JPH05168913A - Gaseous phase production of chemical adsorption membrane - Google Patents

Gaseous phase production of chemical adsorption membrane

Info

Publication number
JPH05168913A
JPH05168913A JP3337317A JP33731791A JPH05168913A JP H05168913 A JPH05168913 A JP H05168913A JP 3337317 A JP3337317 A JP 3337317A JP 33731791 A JP33731791 A JP 33731791A JP H05168913 A JPH05168913 A JP H05168913A
Authority
JP
Japan
Prior art keywords
substrate
film
group
adsorbent
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3337317A
Other languages
Japanese (ja)
Inventor
Hidetaka Tono
秀隆 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3337317A priority Critical patent/JPH05168913A/en
Priority to US07/984,478 priority patent/US5372851A/en
Priority to EP92121270A priority patent/EP0547550B1/en
Priority to DE69224888T priority patent/DE69224888T2/en
Priority to KR1019920024429A priority patent/KR970001519B1/en
Publication of JPH05168913A publication Critical patent/JPH05168913A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

PURPOSE:To form a mechanically strong high capacity monomolecular film or built-up film having uniform thickness and reduced in contamination by reacting a silane type interfacial adsorbent with the surface of a substrate having active hydrogen on its surface in a geseous phase under vacuum or an inert gas atmosphere. CONSTITUTION:A silane type interfacial adsorbent is chemically reacted with the hydrophilic group on the surface of a substrate 1 within a vacuum container to form a chemical adsorption monomolecular film having a siloxane bond and, subsequently, excessive molecules are removed by vacuum evacuation to form a uniform monomolecular film 2. Or, a substance containing a straight carbon chain having a plurality of chlorine-silicon chemical bonds is chemically adsorbed on the substrate within the vacuum container and reactive gas is introduced into the vacuum container to convert the unreacted chlorine-silicon chemical bond to a silanol group to form a monomolecular film or this process may be repeated to form a built-up film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相中において単分子
膜を形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a monomolecular film in the gas phase.

【0002】[0002]

【従来の技術】従来、単分子膜を形成する方法として
は、LB(ラングミュア・ブロジェット)法や、液相中
での化学吸着法があった。LB法は、水槽表面上に展開
した親水性基と撥水性基を同時に有する直鎖状分子に水
面の面内方向に圧力を加えて凝縮させ基板上に移す方法
であり、単分子膜はファンデアワールス力により基板に
固定されているだけであるので機械的な強度は低く、本
質的にウェットプロセスである。また、液相中での化学
吸着法は、一端に反応性シラン基を有する炭素鎖を含む
分子を溶解した非水系有機溶媒中に基板を浸して、基板
表面の親水性基の活性水素と反応性シラン基とを反応さ
せ、含珪素化学結合を介して単分子膜を形成する方法で
ある。この様にして得られる化学吸着単分子膜は基板表
面と強固な化学結合を介しているため、基板表面を削り
取らない限り一般には剥離しない程度の付着強度を有す
る。しかし、この方法も液体の溶媒中での化学反応を用
いるためウェットプロセスである。他方、ドライプロセ
スでは、有機薄膜の形成方法としては、プラズマ重合法
や、真空蒸着法等があるが、これらの方法では、形成で
きる分子の制約が多く、また、ポリマー単分子膜の形成
は極めて困難であった。
2. Description of the Related Art Conventionally, as a method for forming a monomolecular film, there have been an LB (Langmuir-Blodgett) method and a chemical adsorption method in a liquid phase. The LB method is a method in which linear molecules having a hydrophilic group and a water-repellent group that are simultaneously spread on the surface of a water tank are condensed by applying pressure in the in-plane direction of the water surface and transferred onto a substrate. Since it is only fixed to the substrate by the awors force, it has low mechanical strength and is essentially a wet process. In the liquid phase chemisorption method, the substrate is immersed in a non-aqueous organic solvent in which a molecule containing a carbon chain having a reactive silane group is dissolved to react with the active hydrogen of the hydrophilic group on the substrate surface. It is a method of forming a monomolecular film through a silicon-containing chemical bond by reacting with a reactive silane group. Since the chemisorption monomolecular film thus obtained has a strong chemical bond with the surface of the substrate, it generally has such an adhesive strength that it does not peel unless the surface of the substrate is scraped off. However, this method is also a wet process because it uses a chemical reaction in a liquid solvent. On the other hand, in the dry process, as a method for forming an organic thin film, there are a plasma polymerization method, a vacuum deposition method, and the like. However, in these methods, there are many restrictions on the molecules that can be formed, and formation of a polymer monomolecular film is extremely difficult. It was difficult.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
たウェットプロセスにおける単分子膜の製造では液体中
にコンタミ(夾雑物)が混入し易く、従って製造した単
分子膜中へのコンタミの混入が避けられないという問題
がある。たとえば、コンデンサの絶縁膜等の電子デバイ
スや光ディスクの保護膜等電子・光学・精密部品などへ
単分子膜を適用するには、この様なコンタミを極力避け
る必要がある。また、例えば単分子膜の上に他の薄膜を
蒸着形成する場合に、ウェットプロセスでは基板の洗
浄、乾燥工程が必要となり、コンタミの混入や、工数の
増加となるという課題がある。
However, in the production of a monomolecular film in the above-mentioned wet process, contamination (contamination) is easily mixed in the liquid, and therefore contamination of the produced monomolecular film is avoided. There is a problem that there is no. For example, in order to apply a monomolecular film to an electronic device such as an insulating film of a capacitor or an electronic / optical / precision component such as a protective film of an optical disk, it is necessary to avoid such contamination as much as possible. In addition, for example, when another thin film is formed by vapor deposition on a monomolecular film, the wet process requires cleaning and drying steps of the substrate, which causes problems such as contamination and an increase in the number of steps.

【0004】本発明は、前記従来技術の課題を解決する
ため、単分子吸着膜を気相法で製造する方法を提供する
ことを目的とする。
In order to solve the above problems of the prior art, it is an object of the present invention to provide a method for producing a monomolecular adsorption film by a vapor phase method.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の化学吸着膜の気相製造法は、表面に活性水
素基を有する基板の表面に化学吸着膜を形成する方法で
あって、まず前記基板を容器内に配置して真空排気を行
うかまたは非水系ガス雰囲気下で、一端に反応性珪素基
を有するシラン系界面吸着剤を前記基材表面に気相状態
で接触させ脱水塩化水素反応または脱アルコール反応に
より基板表面に吸着膜を形成することを特徴とする。
In order to achieve the above object, the method for producing a chemical adsorption film of the present invention in a vapor phase is a method for forming a chemical adsorption film on a surface of a substrate having an active hydrogen group on the surface. First, the substrate is placed in a container and evacuated, or under a non-aqueous gas atmosphere, a silane-based interfacial adsorbent having a reactive silicon group at one end is brought into contact with the surface of the substrate in a vapor phase state for dehydration. It is characterized in that an adsorption film is formed on the surface of the substrate by hydrogen chloride reaction or dealcoholization reaction.

【0006】前記構成においては、シラン系界面吸着剤
が複数の塩素−珪素結合(シリル基)を有することが好
ましい。この界面吸着剤によって得られる吸着膜には水
酸基が多く形成できるので、内層膜として使用すると、
その上に形成する単分子吸着膜(外層膜)を高密度に形
成でき、好都合だからである。
In the above structure, the silane interface adsorbent preferably has a plurality of chlorine-silicon bonds (silyl groups). Since many hydroxyl groups can be formed in the adsorption film obtained by this interface adsorbent, when used as an inner layer film,
This is because it is convenient because the monomolecular adsorption film (outer layer film) formed thereon can be formed with high density.

【0007】また前記構成においては、シラン系界面吸
着剤の接触工程後真空排気する排気工程を含むことが好
ましい。未反応モノマーを効果的に除去するためであ
る。また前記構成においては、界面吸着剤を気相状態に
する方法が、シラン系界面吸着剤を加熱する方法、また
は乾燥した非反応性ガスをキャリアガスとして、シラン
系界面吸着剤もしくはシラン系界面吸着剤溶液をバブリ
ングする方法であることが好ましい。
Further, in the above construction, it is preferable to include an evacuation step of evacuating after the step of contacting the silane interface adsorbent. This is to effectively remove unreacted monomers. Further, in the above configuration, the method of putting the interfacial adsorbent in the gas phase is a method of heating the silane interfacial adsorbent, or a dry non-reactive gas as a carrier gas, and the silane interfacial adsorbent or the silane interfacial adsorption. A method of bubbling the agent solution is preferable.

【0008】また前記構成においては、真空排気状態が
真空度10-1torr以下の圧力が好ましく、とくに真
空度10-5torr以下の圧力であることが好ましい。
基板表面に吸着している水などの分子を除くためであ
る。 また前記構成においては、接触工程後または排気
工程後に反応性ガスと接触させることが好ましい。界面
吸着剤の未反応部分を反応させるためである。
Further, in the above structure, the vacuum exhaust state is preferably a pressure of a vacuum degree of 10 -1 torr or less, and particularly preferably a pressure of a vacuum degree of 10 -5 torr or less.
This is to remove molecules such as water adsorbed on the substrate surface. Further, in the above-mentioned constitution, it is preferable to contact with the reactive gas after the contact step or the exhaust step. This is for reacting the unreacted portion of the interface adsorbent.

