保有しているこ
とで、導電性や非線形光学効果を持つことから光、電子
機能材料として広く研究されている。
2. Description of the Related Art Polymers of acetylene derivatives have conductivity and nonlinear optical effects because they have a one-dimensional main chain having a pi-electron conjugated system in the molecule. Has been widely studied.

【0003】また、ポリアセチレンの製造方法として
は、白川らが用いたアセチレンガスをチグラー・ナッタ
触媒で重合する方法がよく知られている(シンセティッ
ク メタルス、1巻、175頁(1979/1980) (スイ
ス)。
As a method for producing polyacetylene, a method of polymerizing acetylene gas used by Shirakawa et al. With a Ziegler-Natta catalyst is well known (Synthetic Metals, Vol. 1, pp. 175 (1979/1980) (Switzerland). ).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在知
られているポリアセチレン誘導体は、酸素を含む雰囲気
中では、熱や圧力あるいは紫外線などに対して不安定で
ある。
However, currently known polyacetylene derivatives are unstable to heat, pressure or ultraviolet rays in an atmosphere containing oxygen.

【0005】そこで、安定化させる研究が進められてい
るが、未だにアセチレン誘導体ポリマを安定化する方法
は見いだされていない。本発明は、従来の欠点に鑑みな
されたもので、酸素を含む雰囲気中で安定なポリアセチ
レン型超長共役ポリマ−の製造方法を提供することを目
的とする。
Therefore, researches for stabilizing the acetylene derivative polymers have been made, but no method for stabilizing the acetylene derivative polymer has been found. The present invention has been made in view of the conventional drawbacks, and an object of the present invention is to provide a method for producing a polyacetylene type ultralong conjugated polymer which is stable in an atmosphere containing oxygen.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明のポリアセチレン型共役ポリマーの製造方法
の第1番目の発明は、アセチレン基と−Si−Cl基を
含む化学吸着物質を溶解させた非水系の第1の有機溶媒
中に、表面が前記化学吸着物質と活性な基を有する基板
を浸漬し、前記基板表面に化学吸着膜を形成し、次いで
チ−グラ・ナッタ触媒を含む第2の有機溶媒中に前記化
学吸着膜が形成された基板を浸漬し、前記化学吸着膜の
アセチレン基の部分を重合させる工程を含むという構成
を備えたものである。
In order to achieve the above object, the first invention of the method for producing a polyacetylene type conjugated polymer of the present invention is to dissolve a chemical adsorbent containing an acetylene group and a -Si-Cl group. A substrate having a surface having the chemisorbing substance and an active group is immersed in a non-aqueous first organic solvent to form a chemisorbing film on the substrate surface, and then a substrate containing a Ziegler-Natta catalyst is formed. It is provided with a constitution including a step of immersing the substrate on which the chemical adsorption film is formed in the second organic solvent and polymerizing a portion of the acetylene group of the chemical adsorption film.

【0007】次に第2番目の発明は、ジアセチレン基と
−Si−Cl基を含む化学吸着物質を溶解させた非水系
の第1の有機溶媒中に、表面が前記化学吸着物質と活性
な基を有する基板を浸漬し、前記基板表面に化学吸着膜
を形成し、次いでチ−グラ・ナッタ触媒を含む第2の有
機溶媒中に前記化学吸着膜が形成された基板を浸漬し、
前記化学吸着膜のジアセチレン基の部分を重合させる工
程を含むという構成を備えたものである。
A second aspect of the present invention is that the surface of the non-aqueous first organic solvent in which the chemical adsorbing substance containing a diacetylene group and a --Si--Cl group is dissolved is active. Immersing the substrate having a group to form a chemisorption film on the substrate surface, and then dipping the substrate having the chemisorption film formed in a second organic solvent containing a Ziegler-Natta catalyst;
The chemical adsorption film has a configuration including a step of polymerizing a diacetylene group portion.

【0008】[0008]

【作用】前記本発明の第1発明及び第2発明の構成によ
れば、一端に−Si−Cl基を持つ直鎖上の炭化水素誘
導体を用いると、有機溶媒中で化学吸着により基板表面
に化学吸着膜を高密度(最密充填)で形成できる。さら
に前記化学吸着膜表面を酸素を含むガス中で高エネルギ
ー線照射して表面を親水性化することにより単分子膜の
累積膜を形成することができる。従って、直鎖状炭化水
素の一部にアセチレン基を含む物質を用い化学吸着法を
行えば、数十オングストローム(数ナノメーター)オー
ダのアセチレン誘導体の化学吸着膜を高密度で形成で
き、さらに多層の累積膜も容易に得ることができる。
According to the first and second aspects of the present invention, when a linear hydrocarbon derivative having a --Si--Cl group at one end is used, it is chemically adsorbed on the substrate surface in an organic solvent. The chemisorption film can be formed with high density (closest packing). Further, by irradiating the surface of the chemical adsorption film with a high energy beam in a gas containing oxygen to make the surface hydrophilic, a cumulative film of a monomolecular film can be formed. Therefore, if a chemical adsorption method is performed using a substance containing an acetylene group as a part of a straight-chain hydrocarbon, a chemical adsorption film of an acetylene derivative on the order of several tens of angstroms (several nanometers) can be formed with high density, A cumulative film of can be easily obtained.