【0009】前記応性ガスとしては、水蒸気または空気
中の湿度を用いることが好ましい。真空容器内でガスを
取り扱うようにすれば、コンタミが防げるからである。
別の手段としては、反応性ガスとして水素と酸素を用
い、前記反応性ガスの導入と同時に基板表面に紫外線を
照射する方法がある。
As the responsive gas, it is preferable to use water vapor or humidity in the air. This is because if the gas is handled in a vacuum container, contamination can be prevented.
As another means, there is a method of using hydrogen and oxygen as the reactive gas and irradiating the surface of the substrate with ultraviolet rays simultaneously with the introduction of the reactive gas.

【0010】次に前記構成においては、シラン系界面吸
着剤が、CF3 −(CF2 p −(R)m −SiCln
3-n (pは0または整数、mは0または1、Rは炭素
数1以上のメチレン基、含ビニレン基の炭素数1以上の
メチレン基、含エチニレン基の炭素数1以上のメチレン
基、含シリコン原子の炭素数1以上のメチレン基または
含酸素原子の炭素数1以上のメチレン基の何れか、Xは
水素原子、低級アルキル基または低級アルコキシ基、n
は0〜3の整数)であることが好ましい。含フッ化炭素
のシラン系界面吸着剤を用いると撥水効果が大きく、電
気絶縁特性も良好となるからである。
Next, in the above structure, the silane-based interface adsorbent is CF 3- (CF 2 ) p- (R) m --SiCl n
X 3-n (p is 0 or an integer, m is 0 or 1, R is a methylene group having a carbon number of 1 or more, a vinylene group-containing methylene group having a carbon number of 1 or more, and an ethynylene group having a carbon number of 1 or more. , A methylene group having 1 or more carbon atoms of a silicon-containing atom or a methylene group having 1 or more carbon atoms of an oxygen-containing atom, X is a hydrogen atom, a lower alkyl group or a lower alkoxy group, n
Is preferably an integer of 0 to 3). This is because when a fluorinated carbon silane-based interface adsorbent is used, the water-repellent effect is large and the electrical insulating property is also good.

【0011】また前記構成においては、塩素−珪素化学
結合を含む物質が、SiCl4 、SiHCl3 、SiH
2 Cl2 、Cl−(SiCl2 O)n −SiCl3 (n
は整数)の何れかであることが好ましい。この界面吸着
剤によって得られる吸着膜には水酸基が多く形成できる
ので、内層膜として使用すると、その上に形成する単分
子吸着膜(外層膜)を高密度に形成でき、好都合だから
である。
Further, in the above structure, the substance containing the chemical bond of chlorine-silicon is SiCl 4 , SiHCl 3 , or SiH.
2 Cl 2 , Cl- (SiCl 2 O) n -SiCl 3 (n
Is preferably an integer). This is because a large number of hydroxyl groups can be formed in the adsorption film obtained by this interface adsorbent, so that when it is used as the inner layer film, the monomolecular adsorption film (outer layer film) formed thereon can be formed with high density, which is convenient.

【0012】また前記構成においては、基板表面にまず
複数の塩素−珪素結合を有するシラン系界面吸着剤を気
相状態で反応させ、次に水分子を反応させて内層膜と
し、その後にフッ素を含むシラン系界面吸着剤を気相状
態で反応させ、次に水分子を反応させて外層膜を累積す
るのが好ましい。累積膜に形成すると高密度に吸着膜を
形成でき、ピンホールフリーに形成できるからである。
In the above structure, the silane-based interfacial adsorbent having a plurality of chlorine-silicon bonds is first reacted in the vapor phase on the surface of the substrate, and then water molecules are reacted to form an inner layer film, and then fluorine is added. It is preferable that the silane-based interfacial adsorbent contained therein is reacted in a gas phase state, and then water molecules are reacted to accumulate the outer layer film. This is because the adsorption film can be formed at a high density when it is formed as a cumulative film and can be formed without pinholes.

【0013】[0013]

【作用】前記本発明の構成によれば、真空排気を行なっ
てコンタミの原因となる原子や分子を基板表面から除去
した後に、化学吸着剤として、一端に反応性シラン基を
有するシラン系界面吸着剤や、複数の塩素−珪素化学結
合(−SiCln 3-n 基、n=1、2、3、Xは官能
基)を有する直鎖状炭素鎖を含む物質を、気相状態で直
接基板表面上や、化学吸着膜表面上に運び、基板、ある
いは、化学吸着膜表面上の親水性基と化学反応させシロ
キサン結合を形成させて単分子膜を形成するため、製造
された単分子膜中に取り込まれるコンタミの量を極めて
少なくすることが出来る。従来の技術では、反応の場を
提供する溶媒の純度がコンタミ濃度の下限を決定してい
たのに対し、本発明では、化学吸着剤の純度に直接依存
しているため、この純度を上げることによりコンタミ濃
度を下げることが可能となる。また、化学吸着時に発生
する水分子または塩化水素分子は、拡散により容易に除
去されるため、化学吸着の障害とはならない。化学吸着
は、反応サイトである親水性基が無くなれば終了するた
め、単分子膜が自動的に形成される。
According to the structure of the present invention, the silane-based interfacial adsorption having a reactive silane group at one end is used as a chemical adsorbent after the atoms and molecules causing contamination are removed from the substrate surface by evacuation. Agent or a substance containing a linear carbon chain having a plurality of chlorine-silicon chemical bonds (-SiCl n X 3-n group, n = 1, 2, 3 and X is a functional group) directly in a gas phase state A monomolecular film produced because it is carried on the surface of the substrate or the surface of the chemical adsorption film and chemically reacts with hydrophilic groups on the substrate or the surface of the chemical adsorption film to form a siloxane bond to form a monomolecular film. The amount of contamination taken in can be extremely reduced. In the conventional technique, the purity of the solvent that provides the field of the reaction determines the lower limit of the concentration of contaminants.However, in the present invention, the purity depends on the purity of the chemical adsorbent. This makes it possible to reduce the concentration of contaminants. In addition, water molecules or hydrogen chloride molecules generated during chemisorption are easily removed by diffusion, and do not hinder chemisorption. The chemisorption ends when the hydrophilic group, which is the reaction site, disappears, so that a monomolecular film is automatically formed.

【0014】化学吸着単分子膜形成後、真空排気するこ
とにより、化学吸着膜表面上に物理的に吸着している過
剰の化学吸着剤分子を除去することができ、均一な単分
子膜を形成することができる。
After forming the chemisorption monomolecular film, by performing vacuum evacuation, excess chemisorbent molecules physically adsorbed on the surface of the chemisorption film can be removed, and a uniform monolayer film is formed. can do.

【0015】また、化学吸着剤として複数の塩素−珪素
化学結合(−SiCln 3-n 基、n=1、2、3、X
は官能基)を有する直鎖状炭素鎖を含む物質を用いる場
合には、未吸着の塩素−珪素化学結合を含む物質を真空
排気により除去する工程後に、反応性ガスとして、水蒸
気、あるいは、紫外線照射下で水素ガスと酸素ガスを導
入して未反応の塩素−珪素化学結合と反応させシラノー
ル基を形成することにより、真空容器から取り出すこと
なく、この化学吸着膜の上に更に化学吸着膜の累積が可
能となる。従って、上記と同様、累積する化学吸着膜中
のコンタミの混入を防ぐことが出来る。
Further, a plurality of chlorine-silicon chemical bonds (-SiCl n X 3-n groups, n = 1, 2, 3, X) are used as the chemical adsorbent.
Is a functional group), a substance containing a linear carbon chain having a functional group) is used as the reactive gas after the step of removing the substance containing the unadsorbed chlorine-silicon chemical bond by evacuation. By introducing hydrogen gas and oxygen gas under irradiation and reacting with unreacted chlorine-silicon chemical bond to form a silanol group, it is possible to further deposit a chemical adsorption film on the chemical adsorption film without taking it out from the vacuum container. It is possible to accumulate. Therefore, similar to the above, it is possible to prevent the accumulation of contaminants in the accumulated chemisorption film.

【0016】[0016]

【実施例】従来、化学吸着剤を溶解した非水系有機溶媒
中に基板を接触させて、非水系有機溶媒中で化学反応を
起こさせて単分子膜を形成しており、この反応を化学吸
着反応という。また、このようにして得られる単分子膜
を化学吸着単分子膜という。化学吸着単分子膜は基板表
面と強固な化学結合(共有結合)を介してつながっている
ため、基板表面を削り取らない限り一般には剥離しない
程度の付着強度を有する。しかし、前述の様に、この様
な液相中での化学吸着反応では、溶媒中に含まれる、あ
るいは、製造過程中に於て溶媒に混入するコンタミの量
が、単分子膜を電子デバイス等の製造に用いる場合には
問題となる。例えば、単分子膜を薄膜コンデンサの絶縁
材料のような用途として用いる場合には、コンタミがリ
ーク電流を増加させたり絶縁耐圧を劣化さる原因となり
好ましくない。本発明では、この様な液相中での化学吸
着反応に於ける問題を解決するために、全く新しい発想
として、吸着反応を気相中にて行なう単分子膜の製造方
法を見出した。
[Example] Conventionally, a substrate is contacted with a non-aqueous organic solvent in which a chemical adsorbent is dissolved to cause a chemical reaction in the non-aqueous organic solvent to form a monomolecular film. It is called a reaction. The monomolecular film thus obtained is called a chemisorption monomolecular film. Since the chemisorption monomolecular film is connected to the surface of the substrate through a strong chemical bond (covalent bond), the chemisorption monomolecular film generally has an adhesive strength that does not peel unless the surface of the substrate is scraped off. However, as described above, in such a chemisorption reaction in the liquid phase, the amount of contamination contained in the solvent or mixed in the solvent during the manufacturing process causes the monomolecular film to be an electronic device or the like. It becomes a problem when it is used for manufacturing. For example, when the monomolecular film is used as an insulating material for a thin film capacitor, contamination is not preferable because it may increase the leak current or deteriorate the withstand voltage. In the present invention, in order to solve such a problem in the chemical adsorption reaction in the liquid phase, as a completely new idea, a method for producing a monomolecular film in which the adsorption reaction is performed in the gas phase has been found.

【0017】一例として、真空容器内に、表面に親水性
基を有する基板を配置して真空排気を行なうか、非水系
ガス(アルゴンや窒素等の脱水乾燥した不活性ガス)雰囲
気にした後、一端に反応性シラン基を有するシラン系界
面吸着剤を、加熱するかまたは、アルゴンや窒素等の脱
水乾燥した不活性ガスをキャリアガスとしてバブリング
することにより、気相状態で前記基板表面に曝して、前
記基板表面上の親水性基と前記シラン系界面吸着剤とを
化学反応させシロキサン結合を形成させて前記基板表面
上に化学吸着単分子膜を形成した後、更に真空排気する
ことにより過剰の前記シラン系界面吸着剤を含む分子を
除去して均一な単分子膜を形成する。
As an example, a substrate having a hydrophilic group on its surface is placed in a vacuum container and vacuum exhaust is performed, or after a non-aqueous gas (dehydration and dry inert gas such as argon or nitrogen) atmosphere is set, A silane-based interface adsorbent having a reactive silane group at one end is exposed to the substrate surface in a gas phase by heating or by bubbling dehydrated and dried inert gas such as argon or nitrogen as a carrier gas. After the hydrophilic group on the substrate surface and the silane-based interface adsorbent are chemically reacted to form a siloxane bond to form a chemisorption monomolecular film on the substrate surface, it is further evacuated to remove excess excess. The molecules containing the silane interface adsorbent are removed to form a uniform monomolecular film.

【0018】また、気相状態で単分子膜を形成する他の
方法として、真空容器内に、表面に親水性基を有する基
板を配置して真空排気を行なった後、複数の塩素−珪素
化学結合(−SiCln 3-n 基、n=1、2、3、X
は官能基)を有する直鎖状炭素鎖を含む物質を、気相状
態で前記基板表面に曝して化学吸着させる吸着工程と、
前記吸着工程後前記基板表面上の未吸着の塩素−珪素化
学結合を含む物質を真空排気により除去する工程と、反
応性ガスを導入して前記化学吸着した塩素−珪素化学結
合を含む物質の未反応の塩素−珪素化学結合と反応させ
てシラノール基を含む単分子膜を形成する工程とからな
る単分子吸着膜形成工程や、あるいは、前記単分子吸着
膜形成工程を複数回繰り返して化学吸着単分子膜を累積
することからなる化学吸着膜形成工程か、または、前記
化学吸着膜形成工程後、一端に反応性シラン基を有する
シラン系界面吸着剤を、加熱するか、または、アルゴン
や窒素等の脱水乾燥した不活性ガスをキャリアガスとし
てバブリングすることにより気相状態で前記化学吸着膜
表面に曝し、前記シラノール基と化学反応させシロキサ
ン結合を形成して化学吸着単分子膜を累積する工程、に
より単分子膜を形成する。
As another method for forming a monomolecular film in a gas phase, a substrate having a hydrophilic group on its surface is placed in a vacuum container, and after evacuation, a plurality of chlorine-silicon chemistries are used. Bonding (-SiCl n X 3-n group, n = 1, 2, 3, X
Is a functional group) and a substance containing a linear carbon chain having a functional group) is exposed to the surface of the substrate in a vapor phase to cause chemical adsorption,
After the adsorption step, a step of removing a substance containing unadsorbed chlorine-silicon chemical bonds on the surface of the substrate by evacuation, and introducing a reactive gas to remove the substance containing the chemically adsorbed chlorine-silicon chemical bonds. Forming a monomolecular film containing a silanol group by reacting with a chlorine-silicon chemical bond in the reaction; or a step of forming the monomolecular adsorbing film by repeating the monomolecular adsorbing film forming step a plurality of times. A chemical adsorption film forming step of accumulating a molecular film, or after the chemical adsorption film forming step, a silane-based interface adsorbent having a reactive silane group at one end is heated, or argon, nitrogen, etc. By bubbling the dehydrated and dried inert gas as a carrier gas, it is exposed to the surface of the chemisorption film in the gas phase and chemically reacts with the silanol groups to form a siloxane bond. A step of accumulating the academic monomolecular film, by forming the monomolecular film.

【0019】なお、前記反応性ガスとしては、水蒸気、
あるいは、紫外線照射下で水素ガスと酸素ガスを用いる
こと等が有効である。以下実施例を用いて本発明方法を
さらに具体的に説明する。
As the reactive gas, water vapor,
Alternatively, it is effective to use hydrogen gas and oxygen gas under UV irradiation. The method of the present invention will be described more specifically with reference to the following examples.

【0020】第1の実施例は、基板表面に気相法で単分
子吸着膜を1層設ける方法である。基板材料としては、
たとえば酸化物、金属、セラミックス、ガラス、プラス
チック、半導体などを用いる。勿論、例えばプラスチッ
クフィルム等の上にこれらを蒸着した物や記録材料が塗
布された光ディスク等でもよい。基板は、その表面が親
水性基で覆われるように処理を施すと、化学吸着膜を高
密度に吸着させることができる。
The first embodiment is a method of providing one layer of a monomolecular adsorption film on the surface of a substrate by a vapor phase method. As a substrate material,
For example, oxides, metals, ceramics, glass, plastics, semiconductors, etc. are used. Of course, for example, it may be an optical disk in which a material such as a plastic film is vapor-deposited or a recording material is applied. When the substrate is treated so that the surface thereof is covered with the hydrophilic group, the chemisorption film can be adsorbed at a high density.

【0021】親水性基としては水酸基、カルボニル基、
アミノ基、イミノ基等の活性水素を有する基があげられ
る。例えば、水酸基の場合には、基板をアルカリ水溶液
中に浸すか、純水にて水洗すること等で容易に実現でき
る。基板を乾燥させた後、真空容器中に基板を固定して
排気を行ない、基板を真空環境に曝して付着ガスの脱離
を行なう。所望の真空度に到達の後、化学吸着剤を気相
状態で基板表面に運び、基板表面上にて化学反応を起こ
させて吸着させる。室温での蒸気圧の高い化学吸着剤の
場合には、脱水乾燥させたアルゴンや窒素等の不活性ガ
スをキャリアガスとして化学吸着剤を基板表面まで運べ
ば良いが、室温で液体状態である化学吸着剤の場合に
は、沸点以上に加熱することにより蒸気として供給する
か、もしくは、脱水乾燥させたアルゴンや窒素等の不活
性ガスをキャリアガスとし、液体の化学吸着剤中に通し
てバブリングすることにより、気相状態で基板表面上に
供給する。また、室温で固体状態である化学吸着剤の場
合には、坩堝にいれて、沸点以上に加熱することにより
蒸発させて供給することが出来る。基板表面に運ばれた
化学吸着剤は、反応性シラン基と基板表面の親水性基の
活性水素とが反応し、シロキサン結合を形成し、これを
介して化学吸着単分子膜を形成する。反応が気相中(減
圧雰囲気又は非水系不活性ガス雰囲気中)にて行なわれ
るため、化学反応時に生成される水分子や塩化水素分子
が拡散により急速に基板表面から運び去られ、吸着反応
速度の鈍化や、塩化水素分子による基板侵食という様な
2次的な化学反応の発生が防止できる。これは、気相中
では、反応生成物の拡散に障害となる熱運動分子の密度
が液相中に比べて極端に低いために、拡散が極めて速や
かに行なわれるからであり、気相中での化学吸着での特
徴である。化学吸着は、活性水素のある親水性基が反応
サイトとなっているため、吸着により活性水素がなくな
ると自動的に吸着反応は終了し、化学吸着単分子膜が得
られる。その後、再度真空排気を行って、基板表面に物
理的に吸着している過剰の化学吸着剤分子を脱離、除去
する。この際、化学吸着単分子膜が分解しない範囲内で
基板を加熱することは、脱離、除去が促進され効果的な
手段の一つでもある。
Hydrophilic groups include a hydroxyl group, a carbonyl group,
Examples thereof include groups having active hydrogen such as amino groups and imino groups. For example, in the case of a hydroxyl group, it can be easily realized by immersing the substrate in an alkaline aqueous solution or washing with pure water. After the substrate is dried, the substrate is fixed in a vacuum container and evacuated, and the substrate is exposed to a vacuum environment to desorb the attached gas. After reaching the desired degree of vacuum, the chemical adsorbent is carried to the surface of the substrate in a vapor phase state, and a chemical reaction is caused on the surface of the substrate to be adsorbed. In the case of a chemical adsorbent with a high vapor pressure at room temperature, it is sufficient to carry the chemical adsorbent to the substrate surface using an inert gas such as dehydrated and dried carrier gas such as argon or nitrogen, but it is a liquid state at room temperature. In the case of an adsorbent, it is supplied as vapor by heating it above the boiling point, or an inert gas such as dehydrated and dried argon or nitrogen is used as a carrier gas and bubbled through a liquid chemical adsorbent. As a result, it is supplied onto the surface of the substrate in a vapor phase state. Further, in the case of a chemical adsorbent which is in a solid state at room temperature, it can be supplied by evaporating it by putting it in a crucible and heating it at a temperature higher than its boiling point. The chemisorbent carried to the substrate surface reacts with the reactive silane group and active hydrogen of the hydrophilic group on the substrate surface to form a siloxane bond, through which a chemisorption monomolecular film is formed. Since the reaction is carried out in the gas phase (in a reduced pressure atmosphere or in a non-aqueous inert gas atmosphere), water molecules and hydrogen chloride molecules generated during the chemical reaction are rapidly carried away from the substrate surface by diffusion, and the adsorption reaction rate And the occurrence of secondary chemical reactions such as substrate erosion due to hydrogen chloride molecules can be prevented. This is because, in the gas phase, the density of the heat-moving molecules, which hinder the diffusion of reaction products, is extremely lower than that in the liquid phase, so that the diffusion takes place very quickly. Is a characteristic of chemisorption. In chemisorption, a hydrophilic group having active hydrogen is used as a reaction site. Therefore, when the active hydrogen disappears due to adsorption, the adsorption reaction is automatically terminated and a chemisorption monomolecular film is obtained. Then, vacuum exhaust is performed again to desorb and remove excess chemical adsorbent molecules physically adsorbed on the substrate surface. At this time, heating the substrate within a range where the chemisorption monomolecular film is not decomposed is one of effective means for promoting desorption and removal.