【0009】この方法により累積された単分子膜を、チ
−グラナッタ触媒を含む有機溶媒中に浸漬し、前記単分
子膜のアセチレン基の部分を重合させると、超高分子量
で共役系が非常に長いポリアセチレンが高密度で形成で
きる。そのため、酸素の攻撃を受けにくくなり、酸素を
含む雰囲気中でも安定なポリアセチレンが形成される。
つまり、高密度でかつ一定の配向性を保った状態でチ−
グラ触媒を用いてアセチレン誘導体の分子を重合するこ
とにより、共役系が連続した直鎖状で超高分子量の酸素
を含む雰囲気中で、熱や圧力あるいは紫外線などにたい
して安定なポリマー(超長共役ポリマー)をつくれる。
When the monomolecular film accumulated by this method is immersed in an organic solvent containing a Thi-Granatta catalyst to polymerize a portion of the acetylene group of the monomolecular film, a conjugated system having an ultrahigh molecular weight is formed. Long polyacetylene can be formed with high density. Therefore, it is less likely to be attacked by oxygen, and stable polyacetylene is formed even in an atmosphere containing oxygen.
In other words, it is possible to achieve high density and maintain a constant orientation.
By polymerizing acetylene derivative molecules using a Gura catalyst, a polymer that is stable to heat, pressure, ultraviolet rays, etc. in an atmosphere containing linear and ultra-high molecular weight oxygen with a continuous conjugated system (ultra-long conjugated polymer) ) Can be made.

【0010】次に化学吸着膜が単分子膜であるという本
発明の好ましい構成によれば、前記ナノメーターレベル
の極薄の化学吸着膜を均一に形成することができる。ま
た、アセチレン基またはジアセチレン基に−Si(CH
3 3 が結合しているという本発明の好ましい構成によ
れば、分子末端の安定化をはかり、かつ化学吸着膜を形
成した後、アルカリ水溶液で処理することにより−Si
(CH3 3 基を脱離することができる。これにより、
アセチレン基またはジアセチレン基を化学吸着膜の最外
表面に配置させることができる。
Next, according to the preferable constitution of the present invention in which the chemical adsorption film is a monomolecular film, the ultra-thin chemical adsorption film at the nanometer level can be uniformly formed. In addition, the acetylene group or the diacetylene group has -Si (CH
3 ) According to a preferred structure of the present invention in which 3 is bonded, the molecular end is stabilized, and after forming a chemisorption film, it is treated with an alkaline aqueous solution to obtain -Si.
The (CH 3 ) 3 group can be eliminated. This allows
An acetylene group or a diacetylene group can be arranged on the outermost surface of the chemisorption film.

【0011】さらにチ−グラ・ナッタ触媒が、周期律表
の第4族ないし第8族の遷移金属の化合物を周期律表第
1族ないし第3族aの元素の有機金属化合物で処理して
調製されたものであるとという本発明の構成によれば、
触媒活性の高いものとすることができる。
Further, a Ziegler-Natta catalyst treats a compound of a transition metal of Groups 4 to 8 of the periodic table with an organometallic compound of an element of Group 1 to 3 of the periodic table. According to the constitution of the present invention that is prepared,
It can have a high catalytic activity.

【0012】[0012]

【実施例】以下、実施例を用いて本発明の詳細を説明す
る。なお、本発明は下記の実施例に限定されることはな
い。
EXAMPLES The present invention will be described in detail below with reference to examples. The present invention is not limited to the examples below.

【0013】本発明の一実施例を図1に示す。一方の分
子末端にアセチレン基と他方の分子末端にトリクロロシ
リル基を含む化学吸着材を溶解させた非水系の有機溶媒
中に、親水性の基板として−OH基を有し、SiO2
形成されたSi基板1を浸漬し、−SiCl基と基板表
面の前記−OH基が反応して脱塩酸する。次いで非水溶
液で洗浄して未反応物を除去すると、基板表面に下記式
(化1)で示す単分子膜2が形成される(図1)。
An embodiment of the present invention is shown in FIG. In a non-aqueous organic solvent in which a chemical adsorbent containing an acetylene group at one molecular end and a trichlorosilyl group at the other molecular end is dissolved, it has a —OH group as a hydrophilic substrate and forms SiO 2. Then, the Si substrate 1 is immersed, and the --SiCl group reacts with the --OH group on the substrate surface to dehydrochlorine. Then, by washing with a non-aqueous solution to remove unreacted materials, a monomolecular film 2 represented by the following formula (Formula 1) is formed on the substrate surface (FIG. 1).

【0014】[0014]

【化1】 [Chemical 1]

【0015】ここで、基板表面に前記式(化1)で示す
単分子膜2が形成できていることは、FTIRにて確認
した。また、前記の方法で累積された吸着膜はアルコ−
ル溶媒には不溶性であることが確認できた。
Here, it was confirmed by FTIR that the monomolecular film 2 represented by the above formula (Formula 1) was formed on the surface of the substrate. In addition, the adsorbed film accumulated by the above method is
It was confirmed that the solvent was insoluble in the solvent.