【0022】化学吸着剤として用いるものには、一端に
クロロシリル(−SiCln 3-n )基又はアルコキシ
シラン(−Si(OA)n 3-n )基を含有し、他端に
炭化水素基又はフッソ置換した炭素を含有するシラン系
界面吸着剤が挙げられる。但し式中のnは1〜3の整数
であり、Xは水素、低級アルキル基又は低級アルコキシ
基を表わし、Aは低級アルキル基を表わす。上記シラン
系界面吸着剤の内クロルシラン系界面吸着剤は、室温下
で化学吸着反応が行え、確実に化学吸着単分子膜が形成
できるため好ましい。クロルシラン系界面吸着剤のなか
でもトリ塩素−珪素化学結合(即ち式中のnが3)であ
ると、吸着分子間でもシロキサン結合を介するため好ま
しい。また、本発明に供されるシラン系界面吸着剤は、
吸着分子密度を向上させるには直鎖状が好ましい。具体
的にはCH3 −(R)m −SiCln 3-n 、CF3
(CF2 p −(R)m −SiCln 3-n で表わされ
るクロルシラン系界面吸着剤が好ましい。但し式中pは
0または整数、mは0または1、Rは炭素数1以上のメ
チレン基、含ビニレン基の炭素数1以上のメチレン基、
含エチニレン基の炭素数1以上のメチレン基、含シリコ
ン原子の炭素数1以上のメチレン基または含酸素原子の
炭素数1以上のメチレン基の何れか、Xは水素原子、低
級アルキル基または低級アルコキシ基、nは1〜3の整
数である。更に具体的には例えば、CH3 (CH2 9
SiCl3 、CH3 (CH2 15SiCl3 、CH3
2 O(CH2 15SiCl3 、CH3 (CH2 2
i(CH3 2 (CH2 15SiCl3 、CF3 (CF
2 7 (CH2 2 SiCl3 、CF3 CH2 O(CH
2 15SiCl3 、CF3 (CH2 2 Si(CH3
2 (CH2 15SiCl3 、F(CF2 4 (CH2
2 Si(CH3 2 (CH2 9 SiCl3 、CF3
OO(CH2 15SiCl3 、CF3 (CF2 5 (C
2 2 SiCl3 等が挙げられる。又、上記式中のR
基がビニレン基またはエチニレン基を含有すると、触
媒、光又は高エネルギー線照射等で不飽和結合を重合さ
せることにより、分子間に結合が生じより強固な単分子
膜となるため好ましい。なお、含フッ化炭素のシラン系
界面吸着剤を用いると撥水効果が大きく、電気絶縁特性
も良好であるため特に好ましい。
One used as a chemical adsorbent has one end
Chlorosilyl (-SiClnX3-n) Group or alkoxy
Silane (-Si (OA)nX3-n) Group at the other end
Silane system containing hydrocarbon group or carbon substituted with fluorine
An interface adsorbent can be used. However, n in the formula is an integer of 1 to 3.
And X is hydrogen, a lower alkyl group or a lower alkoxy.
Represents a group, and A represents a lower alkyl group. Above silane
Chlorsilane-based interface adsorbents at room temperature
Chemisorption reaction can be performed with certainty and a chemisorption monomolecular film is reliably formed.
It is preferable because it is possible. Among chlorosilane based adsorbents
However, it is a trichlorine-silicon chemical bond (that is, n in the formula is 3).
Then, it is preferable because the siloxane bond is also present between adsorbed molecules.
Good Further, the silane-based interface adsorbent used in the present invention,
In order to improve the density of adsorbed molecules, straight chain is preferable. Concrete
CH3-(R)m-SiClnX3-n, CF3
(CF2)p-(R)m-SiClnX3-nRepresented by
Chlorsilane-based interface adsorbents are preferred. Where p is
0 or an integer, m is 0 or 1, R is a carbon number of 1 or more.
A methylene group having 1 or more carbon atoms such as a tylene group or a vinylene-containing group,
Methylene group having 1 or more carbon atoms of ethynylene-containing group, silico-containing
Of a methylene group having 1 or more carbon atoms or an oxygen-containing atom
Any of methylene groups having 1 or more carbon atoms, X is a hydrogen atom, low
Primary alkyl group or lower alkoxy group, n is an integer of 1 to 3
Is a number. More specifically, for example, CH3(CH2)9
SiCl3, CH3(CH2)15SiCl3, CH3C
H2O (CH2)15SiCl3, CH3(CH2)2S
i (CH3)2(CH2)15SiCl3, CF3(CF
2)7(CH2)2SiCl3, CF3CH2O (CH
2)15SiCl3, CF3(CH2)2Si (CH3)
2(CH2)15SiCl3, F (CF2)Four(CH2)
2Si (CH3)2(CH2)9SiCl3, CF3C
OO (CH2)15SiCl3, CF3(CF2) Five(C
H2)2SiCl3Etc. Also, R in the above formula
When the group contains a vinylene group or an ethynylene group,
The unsaturated bonds are polymerized by irradiation with a medium, light or high energy rays.
By binding, a strong bond between the molecules occurs
It is preferable because it forms a film. In addition, fluorocarbon silane
Use of an interface adsorbent has a large water-repellent effect, resulting in electrical insulation properties.
Is also preferable because it is also good.