【0016】次に、チ−グラ・ナッタ触媒を含む有機溶
媒に、前記単分子膜が一層形成された基板を浸漬する
と、重合反応が起こり、図2に示すポリアセチレン3が
生成する。ポリアセチレンが製造されたことはFTIR
スペクトルで明かとなった。
Next, when the substrate on which the monomolecular film is formed is immersed in an organic solvent containing a Ziegler-Natta catalyst, a polymerization reaction occurs and polyacetylene 3 shown in FIG. 2 is produced. The fact that polyacetylene was produced is FTIR
It's revealed in the spectrum.

【0017】次に図3は、末端にジアセチレン基とトリ
クロロシリル基を含む化合物を用いたポリアセチレンの
製造方法を示す図である。末端にジアセチレン基とトリ
クロロシリル基を含む化合物を溶解させた非水系の有機
溶媒中に、親水性の基板としてSiO2 の形成されたS
i基板1を浸漬すると、−SiCl基と基板表面のSi
2 とともに形成されている−OH基が反応して脱塩酸
する。次いで非水溶液で洗浄して未反応物を除去する
と、基板表面に下記式(化2)で示す単分子膜4が形成
される(図4)。
Next, FIG. 3 is a diagram showing a method for producing polyacetylene using a compound having a diacetylene group and a trichlorosilyl group at the terminal. In a non-aqueous organic solvent in which a compound containing a diacetylene group and a trichlorosilyl group is dissolved at the terminal, SiO 2 as a hydrophilic substrate on which S 2 is formed is formed.
When the i substrate 1 is dipped, -SiCl groups and Si on the substrate surface
-OH group with O 2 are formed to dehydrochlorination react. Then, by washing with a non-aqueous solution to remove unreacted substances, a monomolecular film 4 represented by the following formula (Formula 2) is formed on the substrate surface (FIG. 4).

【0018】[0018]

【化2】 [Chemical 2]

【0019】ここで、基板表面に前記式(化2)で示す
単分子膜4が形成できていることは、FTIRにて確認
できた。なお、上述の方法で累積された吸着膜はアルコ
−ル溶媒には不溶性であることも確認できた。
It was confirmed by FTIR that the monomolecular film 4 represented by the above formula (Formula 2) was formed on the surface of the substrate. It was also confirmed that the adsorbed film accumulated by the above method was insoluble in the alcohol solvent.

【0020】次に、チ−グラ・ナッタ触媒を含む有機溶
媒に、前記単分子膜が一層形成された基板を浸漬する
と、重合反応が起こり、図4に示すポリアセチレン5が
生成する。ポリアセチレンが製造されたことはFTIR
スペクトルで明かとなった。
Next, when the substrate having the monomolecular film formed thereon is immersed in an organic solvent containing a Ziegler-Natta catalyst, a polymerization reaction occurs and polyacetylene 5 shown in FIG. 4 is produced. The fact that polyacetylene was produced is FTIR
It's revealed in the spectrum.

【0021】本発明に使用しうるアセチレン基と−Si
−Cl基を含む物質として、下記式(化3)の化合物を
一例としてあげることができる。
Acetylene group and --Si which can be used in the present invention
As the substance containing a —Cl group, a compound represented by the following formula (Formula 3) can be given as an example.

【0022】[0022]

【化3】 [Chemical 3]

【0023】本発明に使用しうるジアセチレン基と−S
i−Cl基を含む物質として、下記式(化4)の化合物
を一例としてあげることができる。
The diacetylene group and --S that can be used in the present invention.
As the substance containing an i-Cl group, a compound represented by the following formula (Formula 4) can be given as an example.

【0024】[0024]

【化4】 [Chemical 4]

【0025】また、分子末端の安定化をはかるためにア
セチレン基に−SiMe3 基のついた物質を用いること
ができる。下記式(化5)の化合物を一例としてあげる
ことができる。
Further, in order to stabilize the molecular ends, a substance having an acetylene group with a —SiMe 3 group can be used. A compound represented by the following formula (Formula 5) can be given as an example.

【0026】[0026]

【化5】 [Chemical 5]

【0027】この場合は、吸着後10%KOH水溶液に
浸漬すると−Si(CH3 3 基が脱離されて同様に、
下記式(化6)及び(化7)の単分子膜が形成できる。
In this case, when it is immersed in a 10% KOH aqueous solution after adsorption, the --Si (CH 3 ) 3 group is desorbed, and similarly,
A monomolecular film represented by the following formulas (Formula 6) and (Formula 7) can be formed.

【0028】[0028]

【化6】 [Chemical 6]

【0029】[0029]

【化7】 [Chemical 7]

【0030】本発明に用いることのできるチ−グラ・ナ
ッタ触媒は、周期律表の第4族ないし第8族の遷移金属
の化合物を周期律表第1族ないし第3族aの元素の有機
金属化合物と反応させて得ることができる。
The Ziegler-Natta catalyst that can be used in the present invention is a compound of a transition metal of Groups 4 to 8 of the Periodic Table, an organic compound of an element of Group 1 to 3 of the Periodic Table. It can be obtained by reacting with a metal compound.