【0023】次に、第2実施例としては、累積膜を気相
法で設ける方法である。まず、内層膜を形成するため、
化学吸着剤として複数の塩素−珪素化学結合(−SiC
n 3-n 基、n=1、2、3、Xは官能基)を有する
直鎖状炭素鎖を含む物質を用い、脱水乾燥させたアルゴ
ンや窒素等の不活性ガスをキャリアガスとして用い、こ
の液体中に通してバブリングすることにより、気相状態
で基板表面まで運び、基板表面に曝して化学吸着させる
(吸着工程)。その後、基板表面上に物理的に吸着した
未反応の塩素−珪素化学結合を含む物質を、再度真空排
気して脱離、除去する(除去工程)。それから、化学吸
着した塩素−珪素化学結合を含む物質の未反応の塩素−
珪素化学結合を、水蒸気を基板表面に導入して反応させ
るか、あるいは、水素ガスと酸素ガスを基板表面に導入
して紫外線を同時に照射して反応させてシラノール基を
形成して、単分子膜を製造する。この様な工程からなる
ものを単分子吸着膜形成工程と便宜上呼ぶことにする。
または、単分子吸着膜形成工程後には水酸基が表面に多
数存在するため、単分子吸着膜形成工程を複数回繰り返
すことにより化学吸着単分子膜を累積する(化学吸着膜
形成工程)ことができる。この様にしても単分子膜が形
成できる。あるいは、この様に化学吸着単分子膜を形成
した後、フッ化炭素を含有するシラン系界面吸着剤を、
加熱するか、または、アルゴンや窒素等の脱水乾燥した
不活性ガスをキャリアガスとしてバブリングすることに
より気相状態で前記化学吸着膜表面に曝し、化学吸着膜
のシラノール基と化学反応させてシロキサン結合を形成
し、化学吸着単分子膜を累積して単分子膜を形成するこ
とが出来る。この様な方法を採用すると、表面に露出し
た親水性基が少ない基板の場合でも、フッ化炭素を含む
シラン系界面吸着剤を高密度に化学吸着することができ
るため好ましい。この塩素−珪素化学結合を有する材料
としては、例えばSiCl4 、SiHCl3 、SiH2
Cl2 、Cl−(SiCl2 O)n −SiCl3 、Hl
(R1 3-l Si(R2 n SiClm (R3 3-m
が挙げられ、一般にはCl−Si結合数が多い方がシラ
ン系界面吸着剤を高密度に化学吸着できるため好まし
い。但し式中nは整数、l及びmは1〜3の整数、R1
及びR3 は低級アルキル基、R2 は炭素数1以上のメチ
レン基である。特に、塩素−珪素化学結合を含む物質と
してSiCl4 を用いれば、分子が小さく水酸基化に対
する活性も大きいので、基板表面を均一に親水化する効
果が大きく好ましい。
Next, a second embodiment is a method of providing a cumulative film by a vapor phase method. First, to form the inner layer film,
As a chemical adsorbent, a plurality of chlorine-silicon chemical bonds (-SiC
1 n X 3-n group, n = 1, 2, 3 and X is a functional group), and a substance containing a linear carbon chain is used, and dehydrated and dried inert gas such as argon or nitrogen is used as a carrier gas. By bubbling through this liquid, it is carried to the surface of the substrate in the gas phase, exposed to the surface of the substrate and chemically adsorbed (adsorption step). Then, the substance containing the unreacted chlorine-silicon chemical bond physically adsorbed on the surface of the substrate is removed by vacuum evacuation again to be removed (removal step). Then, the unreacted chlorine of the substance containing the chemically adsorbed chlorine-silicon chemical bond-
The silicon chemical bond is reacted by introducing water vapor onto the substrate surface or by introducing hydrogen gas and oxygen gas onto the substrate surface and simultaneously irradiating ultraviolet rays to react with each other to form a silanol group, thereby forming a monomolecular film. To manufacture. For convenience sake, a process including such a process is referred to as a monomolecular adsorption film forming process.
Alternatively, since a large number of hydroxyl groups are present on the surface after the monomolecular adsorption film forming step, the chemical adsorption monomolecular film can be accumulated by repeating the monomolecular adsorption film forming step a plurality of times (chemical adsorption film forming step). Even in this way, a monomolecular film can be formed. Alternatively, after forming the chemisorption monolayer in this manner, a silane-based interface adsorbent containing fluorocarbon is added.
It is exposed to the surface of the chemical adsorption film in a gas phase by heating or by bubbling a dehydrated and dried inert gas such as argon or nitrogen as a carrier gas, and chemically reacts with the silanol group of the chemical adsorption film to form a siloxane bond. Can be formed and the chemisorption monolayers can be accumulated to form a monolayer. It is preferable to employ such a method because the silane-based interface adsorbent containing fluorocarbon can be chemically adsorbed at a high density even in the case of a substrate having a small number of hydrophilic groups exposed on the surface. Examples of the material having a chlorine-silicon chemical bond include SiCl 4 , SiHCl 3 , and SiH 2.
Cl 2, Cl- (SiCl 2 O ) n -SiCl 3, H l
(R 1 ) 3-l Si (R 2 ) n SiCl m (R 3 ) 3-m, etc. are mentioned. Generally, the larger the number of Cl—Si bonds, the higher the density of the silane interface adsorbent that can be chemically adsorbed. Therefore, it is preferable. However, in the formula, n is an integer, l and m are integers of 1 to 3, R 1
And R 3 is a lower alkyl group, and R 2 is a methylene group having 1 or more carbon atoms. In particular, when SiCl 4 is used as the substance containing a chemical bond of chlorine-silicon, the molecule is small and the activity for hydroxylation is large, so that the effect of uniformly hydrophilizing the substrate surface is large and preferable.

【0024】なお、本発明の化学吸着単分子膜は、1層
の単分子膜でもよく又単分子累積膜でも良いが、単分子
累積膜の場合には累積層間でも化学結合していることが
要求される。
The chemisorption monomolecular film of the present invention may be a single monolayer film or a monomolecular cumulative film. However, in the case of a monomolecular cumulative film, it may be chemically bonded between the cumulative layers. Required.

【0025】以下に本発明に関する具体例をコンデンサ
を代表例として取り上げ順に説明する。 実施例1 まず、基板1として、洗浄したポリプロピレンフィルム
(4μm厚み)を真空容器内に入れ、10-6Torr程度に
真空排気を行なった後、アルミニウム電極を真空蒸着法
により約100nm厚さに形成したものを用いる。その
後、基板1の表面に親水性基としてこの場合には水酸基
(−OH)を形成するための表面処理を行なう。具体的
には、真空容器内を真空に引きながら、反応性ガスとし
て、酸素ガスと水素ガスを基板1表面上に微量ずつ吹き
付けながら水銀ランプにより紫外線を基板1表面に照射
することにより、基板1のアルミニウム表面に水酸基を
形成させる。この反応性ガスとしては、他に水蒸気ガス
でも良い。次に、反応性ガスを止めて、再度10-6Torr
程度に真空排気を行なう。その後、化学吸着剤であるシ
ラン系界面吸着剤としてCF3 (CF2 7 (CH2
2 SiCl3 を用いて化学吸着を行なう。このクロルシ
ラン系界面吸着剤は室温で液体状態であるため、密封容
器に入れて、脱水乾燥させたアルゴンあるいは窒素等の
不活性ガスをキャリアガスとし、密封容器中のクロルシ
ラン系界面吸着剤中に通してバブリングを行い、このガ
スを細いパイプにて基板表面上まで運び供給するのが好
ましい。基板1表面では、基板表面の水酸基(−OH)
とクロルシラン系界面吸着剤のシリル基(−SiCl)
の塩素とが脱塩酸(HCl)反応し、基板表面全面に亘
り(化1)に示す結合が生成される。
Specific examples of the present invention will be described below in order of taking a capacitor as a representative example. Example 1 First, as a substrate 1, a washed polypropylene film (4 μm thick) was placed in a vacuum container and evacuated to about 10 −6 Torr, and then an aluminum electrode was formed to a thickness of about 100 nm by a vacuum deposition method. Use the one that you made. Thereafter, the surface of the substrate 1 is subjected to a surface treatment for forming a hydroxyl group (—OH) in this case as a hydrophilic group. Specifically, the surface of the substrate 1 is irradiated with ultraviolet rays by a mercury lamp while a small amount of oxygen gas and hydrogen gas are sprayed onto the surface of the substrate 1 as reactive gases while the inside of the vacuum container is evacuated. Form hydroxyl groups on the aluminum surface. Other than this, the reactive gas may be steam gas. Then turn off the reactive gas and re-apply 10 -6 Torr.
Evacuate to a degree. Then, CF 3 (CF 2 ) 7 (CH 2 ) as a silane-based interface adsorbent that is a chemical adsorbent is used.
2 Chemisorption is performed using SiCl 3 . Since this chlorosilane-based interfacial adsorbent is in a liquid state at room temperature, it is placed in a sealed container, and an inert gas such as argon or nitrogen dehydrated and dried is used as a carrier gas and passed through the chlorsilane-based interface adsorbent in the sealed container. It is preferable that bubbling is performed and the gas is carried to the surface of the substrate by a thin pipe and supplied. On the surface of the substrate 1, hydroxyl groups (-OH) on the surface of the substrate
And silyl group (-SiCl) of chlorosilane-based interface adsorbent
Dechlorination (HCl) reaction is performed with chlorine to generate the bond shown in (Chemical Formula 1) over the entire surface of the substrate.

【0026】[0026]

【化1】 [Chemical 1]

【0027】吸着に要する時間は約10〜30分程度で
ある。その後、吸着剤の供給を停止し、再度真空排気を
行って、基板1表面に物理的に吸着している過剰の化学
吸着剤分子を脱離、除去する。この際、化学吸着単分子
膜が分解しない範囲内(200゜C程度)で基板1を加
熱すると、脱離、除去が促進され短時間で処理が済むの
で効果的である。
The time required for adsorption is about 10 to 30 minutes. After that, the supply of the adsorbent is stopped and the vacuum evacuation is performed again to desorb and remove the excess chemical adsorbent molecules physically adsorbed on the surface of the substrate 1. At this time, if the substrate 1 is heated within a range (about 200 ° C.) where the chemisorption monomolecular film is not decomposed, desorption and removal are promoted and the treatment is completed in a short time, which is effective.

【0028】次に、基板1表面に水蒸気を供給して、未
反応部分の塩素−珪素化学結合と反応させシラノール基
(−SiOH)に変える。水蒸気は空気中の湿度を利用
しても良いし、積極的に水蒸気を送り込んでもよい。ま
た超純水などを用いることもできる。この加水分解の反
応式を下記式(化2)に示す。
Next, water vapor is supplied to the surface of the substrate 1 to react with the chlorine-silicon chemical bond in the unreacted portion to convert it into a silanol group (-SiOH). As the water vapor, the humidity in the air may be used, or the water vapor may be positively sent. Ultrapure water or the like can also be used. The reaction formula of this hydrolysis is shown in the following formula (Formula 2).

【0029】[0029]

【化2】 [Chemical 2]

【0030】次いで乾燥することにより、脱水反応させ
シロキサン結合を形成することにより単分子膜2を形成
する。この工程は、場合によっては省略可能である。こ
の脱水分解の反応式を下記式(化3)に示す。
Then, by drying, a dehydration reaction is caused to form a siloxane bond to form the monomolecular film 2. This step can be omitted in some cases. The reaction formula of this dehydration decomposition is shown in the following formula (Formula 3).

【0031】[0031]

【化3】 [Chemical 3]

【0032】この様にして、図1に示す様に基板1のア
ルミニウム表面にシロキサン結合を介してフッ素を含む
単分子膜2が1層形成される。この化学吸着単分子膜2
の膜厚は、分子構造からおよそ15オングストローム
(1.5nm)であった。なお、単分子膜2は極めて強
固に化学結合(共有結合)しているので、剥離すること
がなかった。また、基板1のアルミニウム蒸着膜のダメ
ージも全く見られなかった。
In this manner, as shown in FIG. 1, one layer of the monomolecular film 2 containing fluorine is formed on the aluminum surface of the substrate 1 through the siloxane bond. This chemisorption monolayer 2
The film thickness of was about 15 angstroms (1.5 nm) from the molecular structure. Since the monomolecular film 2 was extremely strongly chemically bonded (covalently bonded), it was not peeled off. Moreover, no damage was observed on the aluminum vapor deposition film on the substrate 1.

【0033】この単分子膜2上に、対向電極として、真
空蒸着法にてアルミニウム膜を100nm蒸着してコン
デンサを作成して電気特性を測定したところ、溶液中で
作成した単分子膜によるものと比べて、リーク電流も少
なく、絶縁耐圧も高かった。また、可動イオン等による
と思われる特性変動などは見られず良好な結果が得られ
た。
On this monomolecular film 2, an aluminum film was vapor-deposited by a vacuum evaporation method to a thickness of 100 nm as a counter electrode to prepare a capacitor, and its electrical characteristics were measured. As a result, it was found that the monomolecular film was prepared in a solution. In comparison, the leak current was small and the withstand voltage was high. In addition, good results were obtained without any fluctuations in characteristics that are considered to be caused by mobile ions.

【0034】実施例2 次に、本発明の第2発明の単分子膜の製造方法に関する
具体的な実施例を述べる。まず、図2において、基板1
1として、洗浄した研磨ガラスを真空容器内に入れ、1
-6Torr程度に真空排気を行なった後、アルミニウム電
極を真空蒸着法により約100nm厚さに形成したもの
を用いる。その後、基板11の表面に親水性基として水
酸基を形成するための表面処理を行なう。
Example 2 Next, a specific example of the method for producing a monomolecular film of the second invention of the present invention will be described. First, referring to FIG.
As shown in FIG. 1, put the cleaned polished glass in a vacuum container, and
After evacuation to about 0 -6 Torr, an aluminum electrode having a thickness of about 100 nm formed by vacuum evaporation is used. After that, surface treatment is performed on the surface of the substrate 11 to form hydroxyl groups as hydrophilic groups.

【0035】具体的には、真空容器内を真空に引きなが
ら、反応性ガスとして、酸素ガスと水素ガスを基板11
表面上に微量ずつ吹き付けながら水銀ランプにより紫外
線を基板11表面に照射することにより、基板11のア
ルミニウム表面に水酸基12を形成させる。この反応性
ガスとしては、他に水蒸気ガスでも良いのは実施例1の
場合と同様である。次に、反応性ガスを止めて、再度1
-6Torr程度に真空排気を行なう。その後、化学吸着剤
として複数の塩素−珪素化学結合(−SiCl n 3-n
基、n=1、2、3、Xは官能基)を有する直鎖状炭素
鎖を含む物質として、トリクロロシリル基を含むSiC
4 を用い、密封容器中に入れて、キャリアガスである
脱水乾燥させたアルゴンあるいは窒素等の不活性ガス
を、密封容器中のSiCl4 中に通してバブリングを行
い、このガスを細いパイプにて基板表面上まで運び約1
0分程度供給し、吸着反応を起こさせる。
Specifically, a vacuum is drawn in the vacuum container.
As a reactive gas, oxygen gas and hydrogen gas are used for the substrate 11
Ultraviolet rays are emitted by a mercury lamp while spraying a small amount on the surface.
By irradiating the surface of the substrate 11 with a line,
The hydroxyl group 12 is formed on the surface of the luminium. This reactivity
As the gas, steam gas may be used in the first embodiment.
It is similar to the case. Then turn off the reactive gas and repeat 1
0-6Evacuate to about Torr. Then the chemical adsorbent
As a plurality of chlorine-silicon chemical bonds (-SiCl nX3-n
Group, n = 1, 2, 3, X is a functional group)
As a substance containing a chain, SiC containing a trichlorosilyl group
lFourUsing a carrier gas, put in a sealed container
Inert gas such as dehydrated and dried argon or nitrogen
, SiCl in a sealed containerFourBubbling through
This gas is carried to the surface of the substrate by a thin pipe and is about 1
It is supplied for about 0 minutes to cause an adsorption reaction.

【0036】図2に示したように基板11表面に形成さ
れた親水性の水酸基12とトリクロロシリル基を含む物
質13の塩素原子とで脱塩酸反応を生じ、トリクロロシ
リル基を含む物質のクロロシリル単分子膜14が形成さ
れる。このようにトリクロロシリル基を含む物質として
SiCl4 を用いれば、基板11表面に少量の親水性の
OH基12しか存在していなくとも、基板11表面で脱
塩酸反応が生じ下記式(化4〜5)のように分子が−S
iO−結合を介して表面に固定される。
As shown in FIG. 2, a dehydrochlorination reaction occurs between the hydrophilic hydroxyl group 12 formed on the surface of the substrate 11 and the chlorine atom of the substance 13 containing the trichlorosilyl group, and the chlorosilyl unit of the substance containing the trichlorosilyl group is generated. The molecular film 14 is formed. Thus, if SiCl 4 is used as the substance containing a trichlorosilyl group, a dehydrochlorination reaction occurs on the surface of the substrate 11 even if only a small amount of hydrophilic OH groups 12 are present on the surface of the substrate 11, and As in 5), the molecule is -S
It is immobilized on the surface via the iO-bond.

【0037】[0037]

【化4】 [Chemical 4]

【0038】[0038]

【化5】 [Chemical 5]

【0039】なお、このとき一般には未反応のSiCl
4 もクロロシリル単分子膜上に物理吸着により存在する
ため、その後、再度真空排気して未反応のSiCl4
脱離、除去する。
At this time, in general, unreacted SiCl
Since 4 also exists on the chlorosilyl monomolecular film by physical adsorption, it is then evacuated again to desorb and remove unreacted SiCl 4 .

【0040】その後、化学吸着したクロロシリル単分子
膜の未反応の塩素−珪素化学結合を、水蒸気を基板表面
に導入して反応させるか、あるいは、水素ガスと酸素ガ
スを基板表面に導入するとともに紫外線を照射して反応
させてシラノール基を形成し、図3に示したように基板
11表面に(化6〜7)等のシロキサン単分子膜15が
得られる。
Then, the unreacted chlorine-silicon chemical bond of the chemically adsorbed chlorosilyl monomolecular film is reacted by introducing water vapor into the substrate surface, or by introducing hydrogen gas and oxygen gas onto the substrate surface and ultraviolet rays. Is irradiated to cause a reaction to form a silanol group, and a siloxane monomolecular film 15 of (Chemical Formula 6 to 7) or the like is obtained on the surface of the substrate 11 as shown in FIG.

【0041】[0041]

【化6】 [Chemical 6]

【0042】[0042]

【化7】 [Chemical 7]

【0043】なお、このときできた単分子膜15は、基
板11表面と−Si−O−の化学結合を介して完全に結
合されているので剥がれることが全く無い。また、得ら
れたシロキサン単分子膜15は、表面にSi−OH結合
を数多く持つ。当初の水酸基のおよそ3倍程度の数が生
成される。
Since the monomolecular film 15 formed at this time is completely bonded to the surface of the substrate 11 through the chemical bond of —Si—O—, it is never peeled off. Further, the obtained siloxane monomolecular film 15 has many Si—OH bonds on the surface. About three times as many as the initial hydroxyl groups are generated.

【0044】次に、実施例1で述べたクロルシラン系界
面吸着剤CF3 (CF2 7 (CH 2 2 SiCl3
用いて化学吸着を行なう。実施例1と同様に脱水乾燥さ
せたアルゴンあるいは窒素等の不活性ガスをキャリアガ
スとし、密封容器中のクロルシラン系界面吸着剤中に通
してバブリングを行い、このガスを細いパイプにて、表
面にシロキサン単分子膜15の形成された基板11まで
運び、10〜30分程曝して化学吸着を行なう。シロキ
サン単分子膜15表面に(化8)の結合が生成され、図
4に示したようにフッ素を含む化学吸着単分子膜16
が、下層のシロキサン単分子膜15aと化学結合した状
態で基板11表面全面に亘りおよそ20オングストロー
ム(2.0nm)の膜厚で単分子膜が形成できた。
Next, the chlorosilane-based boundary described in Example 1 was used.
Surface adsorbent CF3(CF2)7(CH 2)2SiCl3To
It is used for chemisorption. Dehydrated and dried as in Example 1.
Use inert gas such as argon or nitrogen that has been
And then pass through the chlorosilane-based interfacial adsorbent in a sealed container.
Bubbling is performed and this gas is exposed to a thin pipe.
Up to the substrate 11 on which the siloxane monolayer 15 is formed
Carry it and expose it for 10 to 30 minutes for chemical adsorption. Shiroki
A bond of (Chemical formula 8) is generated on the surface of the sun monolayer 15 and
As shown in 4, the chemisorption monolayer 16 containing fluorine
Is chemically bonded to the lower siloxane monolayer 15a.
In this state, about 20 angstroms are spread over the entire surface of the substrate 11.
A monomolecular film having a thickness of 2.0 nm was formed.

【0045】[0045]

【化8】 [Chemical 8]

【0046】反応プロセスは前記式(化1〜3)に示し
たと同様に進行する。なお、単分子膜は剥離試験を行な
っても剥離することがなかった。また、本実施例1と同
様に、対向電極を形成してコンデンサを形成して特性評
価を行なったが、実施例1と同程度もしくは、それ以上
の特性が得られた。これは、化学吸着単分子膜16の密
度が高いことによるものと考えられる。
The reaction process proceeds in the same manner as shown in the above formulas (Formulas 1 to 3). The monomolecular film was not peeled off even after the peeling test. Further, as in the case of Example 1, the characteristics were evaluated by forming the counter electrode and forming the capacitor, and the characteristics similar to or higher than those of Example 1 were obtained. It is considered that this is because the chemisorption monomolecular film 16 has a high density.

【0047】また、実施例1では単分子膜1層の場合、
実施例2ではシロキサン単分子膜1層の後フッソを含む
シラン系界面吸着剤層を1層累積した場合を示したが、
本発明の化学吸着単分子膜は1層に限らず多層に累積し
てもその効果は変化するものではない。吸着する単分子
の鎖長を適当に選ぶことによるか、または、累積するこ
とにより、所望の均一な膜厚の単分子膜が得られること
は、利用価値が極めて高い。
In Example 1, in the case of one monolayer,
In Example 2, a case was shown in which one layer of siloxane monomolecular film was laminated after one layer of silane-based interfacial adsorbent layer containing fluorine.
The chemical adsorption monomolecular film of the present invention is not limited to one layer, but its effect does not change even if accumulated in multiple layers. It is extremely useful that a monomolecular film having a desired uniform film thickness can be obtained by appropriately selecting the chain length of the adsorbed monomolecule or by accumulating the chains.

【0048】さらにまた、上記実施例では含フッ化炭素
クロルシラン系界面吸着剤として、CF3 (CF2 7
(CH2 2 SiCl3 を用いたが、CF3 −(C
2 p −(R)m −SiCln 3-n で表わされるク
ロルシラン系界面吸着剤のRの部分に、例えばビニレン
基(−CH=CH−)や、炭素−炭素の三重結合である
エチニレン基を付加したり組み込んでおけば、単分子膜
形成後5メガラド程度の電子線照射で架橋できるので、
さらに単分子膜の硬度を向上させることも可能である。
Further, in the above embodiment, CF 3 (CF 2 ) 7 is used as the fluorocarbon chlorosilane-based interface adsorbent.
(CH 2) was used 2 SiCl 3, CF 3 - ( C
F 2 ) p- (R) m -SiCl n X 3-n is a vinylsilane group (-CH = CH-) or a carbon-carbon triple bond at the R portion of the chlorosilane-based interface adsorbent. If you add or incorporate an ethynylene group, you can crosslink by electron beam irradiation of about 5 megarads after forming a monomolecular film.
Further, it is possible to improve the hardness of the monomolecular film.

【0049】なお、フッ化炭素系界面吸着剤として上記
のもの以外にもCF3 CH2 O(CH2 15SiC
3 、CF3 (CH2 2 Si(CH3 2 (CH2
15SiCl3 、F(CF2 4 (CH2 2 Si(CH
3 2 (CH2 9 SiCl3 、CF3 COO(C
2 15SiCl3 、CF3 (CF2 5 (CH2 2
SiCl3 等のトリクロルシラン系界面吸着剤をはじ
め、例えばCF3 CH2 O(CH 2 15Si(CH3
2 Cl、CF3 (CH2 2 Si(CH3 2 (C
2 15Si(CH3 2 Cl、CF3 CH2 O(CH
2 15Si(CH3 )Cl2 、CF3 COO(CH2
15Si(CH3 2 Cl等のクロルシラン系界面吸着剤
が利用できた。又CF3 (CF2 7 (CH2 2 Si
(OCH3 3 、CF3 CH2 O(CH2 15Si(O
CH3 3 等のアルコキシシラン系界面吸着剤も、界面
吸着剤溶液を加熱することにより同様の効果が得られ
た。CH3 (CH2 9 SiCl3 、CH3 (CH2
15SiCl3 、CH3 CH2 O(CH2 15SiC
3 、CH3 (CH2 2 Si(CH3 2 (CH2
15SiCl3 等の炭化水素基を有するクロルシラン系界
面吸着剤でも、同様に、気相雰囲気中で化学吸着単分子
膜が形成できる。
As a fluorocarbon-based interface adsorbent, the above
CF other than3CH2O (CH2)15SiC
l3, CF3(CH2)2Si (CH3)2(CH2)
15SiCl3, F (CF2)Four(CH2)2Si (CH
3)2(CH2)9SiCl3, CF3COO (C
H2)15SiCl3, CF3(CF2)Five(CH2)2
SiCl3Such as a trichlorosilane-based interface adsorbent
For example, CF3CH2O (CH 2)15Si (CH3)
2Cl, CF3(CH2)2Si (CH3)2(C
H2) 15Si (CH3)2Cl, CF3CH2O (CH
2)15Si (CH3) Cl2, CF3COO (CH2)
15Si (CH3)2Chlorsilane interface adsorbent such as Cl
Was available. CF3(CF2)7(CH2)2Si
(OCH3)3, CF3CH2O (CH2)15Si (O
CH3)3Alkoxysilane-based interface adsorbents such as
Similar effects can be obtained by heating the adsorbent solution.
It was CH3(CH2)9SiCl3, CH3(CH2)
15SiCl3, CH3CH2O (CH2)15SiC
l3, CH3(CH2)2Si (CH3)2(CH2)
15SiCl3Chlorsilane-based boundaries with hydrocarbon groups such as
Similarly, for surface adsorbents, chemisorption single molecules in a gas phase atmosphere
A film can be formed.

【0050】[0050]

【発明の効果】以上説明した通り、本発明の単分子膜の
製造方法では、気相雰囲気中にて化学吸着反応を起こさ
せるため、コンタミの少ない化学吸着単分子膜が得ら
れ、電子デバイス等、界面制御の必要性な用途に適して
いる。また、気相雰囲気中で化学吸着を行なうため、他
の薄膜を積層する場合にも、同一容器中にて連続形成が
可能であるため、工数削減の効果、および、コンタミ混
入の逓減の効果が大きい。特に、膜厚の均一性が要求さ
れ、かつ、膜内や膜界面のポテンシャル制御の必要なト
ンネル素子や、コンデンサ等の用途に対しては、その実
用価値は極めて大である。
As described above, according to the method for producing a monomolecular film of the present invention, a chemisorption reaction is caused in a gas phase atmosphere, so that a chemisorption monomolecular film with less contamination can be obtained. Suitable for applications that require interface control. Further, since the chemical adsorption is performed in a gas phase atmosphere, even when other thin films are laminated, continuous formation can be performed in the same container, resulting in the effect of reducing the number of steps and the effect of gradually reducing contamination. large. In particular, its practical value is extremely large for applications such as tunnel elements and capacitors in which uniformity of film thickness is required and potential control in the film or film interface is required.

【0051】また、本発明の単分子累積膜の製造方法で
は、反応性の高い塩素−珪素化学結合を有する直鎖状炭
素鎖を含む分子を用いて塩素原子を水酸基に置換するた
めに、単分子膜1層の製造方法よりも高密度に化学吸着
単分子膜を形成できる。
Further, in the method for producing a monomolecular cumulative film of the present invention, in order to substitute a chlorine atom with a hydroxyl group by using a molecule containing a linear carbon chain having a highly reactive chlorine-silicon chemical bond, It is possible to form a chemisorption monomolecular film with a higher density than in the method for producing a single molecular film layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単分子膜の製造方法の一実施例におけ
る基板表面を分子レベルまで拡大した断面概念図。
FIG. 1 is a conceptual cross-sectional view in which a substrate surface is enlarged to a molecular level in an example of the method for producing a monomolecular film of the present invention.

【図2】本発明の単分子膜累積膜の製造方法の一実施例
における基板表面の内層膜形成工程を分子レベルまで拡
大した断面工程概念図。
FIG. 2 is a sectional process conceptual diagram in which an inner layer film forming process on a substrate surface in an embodiment of a method for producing a monomolecular film cumulative film of the present invention is enlarged to a molecular level.

【図3】本発明の単分子膜累積膜の製造方法の一実施例
における基板表面の内層膜形成工程を分子レベルまで拡
大した断面工程概念図。
FIG. 3 is a sectional process conceptual diagram in which an inner layer film forming process on a substrate surface in an embodiment of a method for producing a monomolecular film cumulative film of the present invention is enlarged to a molecular level.

【図4】本発明の単分子膜累積膜の製造方法の一実施例
における基板表面を分子レベルまで拡大した断面工程概
念図。
FIG. 4 is a sectional process conceptual diagram in which a substrate surface is enlarged to a molecular level in an embodiment of the method for producing a monomolecular film cumulative film of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 化学吸着単分子膜 11 基板 12 水酸基 13 トリクロロシリル基を含む物質 14 クロロシリル単分子膜 15,15a シロキサン単分子膜(内層膜) 16 化学吸着単分子膜(外層膜) 1 substrate 2 chemisorption monolayer 11 substrate 12 hydroxyl group 13 substance containing trichlorosilyl group 14 chlorosilyl monolayer 15, 15a siloxane monolayer (inner layer) 16 chemisorption monolayer (outer layer)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 表面に活性水素基を有する基板の表面に
化学吸着膜を形成する方法であって、まず前記基板を容
器内に配置して真空排気を行うかまたは非水系ガス雰囲
気下で、一端に反応性珪素基を有するシラン系界面吸着
剤を前記基材表面に気相状態で接触させ脱水塩化水素反
応または脱アルコール反応により基板表面に吸着膜を形
成することを特徴とする化学吸着膜の気相製造法。
1. A method for forming a chemisorption film on the surface of a substrate having an active hydrogen group on the surface, which comprises first arranging the substrate in a container and performing vacuum evacuation or under a non-aqueous gas atmosphere. A chemisorptive film, characterized in that a silane interface adsorbent having a reactive silicon group at one end is brought into contact with the surface of the base material in a vapor phase state to form an adsorbed film on the surface of the substrate by dehydration hydrogen chloride reaction or dealcoholization reaction. Gas phase manufacturing method.
【請求項2】 シラン系界面吸着剤が複数の塩素−珪素
結合を有する請求項1記載の化学吸着膜の気相製造法。
2. The method for producing a gas phase of a chemical adsorption film according to claim 1, wherein the silane-based interface adsorbent has a plurality of chlorine-silicon bonds.
【請求項3】 シラン系界面吸着剤の接触工程後真空排
気する排気工程を含む請求項1記載の化学吸着膜の気相
製造法。
3. The vapor phase production method for a chemical adsorption film according to claim 1, further comprising an evacuation step of evacuating after the step of contacting the silane interface adsorbent.
【請求項4】 界面吸着剤を気相状態にする方法が、シ
ラン系界面吸着剤を加熱する方法、または乾燥した非反
応性ガスをキャリアガスとして、シラン系界面吸着剤も
しくはシラン系界面吸着剤溶液をバブリングする方法で
ある請求項1記載の化学吸着膜の気相製造法。
4. A method of bringing the interfacial adsorbent into a gas phase is a method of heating the silane interfacial adsorbent, or a dry non-reactive gas as a carrier gas, the silane interfacial adsorbent or the silane interfacial adsorbent. The method for producing a chemical adsorption film according to claim 1, which is a method of bubbling a solution.
【請求項5】 真空排気状態が、真空度10-1torr
以下の圧力である請求項1記載の化学吸着膜の気相製造
法。
5. The degree of vacuum is 10 −1 torr in a vacuum exhaust state.
The method for producing a chemical adsorption film according to claim 1, wherein the pressure is as follows.
【請求項6】 接触工程後または排気工程後に反応性ガ
スと接触させる請求項1記載の化学吸着膜の気相製造
法。
6. The method for producing a gas phase of a chemisorption film according to claim 1, which is brought into contact with a reactive gas after the contact step or the exhaust step.
【請求項7】 反応性ガスとして水蒸気または空気中の
湿度を用いる請求項6記載の化学吸着膜の気相製造法。
7. The method of producing a chemical adsorption film according to claim 6, wherein water vapor or humidity in air is used as the reactive gas.
【請求項8】 反応性ガスとして水素と酸素を用い、前
記反応性ガスの導入と同時に基板表面に紫外線を照射す
る請求項6記載の化学吸着膜の気相製造法。
8. The method for producing a chemical adsorption film according to claim 6, wherein hydrogen and oxygen are used as the reactive gas, and the substrate surface is irradiated with ultraviolet rays simultaneously with the introduction of the reactive gas.
【請求項9】 シラン系界面吸着剤が、CF3 −(CF
2 p −(R)m −SiCln 3-n (pは0または整
数、mは0または1、Rは炭素数1以上のメチレン基、
含ビニレン基の炭素数1以上のメチレン基、含エチニレ
ン基の炭素数1以上のメチレン基、含シリコン原子の炭
素数1以上のメチレン基または含酸素原子の炭素数1以
上のメチレン基の何れか、Xは水素原子、低級アルキル
基または低級アルコキシ基、nは0〜3の整数)である
請求項1記載の化学吸着膜の気相製造法。
9. The silane interface adsorbent is CF 3- (CF
2 ) p- (R) m -SiCl n X 3-n (p is 0 or an integer, m is 0 or 1, R is a methylene group having 1 or more carbon atoms,
Any of a methylene group having 1 or more carbon atoms in a vinylene group, a methylene group having 1 or more carbon atoms in an ethynylene group, a methylene group having 1 or more carbon atoms in a silicon atom or a methylene group having 1 or more carbon atoms in an oxygen atom. , X is a hydrogen atom, a lower alkyl group or a lower alkoxy group, and n is an integer of 0 to 3).
【請求項10】 塩素−珪素化学結合を含む物質が、S
iCl4 、SiHCl 3 、SiH2 Cl2 、Cl−(S
iCl2 O)n −SiCl3 (nは整数)の何れかであ
る請求項2記載の化学吸着膜の気相製造法。
10. The substance containing a chemical bond of chlorine-silicon is S.
iClFour, SiHCl 3, SiH2Cl2, Cl- (S
iCl2O)n-SiCl3(N is an integer)
The method for producing a gas phase of a chemisorption film according to claim 2.
【請求項11】 基板表面に、まず複数の塩素−珪素結
合を有するシラン系界面吸着剤を気相状態で反応させ、
次に水分子を反応させて内層膜とし、その後にフッ素を
含むシラン系界面吸着剤を気相状態で反応させ、次に水
分子を反応させて外層膜を累積する請求項1記載の化学
吸着膜の気相製造法。
11. A substrate surface is first reacted with a silane-based interfacial adsorbent having a plurality of chlorine-silicon bonds in a gas phase,
2. The chemical adsorption according to claim 1, wherein water molecules are reacted to form an inner layer film, and then a silane-based interfacial adsorbent containing fluorine is reacted in a gas phase state, and then water molecules are reacted to accumulate the outer layer film. Gas-phase production method for membranes.
JP3337317A 1991-12-16 1991-12-19 Gaseous phase production of chemical adsorption membrane Pending JPH05168913A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3337317A JPH05168913A (en) 1991-12-19 1991-12-19 Gaseous phase production of chemical adsorption membrane
US07/984,478 US5372851A (en) 1991-12-16 1992-12-02 Method of manufacturing a chemically adsorbed film
EP92121270A EP0547550B1 (en) 1991-12-16 1992-12-14 Method of manufacturing a chemically adsorbed film
DE69224888T DE69224888T2 (en) 1991-12-16 1992-12-14 Process for the production of a chemically adsorbed film
KR1019920024429A KR970001519B1 (en) 1991-12-16 1992-12-16 Method for manufacturing a chemically absorbed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337317A JPH05168913A (en) 1991-12-19 1991-12-19 Gaseous phase production of chemical adsorption membrane

Publications (1)

Publication Number Publication Date
JPH05168913A true JPH05168913A (en) 1993-07-02

Family

ID=18307494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337317A Pending JPH05168913A (en) 1991-12-16 1991-12-19 Gaseous phase production of chemical adsorption membrane

Country Status (1)

Country Link
JP (1) JPH05168913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671173A (en) * 1992-03-02 1994-03-15 Matsushita Electric Ind Co Ltd Chemical adsorption film and method for its production
JP2006312164A (en) * 2005-04-04 2006-11-16 Toyota Boshoku Corp Gas adsorbent and its production method and filter for gas adsorption
JP2011073282A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Method for forming organic film, nozzle plate, inkjet head, and electronic device
JP2011073284A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Method for forming organic film, organic film, nozzle plate, and inkjet recording apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671173A (en) * 1992-03-02 1994-03-15 Matsushita Electric Ind Co Ltd Chemical adsorption film and method for its production
JP2006312164A (en) * 2005-04-04 2006-11-16 Toyota Boshoku Corp Gas adsorbent and its production method and filter for gas adsorption
JP4678864B2 (en) * 2005-04-04 2011-04-27 トヨタ紡織株式会社 GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER
JP2011073282A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Method for forming organic film, nozzle plate, inkjet head, and electronic device
JP2011073284A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Method for forming organic film, organic film, nozzle plate, and inkjet recording apparatus
US8628829B2 (en) 2009-09-30 2014-01-14 Fujifilm Corporation Method of forming organic film, and nozzle plate, inkjet head and electronic device

Similar Documents

Publication Publication Date Title
EP0511548B1 (en) Chemically adsorbed film and method of manufacturing the same
Ferguson et al. Monolayers on disordered substrates: self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly (dimethylsiloxane)
CN1042577C (en) A method of treating a semi-conductor wafer
US7781028B2 (en) Thin film materials of amorphous metal oxides
EP0547550B1 (en) Method of manufacturing a chemically adsorbed film
US5011518A (en) Permselective membrane and process for producing the same
JP2741804B2 (en) Capacitor and manufacturing method thereof
CN1356926A (en) Surface modification of solid supports through thermal decomposition and functionalization of silanes
KR920014909A (en) Water and oil repellent coating and its manufacturing method
EP0523503B1 (en) Ultra thin polymer film electret and method of manufacturing the same
US5268211A (en) Optical recording medium
JP2633747B2 (en) Fluorine-based chemisorbed monomolecular cumulative film and method for producing the same
JPH05168913A (en) Gaseous phase production of chemical adsorption membrane
JP3331957B2 (en) Surface treatment method for structure to be treated
JPH10180179A (en) Manufacture of molecular film and manufacturing device
EP0344799B1 (en) Selectively permeable film and process for producing the same
JP3192194B2 (en) Capacitor
JPH05211351A (en) Josephson element and manufacture thereof
JP2684849B2 (en) Method for accumulating organic monolayer and chemical adsorbent used therefor
JP3502134B2 (en) Cold cathode
JP2981017B2 (en) Vacuum system equipment and manufacturing method thereof
JP3397215B2 (en) Hydrophilic lipophilic film and method for producing the same
JP3181092B2 (en) Antistatic film and method of manufacturing the same
JPH08188663A (en) Process for treating surface of substrate
JPH08124797A (en) Dielectric thin film, its manufacture, and capacitor