【0031】このような有機金属化合物としては例えば
アルキルアルミニウム化合物、亜鉛アルキル化合物また
はリチウムアルキル化合物が利用でき、第4族ないし第
8族の遷移金属の化合物としてはアルコキサイドまたは
ハロゲン化物が使用できる。一例として下記式(化8)
のものがあげられる。
As such an organometallic compound, for example, an alkylaluminum compound, a zinc alkyl compound or a lithium alkyl compound can be used, and as a compound of a transition metal of Group 4 to Group 8 an alkoxide or a halide can be used. As an example, the following formula (Formula 8)
I can give you one.

【0032】[0032]

【化8】 [Chemical 8]

【0033】次に、具体的実施例を用いて本発明を説明
する。 実施例1 直径3インチの酸化膜(SiO2 )を形成したSi基板
を、下記式(化9)に示す反応化学吸着物質ω−ノナデ
シルイノイックトリクロロシラン(NCS)の10-2mo
l /l溶液(80wt% ヘキサデカン+12wt% 四塩化炭素+
8wt% クロロホルム)に室温、窒素雰囲気下で1時間浸
漬した。
Next, the present invention will be described with reference to specific examples. Example 1 An Si substrate on which an oxide film (SiO 2 ) having a diameter of 3 inches was formed was treated with 10 −2 mo of a reaction chemisorption substance ω-nonadecylinoic trichlorosilane (NCS) represented by the following formula (Formula 9).
l / l solution (80wt% hexadecane + 12wt% carbon tetrachloride +
It was immersed in 8 wt% chloroform) at room temperature under a nitrogen atmosphere for 1 hour.

【0034】[0034]

【化9】 [Chemical 9]

【0035】次いで前記基板を取り出し、クロロホルム
で洗浄して未反応化学吸着物質を除去し、しかる後純水
で洗浄し、単分子膜をSi表面に形成した。次に、前記
単分子膜を形成したSi基板をトリエチルアルミニウム
の5×10-2mol /l溶液(トルエン)とテトラブチル
チタネートの2.5×10-2mol /l溶液(トルエン)
からなる混合触媒に浸漬して重合した。2時間後、トル
エンで洗浄し、試料を得た。
Next, the substrate was taken out and washed with chloroform to remove unreacted chemisorbed substances, and then washed with pure water to form a monomolecular film on the Si surface. Next, the Si substrate having the monomolecular film formed thereon was treated with a 5 × 10 −2 mol / l solution of triethylaluminum (toluene) and a 2.5 × 10 −2 mol / l solution of tetrabutyl titanate (toluene).
Polymerization was carried out by immersing in a mixed catalyst consisting of. After 2 hours, it was washed with toluene to obtain a sample.

【0036】実施例2 実施例1のω−ノナデシルイノイックトリクロロシラン
を、下記式(化10)に示す反応化学吸着物質1−(ト
リメチルシリル)−ω−ノナデシルイノイックトリクロ
ロシラン(TMS−NCS)に変えて同様の実験をし
た。
Example 2 The ω-nonadecylinoic trichlorosilane of Example 1 was converted into a chemically adsorbed substance 1- (trimethylsilyl) -ω-nonadecylinoic trichlorosilane (TMS-NCS) represented by the following formula (Formula 10). ) Was changed to the same experiment.

【0037】[0037]

【化10】 [Chemical 10]

【0038】実施例3 実施例1のω−ノナデシルイノイックトリクロロシラン
を下記式(化11)に示す反応化学吸着物質に変えて同
様の実験をした。
Example 3 A similar experiment was conducted by changing the ω-nonadecylinoic trichlorosilane of Example 1 to a reaction chemisorption material represented by the following formula (Formula 11).

【0039】[0039]

【化11】 [Chemical 11]

【0040】実施例4 実施例1のω−ノナデシルイノイックトリクロロシラン
を下記式(化12)に示す反応化学吸着物質に変えて同
様の実験をした。
Example 4 A similar experiment was conducted by changing the ω-nonadecylinoic trichlorosilane of Example 1 to a reaction chemisorption substance represented by the following formula (Formula 12).

【0041】[0041]

【化12】 [Chemical 12]

【0042】実施例5 実施例1のω−ノナデシルイノイックトリクロロシラン
を下記式(化13)に示す反応化学吸着物質に変えて同
様の実験をした。
Example 5 A similar experiment was conducted by changing the ω-nonadecylinoic trichlorosilane of Example 1 to a reaction chemisorption material represented by the following formula (Formula 13).

【0043】[0043]

【化13】 [Chemical 13]

【0044】実施例6 実施例1のω−ノナデシルイノイックトリクロロシラン
を下記式(化14)に示す反応化学吸着物質に変えて同
様の実験をした。
Example 6 A similar experiment was conducted by changing the ω-nonadecylinoic trichlorosilane of Example 1 to a reaction chemisorption substance represented by the following formula (Formula 14).

【0045】[0045]

【化14】 [Chemical 14]

【0046】実施例7 実施例1の混合触媒をトリオクチルアルミニウムの5×
10-2mol /l溶液(トルエン)とテトラブチルチタネ
ートの2.5×10-2mol /l溶液(トルエン)からな
る混合触媒に変えて同様の実験をした。
Example 7 The mixed catalyst of Example 1 was mixed with 5 × of trioctylaluminum.
The same experiment was conducted by changing to a mixed catalyst composed of a 10 -2 mol / l solution (toluene) and a 2.5 x 10 -2 mol / l solution of tetrabutyl titanate (toluene).

【0047】実施例8 実施例1の混合触媒をトリエチルアルミニウムの5×1
-2mol /l溶液(トルエン)とテトラクロロチタンの
2.5×10-2mol /l溶液(トルエン)からなる混合
触媒に変えて同様の実験をした。
Example 8 The mixed catalyst of Example 1 was mixed with 5 × 1 of triethylaluminum.
The same experiment was performed by changing to a mixed catalyst composed of a 0 -2 mol / l solution (toluene) and a tetrachlorotitanium 2.5 x 10 -2 mol / l solution (toluene).

【0048】実施例9 実施例1の混合触媒をトリエチルアルミニウムの5×1
-2mol /l溶液(トルエン)とテトラクロロバナジウ
ムの2.5×10-2mol /l溶液(トルエン)からなる
混合触媒に変えて同様の実験をした。
Example 9 The mixed catalyst of Example 1 was mixed with 5 × 1 of triethylaluminum.
The same experiment was conducted by changing to a mixed catalyst composed of a 0 -2 mol / l solution (toluene) and a 2.5 x 10 -2 mol / l solution of tetrachlorovanadium (toluene).

【0049】実施例10 実施例1の混合触媒をジエチル亜鉛の5×10-2mol /
l溶液(トルエン)とテトラブチルチタネートの2.5
×10-2mol /l溶液(トルエン)からなる混合触媒に
変えて同様の実験をした。
Example 10 The mixed catalyst of Example 1 was mixed with diethyl zinc at 5 × 10 -2 mol / mol.
1 solution (toluene) and tetrabutyl titanate 2.5
The same experiment was conducted by changing to a mixed catalyst consisting of a solution of 10-2 mol / l (toluene).

【0050】実施例11 実施例1の混合触媒をブチルリチウムの5×10-2mol
/l溶液(トルエン)とテトラブチルチタネートの2.
5×10-2mol /l溶液(トルエン)からなる混合触媒
に変えて同様の実験をした。
Example 11 The mixed catalyst of Example 1 was mixed with 5 × 10 -2 mol of butyllithium.
/ L solution (toluene) and tetrabutyl titanate 2.
The same experiment was conducted by changing to a mixed catalyst composed of a 5 × 10 -2 mol / l solution (toluene).

【0051】比較例1 トリエチルアルミニウムの5×10-2mol /l溶液(ト
ルエン)とテトラブチルチタネートの2.5×10-2mo
l /l溶液(トルエン)からなる混合触媒を用いて、ア
セチレンガスを重合して、ポリアセチレンフィルムを得
た。
Comparative Example 1 Triethylaluminum 5 × 10 -2 mol / l solution (toluene) and tetrabutyl titanate 2.5 × 10 -2 mo
Acetylene gas was polymerized using a mixed catalyst composed of l / l solution (toluene) to obtain a polyacetylene film.

【0052】実施例1〜11および比較例1の試料を6
0℃の温度雰囲気でに30日間放置し、放置前後のFT
IRを比較した。比較例の試料では、3450cm-1
吸収ピークが現れ、酸化が進行していたが、本発明の実
施例の試料ではFTITに変化はなく酸化は起こってい
なかった。
Six samples of Examples 1 to 11 and Comparative Example 1 were prepared.
FT before and after leaving for 30 days in 0 ° C temperature atmosphere
IR was compared. In the sample of the comparative example, an absorption peak appeared at 3450 cm −1 and oxidation proceeded, but in the sample of the example of the present invention, FTIT did not change and oxidation did not occur.

【0053】また、前述の実施例では1層化学吸着膜を
形成し重合を行う方法について述べたが吸着膜を多層積
層した後で重合反応を行っても良いし、あるいは吸着膜
の形成−重合反応を交互に行ってもポリアセチレンの多
層分子膜の作製が可能なことは明らかであろう。
Further, in the above-mentioned embodiment, the method of forming a one-layered chemisorption film and polymerizing is described, but the polymerization reaction may be carried out after the adsorption films are laminated in multiple layers, or the adsorption film formation-polymerization It will be apparent that the polyacetylene multilayer molecular film can be prepared even by performing the reactions alternately.

【0054】以上説明した通り、本発明の実施例によれ
ば、理論的には共役系が連続して数mm或は数cm以上
の長さを持つ直鎖状の超高分子量のポリアセチレンの製
造も可能であるため、非線形光学効果を利用したデバイ
スの製作には極めて有効である。また、今後さらに原料
となるアセチレンやジアセチレン誘導体モノマーの種類
や製造条件を適正化することにより、共役系が連続して
数十cm或は数m以上の長さを持つ直鎖状で超高分子量
の安定なポリアセチレンの製造も可能になると思われ
る。これにより、この方法で冷却を必要としない有機超
電導物質を製造し得る。
As described above, according to the embodiment of the present invention, theoretically, a linear ultrahigh molecular weight polyacetylene having a conjugated system having a length of several mm or several cm or more is produced. Since it is also possible, it is extremely effective for manufacturing a device utilizing the nonlinear optical effect. In addition, by optimizing the types of acetylene and diacetylene derivative monomers, which are the raw materials, and manufacturing conditions, the conjugated system will continue to be linear and ultra-high with a length of several tens of centimeters or several meters or more. It would also be possible to produce polyacetylene having a stable molecular weight. Thereby, an organic superconducting material which does not require cooling can be produced by this method.

【0055】[0055]

【発明の効果】以上説明した通り、本発明の方法を用い
ることにより、酸素を含む雰囲気中で安定で、導電性や
非線形光学効果の優れたポリアセチレンのポリマーを高
能率に製造できる。また、高密度でかつ一定の配向性を
保った状態でチ−グラ触媒を用いてアセチレン誘導体の
分子を重合することにより、共役系が連続した直鎖状で
超高分子量の酸素を含む雰囲気中で、熱や圧力あるいは
紫外線などにたいして安定なポリマー(超長共役ポリマ
ー)を形成できる。
As described above, by using the method of the present invention, a polyacetylene polymer which is stable in an atmosphere containing oxygen and has excellent conductivity and nonlinear optical effect can be produced with high efficiency. Further, by polymerizing the molecules of the acetylene derivative using a Ziegler catalyst in a state of maintaining a high density and a constant orientation, in an atmosphere containing a linear and ultra-high molecular weight oxygen in which the conjugated system is continuous. Thus, it is possible to form a stable polymer (ultra long conjugated polymer) against heat, pressure or ultraviolet rays.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すアセチレン系吸着膜を
1層形成した基板の分子オーダーの拡大断面概念図であ
る。
FIG. 1 is an enlarged cross-sectional conceptual diagram of a molecular order of a substrate on which one layer of an acetylene-based adsorption film according to an embodiment of the present invention is formed.

【図2】本発明の一実施例を示すアセチレン系吸着膜を
重合したポリアセチレン吸着膜の形成された基板の分子
オーダーの拡大断面概念図である。
FIG. 2 is an enlarged cross-sectional conceptual view of a molecular order of a substrate on which a polyacetylene adsorption film obtained by polymerizing an acetylene adsorption film according to an embodiment of the present invention is formed.

【図3】本発明の別の実施例を示すジアセチレン系吸着
膜を1層形成した基板の分子オーダーの拡大断面概念図
である。
FIG. 3 is an enlarged cross-sectional conceptual diagram of a molecular order of a substrate on which one layer of a diacetylene-based adsorption film according to another embodiment of the present invention is formed.

【図4】本発明の別の実施例を示すジアセチレン系吸着
膜を重合したポリアセチレン吸着膜の形成された基板の
分子オーダーの拡大断面概念図である。
FIG. 4 is an enlarged cross-sectional conceptual view of a molecular order of a substrate on which a polyacetylene adsorption film obtained by polymerizing a diacetylene-based adsorption film according to another embodiment of the present invention is formed.

【符号の説明】[Explanation of symbols]

1 SiO2 /Si基板 2 アセチレン系単分子吸着膜 3 アセチレンを重合したポリアセチレン単分子吸着膜 4 ジアセチレン系単分子吸着膜 5 ジアセチレンを重合したポリアセチレン単分子吸着
1 SiO 2 / Si substrate 2 Acetylene-based monomolecular adsorption film 3 Acetylene-polymerized polyacetylene monomolecular adsorption film 4 Diacetylene-based monomolecular adsorption film 5 Diacetylene-polymerized polyacetylene monomolecular adsorption film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アセチレン基と−Si−Cl基を含む化
学吸着物質を溶解させた非水系の第1の有機溶媒中に、
表面が前記化学吸着物質と活性な基を有する基板を浸漬
し、前記基板表面に化学吸着膜を形成し、次いでチ−グ
ラ・ナッタ触媒を含む第2の有機溶媒中に前記化学吸着
膜が形成された基板を浸漬し、前記化学吸着膜のアセチ
レン基の部分を重合させる工程を含むポリアセチレン型
共役ポリマーの製造方法。
1. A non-aqueous first organic solvent in which a chemisorption substance containing an acetylene group and a —Si—Cl group is dissolved,
A substrate having a surface having the chemisorbing substance and an active group is dipped to form a chemisorption film on the substrate surface, and then the chemisorption film is formed in a second organic solvent containing a Ziegler-Natta catalyst. A method for producing a polyacetylene-type conjugated polymer, which comprises a step of immersing the prepared substrate and polymerizing a portion of the acetylene group of the chemical adsorption film.
【請求項2】 ジアセチレン基と−Si−Cl基を含む
化学吸着物質を溶解させた非水系の第1の有機溶媒中
に、表面が前記化学吸着物質と活性な基を有する基板を
浸漬し、前記基板表面に化学吸着膜を形成し、次いでチ
−グラ・ナッタ触媒を含む第2の有機溶媒中に前記化学
吸着膜が形成された基板を浸漬し、前記化学吸着膜のジ
アセチレン基の部分を重合させる工程を含むポリアセチ
レン型共役ポリマーの製造方法。
2. A substrate having a surface having the chemical adsorbent and an active group is immersed in a non-aqueous first organic solvent in which a chemical adsorbent containing a diacetylene group and a —Si—Cl group is dissolved. A chemisorptive film is formed on the surface of the substrate, and the chemisorptive film-formed substrate is immersed in a second organic solvent containing a Ziegler-Natta catalyst to remove the diacetylene group of the chemisorptive film. A method for producing a polyacetylene-type conjugated polymer, which comprises a step of polymerizing a portion.
【請求項3】 化学吸着膜が単分子膜である請求項1ま
たは2に記載のポリアセチレン型共役ポリマーの製造方
法。
3. The method for producing a polyacetylene-type conjugated polymer according to claim 1, wherein the chemisorption film is a monomolecular film.
【請求項4】 アセチレン基またはジアセチレン基に−
Si(CH3 3 が結合している請求項1または2に記
載のポリアセチレン型共役ポリマーの製造方法。
4. An acetylene group or a diacetylene group-
The method for producing a polyacetylene-type conjugated polymer according to claim 1, wherein Si (CH 3 ) 3 is bonded.
【請求項5】 チ−グラ・ナッタ触媒が、周期律表の第
4族ないし第8族の遷移金属の化合物を周期律表第1族
ないし第3族aの元素の有機金属化合物で処理して調製
されたものである請求項1または2に記載のポリアセチ
レン型共役ポリマーの製造方法。
5. A Ziegler-Natta catalyst treats a compound of a transition metal of Groups 4 to 8 of the Periodic Table with an organometallic compound of an element of Group 1 to 3 of the Periodic Table. The method for producing a polyacetylene-type conjugated polymer according to claim 1 or 2, which is prepared by
JP4005226A 1992-01-14 1992-01-14 Method for producing polyacetylene type conjugated polymer Expired - Fee Related JPH08846B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4005226A JPH08846B2 (en) 1992-01-14 1992-01-14 Method for producing polyacetylene type conjugated polymer
US07/993,022 US5270417A (en) 1992-01-14 1992-12-18 Method of manufacturing a polyacetylene conjugate polymer
DE69322176T DE69322176T2 (en) 1992-01-14 1993-01-11 Process for the preparation of a conjugated acetylene polymer
EP93100300A EP0552637B1 (en) 1992-01-14 1993-01-11 Method of manufacturing a polyacetylene conjugate polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4005226A JPH08846B2 (en) 1992-01-14 1992-01-14 Method for producing polyacetylene type conjugated polymer

Publications (2)

Publication Number Publication Date
JPH05186531A true JPH05186531A (en) 1993-07-27
JPH08846B2 JPH08846B2 (en) 1996-01-10

Family

ID=11605277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4005226A Expired - Fee Related JPH08846B2 (en) 1992-01-14 1992-01-14 Method for producing polyacetylene type conjugated polymer

Country Status (4)

Country Link
US (1) US5270417A (en)
EP (1) EP0552637B1 (en)
JP (1) JPH08846B2 (en)
DE (1) DE69322176T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006415A1 (en) * 1997-07-31 1999-02-11 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
WO2004110745A1 (en) * 2003-06-11 2004-12-23 Sharp Kabushiki Kaisha Functional organic thin film, organic thin-film transistor and methods for producing these
WO2005117157A1 (en) * 2004-05-27 2005-12-08 Sharp Kabushiki Kaisha Organic compound having at both ends different functional groups differing in reactivity in elimination reaction, organic thin films, organic device, and processes for producing these
WO2006022176A1 (en) * 2004-08-24 2006-03-02 Sharp Kabushiki Kaisha Organic silane compound, process for producing the compound, and organic thin film comprising the compound

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721056A (en) * 1993-06-25 1998-02-24 Zipperling Kessler & Co. (Gmbh & Co.) Process for the production of corrosion-protected metallic materials and materials obtainable therewith
FR2804116B1 (en) * 2000-01-20 2002-08-23 Centre Nat Rech Scient ORGANOSILICATED COMPOUNDS, THEIR PREPARATION PROCESS AND THEIR USES
TW555790B (en) * 2000-12-26 2003-10-01 Matsushita Electric Ind Co Ltd Conductive organic thin film, process for producing the same, and organic photoelectronic device, electric wire, and electrode aech employing the same
KR100544378B1 (en) * 2001-04-17 2006-01-23 마쯔시다덴기산교 가부시키가이샤 Conductive organic thin film and production method therefor, electrode and electric cable using it
US7259389B2 (en) * 2002-02-08 2007-08-21 Matsushita Electric Industrial Co., Ltd. Organic electronic device and method for manufacturing the same
WO2005090365A1 (en) * 2004-03-18 2005-09-29 Sharp Kabushiki Kaisha Organosilanes, process for production of the same, and use thereof
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10770721B2 (en) * 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115305A (en) * 1980-02-18 1981-09-10 Showa Denko Kk Preparation of swollen acetylene high polymer membrane
JPS6239606A (en) * 1985-08-15 1987-02-20 Agency Of Ind Science & Technol Production of polyphenylethynylacetylene and phenyl derivative thereof
JPH01275614A (en) * 1988-04-28 1989-11-06 Matsushita Electric Ind Co Ltd Production of extraordinarily long polyacetylene or polyacene conjugated polymer
JPH03229710A (en) * 1990-02-05 1991-10-11 Matsushita Electric Ind Co Ltd Production of highly orienting conjugated polymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555590B1 (en) * 1983-11-29 1986-06-20 Elf Aquitaine PROCESS FOR THE MANUFACTURE OF POLYACETYLENE
EP0339677B1 (en) * 1988-04-28 1992-11-11 Matsushita Electric Industrial Co., Ltd. Process for producing polyacetylene or polyacene type super long conjugated polymers
US5057339A (en) * 1988-12-29 1991-10-15 Matsushita Electric Industrial Co., Ltd. Metallized polyacetylene-type or polyacene-type ultralong conjugated polymers and process for producing the same
EP0385656B1 (en) * 1989-02-27 1995-05-10 Matsushita Electric Industrial Co., Ltd. A process for the production of a highly-orientated ultralong conjugated polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115305A (en) * 1980-02-18 1981-09-10 Showa Denko Kk Preparation of swollen acetylene high polymer membrane
JPS6239606A (en) * 1985-08-15 1987-02-20 Agency Of Ind Science & Technol Production of polyphenylethynylacetylene and phenyl derivative thereof
JPH01275614A (en) * 1988-04-28 1989-11-06 Matsushita Electric Ind Co Ltd Production of extraordinarily long polyacetylene or polyacene conjugated polymer
JPH03229710A (en) * 1990-02-05 1991-10-11 Matsushita Electric Ind Co Ltd Production of highly orienting conjugated polymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006415A1 (en) * 1997-07-31 1999-02-11 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
US6495221B1 (en) 1997-07-31 2002-12-17 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
KR100376368B1 (en) * 1997-07-31 2003-03-15 마츠시타 덴끼 산교 가부시키가이샤 Chemisorptive substance and processes for producing these
WO2004110745A1 (en) * 2003-06-11 2004-12-23 Sharp Kabushiki Kaisha Functional organic thin film, organic thin-film transistor and methods for producing these
WO2005117157A1 (en) * 2004-05-27 2005-12-08 Sharp Kabushiki Kaisha Organic compound having at both ends different functional groups differing in reactivity in elimination reaction, organic thin films, organic device, and processes for producing these
WO2006022176A1 (en) * 2004-08-24 2006-03-02 Sharp Kabushiki Kaisha Organic silane compound, process for producing the compound, and organic thin film comprising the compound

Also Published As

Publication number Publication date
DE69322176D1 (en) 1999-01-07
DE69322176T2 (en) 1999-04-22
JPH08846B2 (en) 1996-01-10
EP0552637A1 (en) 1993-07-28
EP0552637B1 (en) 1998-11-25
US5270417A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JPH05186531A (en) Production of polyacetylenic conjugated polymer
US5057339A (en) Metallized polyacetylene-type or polyacene-type ultralong conjugated polymers and process for producing the same
Hong et al. Synthesis of electrically conductive polypyrroles at the air-water interface of a Langmuir-Blodgett film balance
US5008127A (en) Process for the production of a highly-orientated ultralong conjugated polymer
US5011518A (en) Permselective membrane and process for producing the same
Imori et al. Metal-catalyzed dehydropolymerization of secondary stannanes to high molecular weight polystannanes
JPH01275613A (en) Production of extraordinarily long polyacetylene or polyacene conjugated polymer
EP0339677B1 (en) Process for producing polyacetylene or polyacene type super long conjugated polymers
US4968524A (en) Process for producing a polyacetylene
EP0445534B1 (en) A process for preparing an organic monomolecular film
US5304582A (en) Process for producing polyacetylene or polyacene type long conjugated polymers
US5304583A (en) Process for producing polyacetylene or polyacene type long conjugated polymers
US5248526A (en) Process for producing polyacetylene or polyacene type long conjugated polymers
US5302416A (en) Process for producing polyacetylene or polyacene type long conjugated polymers
JPH07104571B2 (en) Method of manufacturing optical recording medium
JPH0627140B2 (en) Method for producing polyacetylene or polyacene type ultralong conjugated polymer
JPH03229710A (en) Production of highly orienting conjugated polymer
JPH0651756B2 (en) Method for producing metallized polyacetylene or metallized polyacene type ultralong conjugated polymer
Xiao et al. A novel conducting Langmuir-Blodgett film-charge transfer complex: tetrabenzylthiotetrathiafulvalene-Zn (dmit) 2
Rosner et al. Fabrication of Langmuir—Blodgett films of polypyrrole by solid state reactions on an iron (III) stearate template
JPH02182708A (en) Production of metallized polyacetylene or metallized polyacetylen type extremely long conjugated polymer
JPH03702A (en) Preparation of highly orientating, ultralong conjugated polymer
US4927578A (en) Method for producing uncrosslinked polyacetylene film
JP3012088B2 (en) Epitaxial growth of polymer compound thin films
JPH05168913A (en) Gaseous phase production of chemical adsorption membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees