JP2005302300A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005302300A
JP2005302300A JP2004088595A JP2004088595A JP2005302300A JP 2005302300 A JP2005302300 A JP 2005302300A JP 2004088595 A JP2004088595 A JP 2004088595A JP 2004088595 A JP2004088595 A JP 2004088595A JP 2005302300 A JP2005302300 A JP 2005302300A
Authority
JP
Japan
Prior art keywords
positive electrode
mass
active material
pvdf
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088595A
Other languages
Japanese (ja)
Inventor
Kazunori Dojo
上 和 範 堂
Takao Inoue
上 尊 夫 井
Denisuyauwai Yu
デニスヤウワイ ユ
Masahisa Fujimoto
本 正 久 藤
Shin Fujitani
谷 伸 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004088595A priority Critical patent/JP2005302300A/en
Publication of JP2005302300A publication Critical patent/JP2005302300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery having a large capacity and improved cycle characteristics as a positive electrode having improved electron conductivity without increasing the amount of added polyvinylidene fluoride (PVdF) as a binder even if ferric phosphate lithium (LiFePO<SB>4</SB>) is used as a positive electrode active material. <P>SOLUTION: The nonaqueous electrolyte battery comprises the positive electrode 11 containing ferric phosphate lithium (LiFePO<SB>4</SB>) as a positive electrode active material; a negative electrode 12; and a nonaqueous electrolyte 15. Then, in the positive electrode 11, a positive electrode mixture layer comprising the positive electrode active substance, a conduction agent, and a binder is formed on a positive electrode collector, and the binder has a mass average molecular weight of 370,000 or higher and contains a polyvinylidene fluoride (PVdF) of 100,0000 or smaller. The amount of addition of PVdF is preferably 1 percentage by mass or higher and 10 percentages by mass or smaller to the entire mass of the positive electrode mixture layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はオリビン型リン酸リチウムを正極活物質として含有する正極と、負極と、非水電解質とを備えた非水電解質電池に係わり、特に、オリビン型リン酸リチウムとしてリン酸鉄リチウムを用いた非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery including a positive electrode containing olivine-type lithium phosphate as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte. In particular, lithium iron phosphate is used as the olivine-type lithium phosphate. The present invention relates to a non-aqueous electrolyte battery.

高エネルギー密度の二次電池として、電解液に非水電解液を使用し、リチウムイオンを正極と負極との間で移動させて充放電を行わせるようにした非水電解質二次電池が高エネルギー密度が要求される用途で利用されるようになった。このような非水電解質二次電池としては、一般に、正極活物質としてコバルト酸リチウム(LiCoO2)を用いるとともに、負極活物質としてリチウムの吸蔵・放出が可能な炭素材料やリチウム金属やリチウム合金が使用されている。また、非水電解液として、エチレンカーボネート(EC)やジエチルカーボネート(DEC)等の有機溶媒にホウフッ化リチウム(LiBF4)や六フッ化リン酸リチウム(LiPF6)等のリチウム塩からなる電解質を溶解させたものが使用されている。 A non-aqueous electrolyte secondary battery that uses a non-aqueous electrolyte as the electrolyte and moves lithium ions between the positive and negative electrodes to perform charge and discharge is a high-energy secondary battery. It has come to be used in applications where density is required. As such a nonaqueous electrolyte secondary battery, in general, lithium cobalt oxide (LiCoO 2 ) is used as a positive electrode active material, and a carbon material, lithium metal, or lithium alloy capable of occluding and releasing lithium is used as a negative electrode active material. in use. In addition, as a non-aqueous electrolyte, an electrolyte made of an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) and a lithium salt such as lithium borofluoride (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 ) is used. What was dissolved is used.

ところで、コバルト(Co)は埋蔵量が限られており、希少な資源であるために高価である。このため、LiCoO2を用いた電池の生産コストが高くなるという問題があった。また、LiCoO2を用いた電池の場合、充電状態の電池が通常の使用状態では考えられないような高温になると熱安定性が極端に低下するという問題があった。このため、LiCoO2に代わる正極材料として、スピネル構造のマンガン酸リチウム(LiMn24)やニッケル酸リチウム(LiNiO2)等の利用が検討されている。ところが、LiMn24は十分な放電容量が期待できず、また電池温度が高まるとマンガンが電解液中に溶解する等の問題点を有していることが明らかになった。一方、LiNiO2は放電電圧が低くなる等の問題点を有していることが明らかになった。 By the way, cobalt (Co) has a limited reserve and is a scarce resource, so it is expensive. For this reason, there was a problem that the production cost of the battery using LiCoO 2 was increased. In addition, in the case of a battery using LiCoO 2 , there is a problem that the thermal stability is extremely lowered when the battery in a charged state becomes a high temperature that cannot be considered in a normal use state. For this reason, the use of lithium manganate having a spinel structure (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ) or the like as a positive electrode material replacing LiCoO 2 has been studied. However, LiMn 2 O 4 cannot be expected to have a sufficient discharge capacity, and it has become clear that manganese is dissolved in the electrolyte as the battery temperature increases. On the other hand, it has become clear that LiNiO 2 has problems such as a low discharge voltage.

そこで、近年、リン酸鉄リチウム(LiFePO4)等のオリビン型リン酸リチウムが、LiCoO2に代わる正極材料として注目されるようになった。このオリビン型リン酸リチウムは、一般式がLiMPO4(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素)で表されるリチウム複合化合物であり、核となる金属元素Mの種類によって作動電圧が異なる。このため、核となる金属元素Mを適宜選択することにより電池電圧を任意に選定できるという利点がある。また、理論容量も140mAh/g〜170mAh/g程度と比較的高いので、単位質量あたりの電池容量を大きくすることができるという利点がある。 Therefore, in recent years, olivine-type lithium phosphate such as lithium iron phosphate (LiFePO 4 ) has attracted attention as a positive electrode material replacing LiCoO 2 . This olivine-type lithium phosphate is a lithium composite compound represented by the general formula LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe). The operating voltage varies depending on the type. For this reason, there exists an advantage that a battery voltage can be selected arbitrarily by selecting the metal element M used as a nucleus suitably. Further, since the theoretical capacity is relatively high, such as about 140 mAh / g to 170 mAh / g, there is an advantage that the battery capacity per unit mass can be increased.

さらに、一般式における核となる金属元素Mとして鉄を選択することができる。ここで、鉄は産出量が多く、かつ安価であることから、鉄を用いることにより生産コストを大幅に低減させることができるという利点を有する。しかしながら、オリビン型リン酸リチウムを非水電解質電池用の正極活物質として使用するには未だ解決すべき問題があり、特に、つぎのようなことが大きな問題点となっている。即ち、オリビン型リン酸リチウムは充放電時のリチウムイオンの脱挿入反応が遅いという問題があった。また、LiCoO2やLiNiO2あるいはLiMn24等と比較して電子導電性が非常に低いという問題があった。 Furthermore, iron can be selected as the metal element M serving as a nucleus in the general formula. Here, since iron is produced in a large amount and is inexpensive, it has an advantage that the production cost can be greatly reduced by using iron. However, there are still problems to be solved in order to use olivine-type lithium phosphate as a positive electrode active material for a non-aqueous electrolyte battery. In particular, the following are major problems. That is, the olivine-type lithium phosphate has a problem that the lithium ion desorption reaction during charging and discharging is slow. In addition, there is a problem that electronic conductivity is very low as compared with LiCoO 2 , LiNiO 2, LiMn 2 O 4 and the like.

このため、オリビン型リン酸リチウムを用いた電池は、特に、ハイレート放電時に分極が増大するため、顕著に電池特性が劣化するという課題があった。この間題を解決するため、平均粒径が3.1μm以下と非常に小さく、かつ比表面積が十分に大きなリン酸鉄リチウム(LiFePO4)を正極活物質として使用することが特許文献1で提案されるようになった。
特開2002−110162号公報
For this reason, the battery using the olivine type lithium phosphate has a problem that the battery characteristics are remarkably deteriorated particularly because the polarization increases at the time of high rate discharge. In order to solve this problem, Patent Document 1 proposes to use lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, which has a very small average particle size of 3.1 μm or less and a sufficiently large specific surface area. It became so.
JP 2002-110162 A

ここで、特許文献1にて提案されたリン酸鉄リチウム(LiFePO4)を正極活物質として使用すると、LiFePO4の平均粒径が3.1μm以下と小さいために、導電剤との接触面積が大きくなる。このため、導電剤との接触が良好になり、正極活物質の電子導電性は良好になると考えられる。ところが、平均粒径が3.1μm以下と小さな粒径の正極活物質を使用すると、正極全体での活物質の充填密度が低下して、逆に、電池としてのエネルギー密度も低下してしまうという問題が生じた。 Here, when the lithium iron phosphate (LiFePO 4 ) proposed in Patent Document 1 is used as the positive electrode active material, the average particle size of LiFePO 4 is as small as 3.1 μm or less, so that the contact area with the conductive agent is small. growing. For this reason, it is thought that a contact with a electrically conductive agent becomes favorable and the electronic conductivity of a positive electrode active material becomes favorable. However, when a positive electrode active material having an average particle size of 3.1 μm or less is used, the packing density of the active material in the entire positive electrode is reduced, and conversely, the energy density as a battery is also reduced. There was a problem.

また、粒径の小さな正極活物質を使用した場合、結着剤としてのポリフッ化ビニリデン(PVdF)の使用量を増大させないと、正極活物質であるLiFePO4と導電剤との密着性、導電剤と正極集電体との密着性および正極集電体と正極活物質との密着性が低下するという問題を生じた。このため、結着剤としてのポリフッ化ビニリデン(PVdF)の使用量を増大させると、相対的に正極活物質の充填量が低下して、放電容量が低下するという問題も生じた。 In addition, when a positive electrode active material having a small particle size is used, unless the amount of polyvinylidene fluoride (PVdF) used as a binder is increased, the adhesion between the LiFePO 4 positive electrode active material and the conductive agent, the conductive agent And the positive electrode current collector and the adhesion between the positive electrode current collector and the positive electrode active material are reduced. For this reason, when the usage-amount of the polyvinylidene fluoride (PVdF) as a binder is increased, the filling amount of the positive electrode active material was relatively lowered, and the discharge capacity was also lowered.

そこで、本発明は上記のような問題点に鑑みてなされたものであり、リン酸鉄リチウム(LiFePO4)を正極活物質として用いても、結着剤としてのポリフッ化ビニリデン(PVdF)の添加量を増大させることなく、優れた電子導電性を有する正極を提供して、高容量で、かつサイクル特性に優れた非水電解質電池を提供できるようにすることを目的とする。 Therefore, the present invention has been made in view of the above problems, and even when lithium iron phosphate (LiFePO 4 ) is used as a positive electrode active material, addition of polyvinylidene fluoride (PVdF) as a binder is performed. An object of the present invention is to provide a nonaqueous electrolyte battery having a high capacity and excellent cycle characteristics by providing a positive electrode having excellent electronic conductivity without increasing the amount.

上記目的を達成するために、本発明の非水電解質電池では、リン酸鉄リチウム(LiFePO4)を正極活物質として含有する正極と、負極と、非水電解質とを備えている。そして、正極は正極活物質と導電剤と結着剤とからなる正極合剤層が正極集電体上に形成されているとともに、結着剤は質量平均分子量が370000以上で、1000000以下のポリフッ化ビニリデン(PVdF)を含有することを特徴とする。 In order to achieve the above object, the nonaqueous electrolyte battery of the present invention includes a positive electrode containing lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, a negative electrode, and a nonaqueous electrolyte. In the positive electrode, a positive electrode mixture layer composed of a positive electrode active material, a conductive agent, and a binder is formed on the positive electrode current collector, and the binder has a weight average molecular weight of 370000 or more and a polyfluoride of 1000000 or less. It contains vinylidene chloride (PVdF).

ここで、従来から正極活物質として利用されているLiCoO2、LiNiO2、LixNi1-yCoy2、LiMn24およびLiNi1/3Co1/3Mn1/32は、正極活物質自身の電子導電性がオリビン型リン酸リチウムのLiFePO4と比較して高いため、正極活物質と導電剤、導電剤と正極集電体、正極集電体と正極活物質との間の密着性は大きな問題とはならない。これに対して、リン酸鉄リチウム(LiFePO4)は活物質自体の電子導電性が低いために、正極活物質と導電剤、導電剤と正極集電体、正極集電体と正極活物質との間の密着性が大きな問題となる。 Here, LiCoO 2 , LiNiO 2 , Li x Ni 1-y Co y O 2 , LiMn 2 O 4 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 conventionally used as positive electrode active materials are Because the electronic conductivity of the positive electrode active material itself is higher than that of LiFePO 4 of olivine type lithium phosphate, the positive electrode active material and the conductive agent, the conductive agent and the positive electrode current collector, the positive electrode current collector and the positive electrode active material The adhesion between them is not a big problem. On the other hand, since lithium iron phosphate (LiFePO 4 ) has low electronic conductivity of the active material itself, the positive electrode active material and the conductive agent, the conductive agent and the positive electrode current collector, the positive electrode current collector and the positive electrode active material, The adhesion between the two becomes a big problem.

このため、LiCoO2、LiNiO2、LixNi1-yCoy2、LiMn24およびLiNi1/3Co1/3Mn1/32では、結着力が比較的弱い質量平均分子量が280000のポリフッ化ビニリデン(PVdF)を用いた場合と、結着力が大きい質量平均分子量が370000以上のポリフッ化ビニリデン(PVdF)を用いた場合で、充放電特性に大きな差は見られない。ところが、リン酸鉄リチウム(LiFePO4)の場合は、結着力が大きい質量平均分子量が370000以上のポリフッ化ビニリデン(PVdF)を用いた場合の方が、質量平均分子量が280000のポリフッ化ビニリデン(PVdF)を用いた場合よりも優れた充放電特性、特にハイレートの充放電において優れた特性を示すことが明らかになった。 Therefore, in LiCoO 2 , LiNiO 2 , Li x Ni 1-y Co y O 2 , LiMn 2 O 4 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 , the mass average molecular weight with a relatively weak binding force When using polyvinylidene fluoride (PVdF) having a molecular weight of 280000, and using polyvinylidene fluoride (PVdF) having a mass average molecular weight of 370000 or more with a large binding force, there is no significant difference in charge / discharge characteristics. However, in the case of lithium iron phosphate (LiFePO 4 ), polyvinylidene fluoride (PVdF) having a mass average molecular weight of 280000 is greater when polyvinylidene fluoride (PVdF) having a mass binding molecular weight of 370000 or more is used. It was revealed that charge / discharge characteristics superior to those in the case of using), particularly excellent characteristics in high-rate charge / discharge.

この場合、質量平均分子量が370000未満のポリフッ化ビニリデン(PVdF)は結着力が低く、また、質量平均分子量が1000000より大きいポリフッ化ビニリデン(PVdF)を作製することは困難である。このため、質量平均分子量が370000以上、1000000以下のポリフッ化ビニリデン(PVdF)を用いる必要がある。これにより、正極内に良好な導電ネットワーク(導電パス)が形成されて、正極内の電子導電性が高まり、正極活物質の利用率が向上して放電容量が増加するようになる。   In this case, polyvinylidene fluoride (PVdF) having a mass average molecular weight of less than 370000 has a low binding force, and it is difficult to produce polyvinylidene fluoride (PVdF) having a mass average molecular weight of more than 1,000,000. For this reason, it is necessary to use polyvinylidene fluoride (PVdF) having a mass average molecular weight of 370000 or more and 1000000 or less. As a result, a good conductive network (conductive path) is formed in the positive electrode, the electronic conductivity in the positive electrode is increased, the utilization rate of the positive electrode active material is improved, and the discharge capacity is increased.

また、正極合剤中のポリフッ化ビニリデン(質量平均分子量370000以上、1000000以下)の添加量を、正極合剤全体の質量に対して1質量%未満とした場合、結着剤の添加量が不足することにより、正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤、導電割と正極集電体、正極集電体と正極活物質の密着性を十分高めることができず、大きな放電容量が得られないことが分かった。また、正極合剤中のポリフッ化ビニリデン(質量平均分子量370000以上、1000000以下)の添加量を、正極合剤全体の10質量%よりも多くした場合、正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤、導電剤と正極集電体、正極集電体と正極活物質の密着性を高めることができるが、反面、正極合剤中に含まれる正極活物質量が少なくなって、正極の体積当りのエネルギー密度が小さくなることが明らかになった。 Moreover, when the addition amount of polyvinylidene fluoride (mass average molecular weight of 370000 or more and 1000000 or less) in the positive electrode mixture is less than 1% by mass with respect to the total mass of the positive electrode mixture, the addition amount of the binder is insufficient. As a result, lithium iron phosphate (LiFePO 4 ), which is a positive electrode active material, and a conductive agent, a conductive split and a positive electrode current collector, and the adhesion between the positive electrode current collector and the positive electrode active material cannot be sufficiently increased, resulting in a large discharge. It was found that capacity could not be obtained. Further, when the addition amount of polyvinylidene fluoride (mass average molecular weight of 370000 or more and 1000000 or less) in the positive electrode mixture is larger than 10% by mass of the whole positive electrode mixture, lithium iron phosphate (LiFePO) which is a positive electrode active material. 4 ) and the conductive agent, the conductive agent and the positive electrode current collector, the adhesion between the positive electrode current collector and the positive electrode active material can be improved, but the amount of the positive electrode active material contained in the positive electrode mixture is reduced, It became clear that the energy density per volume of the positive electrode was reduced.

このことから、正極合剤中に含まれるポリフッ化ビニリデン(質量平均分子量370000以上、1000000以下)の添加量を、正極合剤の全体の質量に対して、1質量%以上で、10質量%以下とすることにより、正極の体積当りのエネルギー密度が小さくすることなく、正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤との密着性、導電剤と正極集電体との密着性、正極集電体と正極活物質との密着性を高めることができるようになる。 From this, the addition amount of polyvinylidene fluoride (mass average molecular weight of 370000 or more and 1000000 or less) contained in the positive electrode mixture is 1% by mass or more and 10% by mass or less with respect to the total mass of the positive electrode mixture. Thus, without reducing the energy density per volume of the positive electrode, the adhesion between the positive electrode active material lithium iron phosphate (LiFePO 4 ) and the conductive agent, and the adhesion between the conductive agent and the positive electrode current collector The adhesion between the positive electrode current collector and the positive electrode active material can be improved.

なお、リチウム含有オリビン型リン酸塩とは、一般式がLix1-(d+t+q+r)dtqr(XO4)(M=Fe,Mn,Co,Ti,Niの少なくとも一種類を含む、X
=Si,S,E,Vの少なくとも一種類を含む、Dは2価のイオンから選ばれD=Mg2+,Ni2+,Co2+,Zn2+,Cu2+、Tは3価のイオンから選ばれT=A13+,Ti3+,Cr3+,Fe3+,Mn3+,Ga3+,Zn3+,V3+、Qは4価のイオンから選ばれQ=Ti4+,Ge4+,Sn4+,V4+、Rは5価のイオンから選ばれR=V5+,Nb5+,Ta5+であり、0≦x≦1、0≦d,t,q,r≦1)で表されるオリビン型結晶構造を有する化合物である。
Note that the lithium-containing olivine-type phosphate, the general formula Li x M 1- (d + t + q + r) D d T t Q q R r (XO 4) (M = Fe, Mn, Co, X containing at least one of Ti and Ni
= Containing at least one of Si, S, E, V, D is selected from divalent ions, D = Mg 2+ , Ni 2+ , Co 2+ , Zn 2+ , Cu 2+ , T is trivalent T = A1 3+ , Ti 3+ , Cr 3+ , Fe 3+ , Mn 3+ , Ga 3+ , Zn 3+ , V 3+ , Q is selected from tetravalent ions and Q = Ti 4+ , Ge 4+ , Sn 4+ , V 4+ , R is selected from pentavalent ions, and R = V 5+ , Nb 5+ , Ta 5+ , 0 ≦ x ≦ 1, 0 ≦ d , T, q, r ≦ 1), a compound having an olivine type crystal structure.

代表的なものはLiFePO4、LiCoPO4などであるが、例えば、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30PO4などもこれに該当する。特に、LiFePO4は、原料となる鉄化合物の入手が容易であり、安価であるため好ましい。その他の遷移金属であるCo,Ni,Mn等を使用した場合にも、同じ結晶構造を有する粒子であることから、同様の効果が期待できる。 Typical examples are LiFePO 4 , LiCoPO 4 , and the like, for example, Li 0.90 Ti 0.05 Nb 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 and the like also correspond to this. In particular, LiFePO 4 is preferable because it is easy to obtain an iron compound as a raw material and is inexpensive. Even when other transition metals such as Co, Ni, and Mn are used, the same effect can be expected because the particles have the same crystal structure.

また、この正極活物質は電子導電性が低いことが課題であり、層状岩塩構造を有するコバルト酸リチウム(LiCoO2)の導電性が約10-3S/cm以上であるのに対して、リン酸鉄リチウム(LiFePO4)の導電性は約10-10S/cmである。このような低い導電性を向上させるために粒子表面上に炭素コート、炭素付着等の表面の炭素処理やリチウムサイトの一部を遷移金属で置換するということが試みられている。このように、導電性を上げる処理を施したものもその効果が期待できる。また、導電性の問題から粒子径を制御することも試みられており、本発明における作用効果は粒子径を制御した材料にも適用可能である。 In addition, the positive electrode active material has a problem of low electronic conductivity, and the conductivity of lithium cobaltate (LiCoO 2 ) having a layered rock salt structure is about 10 −3 S / cm or more, whereas phosphorus The conductivity of lithium iron oxide (LiFePO 4 ) is about 10 −10 S / cm. In order to improve such low conductivity, attempts have been made to replace the surface of the particle surface with carbon, such as carbon coating or carbon adhesion, or a part of the lithium site with a transition metal. Thus, the effect of the treatment for increasing the conductivity can be expected. In addition, attempts have been made to control the particle size from the problem of conductivity, and the effects of the present invention can be applied to materials with controlled particle size.

さらに、平均粒子径を10μm以下にすることにより、粒子内の充放電に伴うLi拡散距離の制御ができ、Liの挿入脱離に伴う抵抗を低減して電極特性を向上させる効果もある。本発明における粗度を制御することにより粒子と集電体の接触面積を十分に確保しうる点では粒子径を制御したリン酸鉄リチウム(LiFePO4)においても本発明の効果は期待できる。本発明においては正極活物質の粒径をレーザー回折式粒度分布測定装置で測定したメディアン径(Rmedian)とモード径(Rmode)は共に10μm以下であることが望ましい。好ましくは5μm以下の粒子であることが望ましい。 Furthermore, by setting the average particle size to 10 μm or less, it is possible to control the Li diffusion distance associated with charging / discharging within the particle, and there is an effect of improving the electrode characteristics by reducing the resistance associated with the insertion and release of Li. The effect of the present invention can be expected even in lithium iron phosphate (LiFePO 4 ) in which the particle diameter is controlled in that the contact area between the particles and the current collector can be sufficiently secured by controlling the roughness in the present invention. In the present invention, it is desirable that both the median diameter (R median ) and the mode diameter (R mode ) of the positive electrode active material measured by a laser diffraction particle size distribution analyzer are 10 μm or less. The particles are preferably 5 μm or less.

また、本発明において、正極活物質はリン酸鉄リチウム(LiFePO4)と他の正極材料との混合物でも構わない。本発明においては、合剤層に導電性粉末を混合することができる。導電性粉末を添加することにより、活物質粒子の周囲に導電性粉末による導電性ネットワークが形成されるので、電極内の集電性を更に向上させることができる。導電性粉末としては、導電性カーボン粉末が好ましく用いられるが、導電性のある金属酸化物なども用いることができる。導電性粉末の添加量は、活物質材料との総質量の10質量%以下であることが好ましい。導電性粉末の添加量が多過ぎると活物質材料の混合割合が相対的に少なくなるので、電極の充放電容量が小さくなる。 In the present invention, the positive electrode active material may be a mixture of lithium iron phosphate (LiFePO 4 ) and another positive electrode material. In the present invention, conductive powder can be mixed in the mixture layer. By adding the conductive powder, a conductive network of the conductive powder is formed around the active material particles, so that the current collecting property in the electrode can be further improved. As the conductive powder, conductive carbon powder is preferably used, but conductive metal oxides can also be used. The addition amount of the conductive powder is preferably 10% by mass or less of the total mass with the active material. When there is too much addition amount of electroconductive powder, since the mixing rate of an active material material becomes relatively small, the charge / discharge capacity of an electrode becomes small.

本発明においては、合剤層を集電体上に配置、乾燥後に圧延を施すことが好ましい。このような圧延は、圧延ローラー、プレス機を用いて施すことができる。圧延を施すことにより、正極内の活物質の充填密度が向上し、それに伴って体積エネルギー密度を向上させることができる。また、圧延を施すことにより、正極活物質と導電剤の接触面積が多くなることから、導電性が向上し、負荷特性を向上させることができる。   In the present invention, it is preferable to dispose the mixture layer on the current collector and perform rolling after drying. Such rolling can be performed using a rolling roller or a press. By performing rolling, the packing density of the active material in the positive electrode is improved, and the volume energy density can be improved accordingly. Moreover, since the contact area of a positive electrode active material and a electrically conductive agent increases by giving rolling, electroconductivity improves and it can improve a load characteristic.

また本発明に用いられる非水溶媒は通常電池用非水溶媒として用いられる環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等が挙げられる。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどが挙げられ これらの水素基の一部または全部をフッ素化されているものも用いることが可能で、トリフルオロプロピレンカーボネートやフルオロエチルカーボネートなどが挙げられる。
Examples of the non-aqueous solvent used in the present invention include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides and the like that are usually used as non-aqueous solvents for batteries.
Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate and the like, and those in which some or all of these hydrogen groups are fluorinated can be used, such as trifluoropropylene carbonate and fluoroethyl carbonate. Is mentioned.

鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネートなどが挙げられ、これらの水素の一部または全部をフッ素化されているものも用いることが可能である。エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトンなどが挙げられる。   Examples of chain carbonic acid esters include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, etc., and those in which some or all of these hydrogens are fluorinated are also used. It is possible. Examples of the esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone.

環状エーテル類としては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテルなどが挙げられる。   As cyclic ethers, 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3,5 -Trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether and the like.

鎖状エーテル類としては、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジへキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、0−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルなどが挙げられる。   As chain ethers, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, Pentylphenyl ether, methoxytoluene, benzylethyl ether, diphenyl ether, dibenzyl ether, 0-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1 , 1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethy Such as glycol dimethyl and the like.

ニトリル類としてはアセトニトリルなどがある。アミド類としてはジメチルホルムアミドなどがある。特に電圧安定性の点からは、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状炭酸エステル類を使用することが好ましい。   Nitriles include acetonitrile. Examples of amides include dimethylformamide. In particular, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate.

本発明で用いる電解質としては、一般に非水電解質電池で用いられる電解質を用いることができ、LiPF6,LiAsF6,LiBF4,LiCF3SO3,LiN(Cl2l+1SO2)(Cm2m+1SO2)(l,mは1以上の整数),LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2)(p,q,rは1以上の整数)などが挙げられる。また、下記の化1で示されるジフルオロ(オキサラト)ホウ酸リチウムも用いることができる。これらの電解質は一種類で使用してもよく、また二種類以上を組み合わせて使用してもよい。なお、この電解質は、上述した非水溶媒に0.1〜1.5M、好ましくは0.5〜1.5Mの濃度となるように溶解して使用するのが望ましい。

Figure 2005302300
As an electrolyte used in the present invention, an electrolyte generally used in a non-aqueous electrolyte battery can be used, and LiPF 6 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2) (l, m is an integer of 1 or more), LiC (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) (P, q, and r are integers of 1 or more). Moreover, the difluoro (oxalato) lithium borate shown by following Chemical formula 1 can also be used. These electrolytes may be used alone or in combination of two or more. In addition, it is desirable to use this electrolyte by dissolving it in the non-aqueous solvent described above so as to have a concentration of 0.1 to 1.5M, preferably 0.5 to 1.5M.
Figure 2005302300

ついで、本発明の実施の形態を以下に説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は本発明の正極を用いた試験セルを模式的に示す図である。   Next, an embodiment of the present invention will be described below. However, the present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that does not change the object of the present invention. is there. FIG. 1 is a diagram schematically showing a test cell using the positive electrode of the present invention.

1.正極
(1)実施例1
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:ソルベイソレクシス社製 Hylar:質量平均分子量370000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が90質量%で、アセチレンブラックが5質量%で、ポリフッ化ビニリデン(PVdF)が5質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、実施例1の正極aとした。
1. Positive electrode (1) Example 1
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. After that, polyvinylidene fluoride (PVdF: Hylar: mass average molecular weight 370000, manufactured by Solvay Solexis) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 90% by mass, acetylene black at 5% by mass, and polyvinylidene fluoride (PVdF) at 5% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of a roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm, and rolled using a roller to a predetermined active material filling density. This was vacuum dried at 100 ° C. to obtain positive electrode a of Example 1.

(2)実施例2
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:ソルベイソレクシス社製 Hylar:質量平均分子量370000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が92質量%で、アセチレンブラックが5質量%で、ポリフッ化ビニリデン(PVdF)が3質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、実施例2の正極bとした。
(2) Example 2
Lithium iron phosphate (LiFePO 4 ) having an average particle size of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. Thereafter, polyvinylidene fluoride (PVdF: Hylar: mass average molecular weight 370000 manufactured by Solvay Solexis) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 92% by mass, acetylene black at 5% by mass, and polyvinylidene fluoride (PVdF) at 3% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of a roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm and rolled to a predetermined active material packing density using a roller. This was vacuum dried at 100 ° C. to obtain a positive electrode b of Example 2.

(3)実施例3
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:ソルベイソレクシス社製 Hylar:質量平均分子量370000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が85質量%で、アセチレンブラックが5質量%で、ポリフッ化ビニリデン(PVdF)が10質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、実施例3の正極cとした。
(3) Example 3
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. After that, polyvinylidene fluoride (PVdF: Hylar: mass average molecular weight 370000, manufactured by Solvay Solexis) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 85 mass%, acetylene black at 5 mass%, and polyvinylidene fluoride (PVdF) at 10 mass%. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of the roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm, and rolled using a roller to a predetermined active material filling density. This was vacuum dried at 100 ° C. to obtain a positive electrode c of Example 3.

(4)実施例4
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:呉羽化学工業製 クレハKFポリマー L#9305:質量平均分子量1000000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が90質量%で、アセチレンブラックが5質量%で、ポリフッ化ビニリデン(PVdF)が5質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、実施例4の正極dとした。
(4) Example 4
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. Thereafter, polyvinylidene fluoride (PVdF: Kureha KF Polymer L # 9305: mass average molecular weight 1000000) manufactured by Kureha Chemical Industry was added as a binder to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 90% by mass, acetylene black at 5% by mass, and polyvinylidene fluoride (PVdF) at 5% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of the roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm, and rolled using a roller to a predetermined active material filling density. This was vacuum dried at 100 ° C. to obtain a positive electrode d of Example 4.

(5)比較例1
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:呉羽化学工業製 クレハKFポリマー L#1120:質量平均分子量280000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が85質量%で、アセチレンブラックが10質量%で、ポリフッ化ビニリデン(PVdF)が5質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延したところアルミ箔から正極合剤が剥離した。なお、このように作製されるものを一応、比較例1の正極xとした。
(5) Comparative Example 1
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. Thereafter, polyvinylidene fluoride (PVdF: Kureha KF Polymer L # 1120: mass average molecular weight 280000) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 85% by mass, acetylene black at 10% by mass, and polyvinylidene fluoride (PVdF) at 5% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of the roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, the sample was cut to a size of 2 cm × 2 cm and rolled to a predetermined active material filling density using a roller, and the positive electrode mixture was peeled from the aluminum foil. In addition, what was produced in this way was used as the positive electrode x of Comparative Example 1 for the time being.

(6)比較例2
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:呉羽化学工業製 クレハKFポリマー L#1120:質量平均分子量280000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が80質量%で、アセチレンブラックが10質量%で、ポリフッ化ビニリデン(PVdF)が10質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、比較例2の正極yとした。
(6) Comparative Example 2
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. Thereafter, polyvinylidene fluoride (PVdF: Kureha KF Polymer L # 1120: mass average molecular weight 280000) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 80% by mass, acetylene black at 10% by mass, and polyvinylidene fluoride (PVdF) at 10% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of the roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm, and rolled using a roller to a predetermined active material filling density. This was vacuum-dried at 100 ° C. to obtain a positive electrode y of Comparative Example 2.

(7)比較例3
正極活物質である平均粒径が約4μmのリン酸鉄リチウム(LiFePO4)と、導電剤としてのアセチレンブラック(電気化学工業製 デンカブラック)を混合して正極合剤とした。その後、得られた正極合剤に結着剤としてのポリフッ化ビニリデン(PVdF:呉羽化学工業製 クレハKFポリマー L#1120:質量平均分子量280000)を添加した。この場合、リン酸鉄リチウム(LiFePO4)が70質量%で、アセチレンブラックが10質量%で、ポリフッ化ビニリデン(PVdF)が20質量%となるように加えた。さらに、N−メチル−2−ピロリドン(NMP)を適量加えて混合し、スラリーを作製した。作製したスラリーをドクターブレード法を用いて粗面化アルミ箔の両面に塗布した後、ホットプレートを用いて80℃で乾燥させて、NMPを揮散させた。乾燥後、2cm×2cmのサイズに切り取り、ローラーを用いて所定の活物質充填密度となるように圧延した。これを100℃で真空乾燥させて、比較例3の正極zとした。
(7) Comparative Example 3
Lithium iron phosphate (LiFePO 4 ) having an average particle diameter of about 4 μm, which is a positive electrode active material, and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as a conductive agent were mixed to obtain a positive electrode mixture. Thereafter, polyvinylidene fluoride (PVdF: Kureha KF Polymer L # 1120: mass average molecular weight 280000) as a binder was added to the obtained positive electrode mixture. In this case, lithium iron phosphate (LiFePO 4 ) was added at 70% by mass, acetylene black at 10% by mass, and polyvinylidene fluoride (PVdF) at 20% by mass. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and mixed to prepare a slurry. The prepared slurry was applied to both surfaces of the roughened aluminum foil using a doctor blade method, and then dried at 80 ° C. using a hot plate to volatilize NMP. After drying, it was cut to a size of 2 cm × 2 cm and rolled to a predetermined active material packing density using a roller. This was vacuum dried at 100 ° C. to obtain a positive electrode z of Comparative Example 3.

2.試験セル
ついで、上述のようにして作製した正極a,b,c,d,x,y,zを用いて、図1に示すように、作用極としてこれらの正極11(a,b,c,d,x,y,z)を用い、対極となる負極12と、参照極13とにそれぞれリチウム金属を用い、正極11と負極12との間にセパレータ14を配置した。これらを不活性雰囲気下において、各試験セル容器10内に収納するとともに、各試験セル容器10内に非水電解液15を注液することにより、試験セルA,B,C,D,X,Y,Zをそれぞれ作製した。
2. Test Cell Next, using the positive electrodes a, b, c, d, x, y, and z produced as described above, as shown in FIG. 1, these positive electrodes 11 (a, b, c, d, x, y, z), lithium metal was used for the negative electrode 12 as the counter electrode and the reference electrode 13, respectively, and the separator 14 was disposed between the positive electrode 11 and the negative electrode 12. These are housed in each test cell container 10 under an inert atmosphere, and the test cells A, B, C, D, X, Y and Z were produced respectively.

なお、正極aを用いたものを試験セルAとした。同様に、正極bを用いたものを試験セルBとし、正極cを用いたものを試験セルCとし、正極dを用いたものを試験セルDとした。また、正極xを用いたものを試験セルXとし、正極yを用いたものを試験セルYとし、正極zを用いたものを試験セルZとした。   A test cell A was prepared using the positive electrode a. Similarly, a test cell B was prepared using the positive electrode b, a test cell C was prepared using the positive electrode c, and a test cell D was prepared using the positive electrode d. A cell using the positive electrode x was used as a test cell X, a cell using the positive electrode y was used as a test cell Y, and a cell using the positive electrode z was used as a test cell Z.

ついで、これらの試験セルA,B,C,D,X,Y,Zを用いて、0.1Itの充電電流で電池電圧が4.5Vになるまで充電を行った後、0.1Itの放電電流で電池電圧が2.0Vになるまで放電を行って、1サイクル時の放電時間から活物質1g当たりの0.1It放電時の放電容量(mAh/g)を求めると表1に示すような結果が得られた。この後、0.2Itの充電電流で電池電圧が4.5Vになるまで充電を行った後、0.2Itの放電電流で電池電圧が2.0Vになるまで放電を行うという充放電を2,3,4,5,6サイクルと繰り返した後、6サイクル時の放電時間から活物質1g当たりの0.2It放電時の放電容量(mAh/g)を求めると表1に示すような結果が得られた。   Next, using these test cells A, B, C, D, X, Y, and Z, charging was performed until the battery voltage reached 4.5 V with a charging current of 0.1 It, and then discharging of 0.1 It was performed. As shown in Table 1, when discharging is performed until the battery voltage reaches 2.0 V with current, the discharge capacity (mAh / g) at the time of 0.1 It per 1 g of active material is determined from the discharge time at one cycle. Results were obtained. Then, after charging until the battery voltage becomes 4.5V with a charging current of 0.2 It, charging / discharging of discharging until the battery voltage becomes 2.0 V with a discharging current of 0.2 It is 2, After repeating 3, 4, 5 and 6 cycles, the discharge capacity (mAh / g) at 0.2 It discharge per gram of active material was obtained from the discharge time at 6 cycles, and the results shown in Table 1 were obtained. It was.

さらに、この後、0.2Itの充電電流で電池電圧が4.5Vになるまで充電を行った後、0.5Itの放電電流で電池電圧が2.0Vになるまで放電を行って、7サイクル時の放電時間から活物質1g当たりの0.5It放電時の放電容量(mAh/g)を求めると表1に示すような結果が得られた。また、この後、0.2Itの充電電流で電池電圧が4.5Vになるまで充電を行った後、1.0Itの放電電流で電池電圧が2.0Vになるまで放電を行って、8サイクル時の放電時間から活物質1g当たりの1.0It放電時の放電容量(mAh/g)を求めると表1に示すような結果が得られた。また、この後、0.2Itの充電電流で電池電圧が4.5Vになるまで充電を行った後、2.0Itの放電電流で電池電圧が2.0Vになるまで放電を行って、9サイクル時の放電時間から活物質1g当たりの2.0It放電時の放電容量(mAh/g)を求めると表1に示すような結果が得られた。

Figure 2005302300
Further, after charging with a charging current of 0.2 It until the battery voltage becomes 4.5 V, discharging is performed until the battery voltage becomes 2.0 V with a discharging current of 0.5 It, and 7 cycles. When the discharge capacity (mAh / g) at the time of 0.5 It discharge per 1 g of the active material was determined from the discharge time at the time, the results shown in Table 1 were obtained. After that, after charging until the battery voltage becomes 4.5 V with a charging current of 0.2 It, discharging is performed until the battery voltage becomes 2.0 V with a discharging current of 1.0 It, and 8 cycles. When the discharge capacity (mAh / g) at the time of 1.0 It discharge per 1 g of the active material was determined from the discharge time at the time, the results shown in Table 1 were obtained. Further, after charging until the battery voltage becomes 4.5V with a charging current of 0.2 It, discharging is performed until the battery voltage becomes 2.0 V with a discharging current of 2.0 It, and 9 cycles. When the discharge capacity (mAh / g) at the time of 2.0 It discharge per 1 g of the active material was determined from the discharge time at the time, the results shown in Table 1 were obtained.
Figure 2005302300

上記表1の結果から明らかなように、ポリフッ化ビニリデン(PVdF)の添加量が5質量%と等しい正極a,d,xを比較すると、正極xにおいては、作製中に正極合剤が正極集電体から剥離して作製することができなかった。これは、正極xに用いたポリフッ化ビニリデン(PVdF)の質量平均分子量は280000であって、PVdFの結着力が弱かったためと考えられる。一方、正極a,dにおいては、作製中に正極合剤が正極集電体から剥離することはなく、それぞれの放電状態で十分な放電容量が得られた。   As is clear from the results in Table 1 above, when positive electrodes a, d, and x in which the addition amount of polyvinylidene fluoride (PVdF) is equal to 5% by mass are compared, in the positive electrode x, the positive electrode mixture is collected during the production. It could not be produced by peeling from the electric body. This is thought to be because the polyvinylidene fluoride (PVdF) used for the positive electrode x had a mass average molecular weight of 280000 and the binding force of PVdF was weak. On the other hand, in the positive electrodes a and d, the positive electrode mixture did not peel from the positive electrode current collector during the production, and a sufficient discharge capacity was obtained in each discharge state.

これは、ポリフッ化ビニリデン(PVdF)の質量平均分子量が370000〜1000000であるPVdFの結着力が強いことを示している。なお、現在のところ、質量平均分子量が1000000より大きいPVdFは得られていない。したがって、結着剤としては、質量平均分子量が370000以上で、1000000以下のポリフッ化ビニリデン(PVdF)を用いるのが望ましいということができる。これにより、正極内に良好な導電ネットワーク(導電パス)が形成されて、正極内の電子伝導性が高まり、正極活物質の利用率が向上して放電容量が増加するようになる。   This indicates that the binding force of PVdF having a mass average molecular weight of 370000 to 1000000 of polyvinylidene fluoride (PVdF) is strong. At present, PVdF having a mass average molecular weight of more than 1,000,000 has not been obtained. Therefore, it can be said that it is desirable to use polyvinylidene fluoride (PVdF) having a mass average molecular weight of 370000 or more and 1000000 or less as the binder. Thereby, a favorable conductive network (conductive path) is formed in the positive electrode, the electron conductivity in the positive electrode is increased, the utilization factor of the positive electrode active material is improved, and the discharge capacity is increased.

この場合、正極合剤中のPVdFの添加量が20質量%である正極zを用いた試験セルZにおいては、それぞれの放電状態で十分な放電容量が得られていないことが分かる。これは、正極合剤中の質量平均分子量が280000であるPVdFの添加量が20質量%と多くなると、結着力が弱い質量平均分子量が280000のPVdFでも正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤、導電剤と正極集電体、正極集電体と正極活物質との密着性をある程度確保することができるが、十分ではなく、正極活物質1g当たりの放電容量が小さくなると考えられる。一方、正極合剤中の質量平均分子量が370000〜1000000のPVdFの添加量が3質量%以上、10質量%以下である正極a,b,c,dを用いた試験セルA,B,C,Dにおいては、それぞれの放電状態で十分な放電容量が得られていることが分かる。 In this case, in the test cell Z using the positive electrode z in which the addition amount of PVdF in the positive electrode mixture is 20% by mass, it is understood that a sufficient discharge capacity is not obtained in each discharge state. This is because when the addition amount of PVdF having a mass average molecular weight of 280000 in the positive electrode mixture increases to 20% by mass, lithium iron phosphate (LiFePO) which is a positive electrode active material even with PVdF having a mass average molecular weight of 280000 having a weak binding force. 4 ) and the conductive agent, the conductive agent and the positive electrode current collector, the adhesion between the positive electrode current collector and the positive electrode active material can be secured to some extent, but not enough, and the discharge capacity per 1 g of the positive electrode active material becomes small Conceivable. On the other hand, test cells A, B, C, and C using positive electrodes a, b, c, and d in which the addition amount of PVdF having a mass average molecular weight of 370000 to 1000000 in the positive electrode mixture is 3 mass% or more and 10 mass% or less. In D, it can be seen that a sufficient discharge capacity is obtained in each discharge state.

これは、質量平均分子量が370000以上で、1000000以下のポリフッ化ビニリデン(PVdF)の添加量が、正極合剤の質量に対して3質量%以上で10質量%以下であると、正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤、導電剤と正極集電体、正極集電体と正極活物質との密着性をそれぞれ十分に高めることができるためである。 When the mass average molecular weight is 370000 or more and the addition amount of 1 million or less polyvinylidene fluoride (PVdF) is 3% by mass or more and 10% by mass or less with respect to the mass of the positive electrode mixture, This is because the adhesion between a certain lithium iron phosphate (LiFePO 4 ) and a conductive agent, a conductive agent and a positive electrode current collector, and a positive electrode current collector and a positive electrode active material can be sufficiently increased.

なお、正極合剤中のPVdFの添加量を、正極合剤全体の質量に対して1質量%未満とした場合、結着剤の添加量が不足することにより、正極活物質であるリン酸鉄リチウム(LiFePO4)と導電剤、導電剤と正極集電体、正極集電体と正極活物質との密着性をそれぞれ十分に高めることができず、大きな放電容量も得られないようになる。このことから、正極合剤中に含まれる質量平均分子量が370000以上で、1000000以下のポリフッ化ビニリデン(PVdF)の添加量を正極合剤全体の質量に対して1質量%以上で、10質量%以下とするのが望ましいということができる。 In addition, when the addition amount of PVdF in the positive electrode mixture is less than 1% by mass with respect to the total mass of the positive electrode mixture, the addition amount of the binder is insufficient, so that iron phosphate that is the positive electrode active material Adhesiveness between lithium (LiFePO 4 ) and a conductive agent, a conductive agent and a positive electrode current collector, and a positive electrode current collector and a positive electrode active material cannot be sufficiently increased, and a large discharge capacity cannot be obtained. From this, the mass average molecular weight contained in the positive electrode mixture is 370000 or more, and the addition amount of 1 million or less polyvinylidene fluoride (PVdF) is 1% by mass or more and 10% by mass with respect to the total mass of the positive electrode mixture. It can be said that the following is desirable.

本発明の正極を用いた試験セルを模式的に示す図ある。It is a figure which shows typically the test cell using the positive electrode of this invention.

符号の説明Explanation of symbols

A,B,C,D,X,Y,Z…試験セル、10…試験セル容器、11…正極、12…負極、13…参照極、14…セパレータ、15…非水電解液
A, B, C, D, X, Y, Z ... test cell, 10 ... test cell container, 11 ... positive electrode, 12 ... negative electrode, 13 ... reference electrode, 14 ... separator, 15 ... non-aqueous electrolyte

Claims (2)

正極活物質としてリン酸鉄リチウムを含有する正極と、負極と、非水電解質とを備えた非水電解質電池であって、
前記正極は前記正極活物質と導電剤と結着剤とからなる正極合剤層が正極集電体上に形成されているとともに、
前記結着剤は平均分子量が370000以上で、1000000以下のポリフッ化ビニリデン(PVdF)を含有することを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode containing lithium iron phosphate as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
In the positive electrode, a positive electrode mixture layer composed of the positive electrode active material, a conductive agent, and a binder is formed on a positive electrode current collector,
The non-aqueous electrolyte battery characterized in that the binder contains polyvinylidene fluoride (PVdF) having an average molecular weight of 370000 or more and 1000000 or less.
前記ポリフッ化ビニリデンは正極合剤層の全体の質量に対して1質量%以上で、10質量%以下であることを特徴とする請求項1に記載の非水電解質電池。
The non-aqueous electrolyte battery according to claim 1, wherein the polyvinylidene fluoride is 1% by mass or more and 10% by mass or less based on the total mass of the positive electrode mixture layer.
JP2004088595A 2004-03-19 2004-03-25 Nonaqueous electrolyte battery Pending JP2005302300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088595A JP2005302300A (en) 2004-03-19 2004-03-25 Nonaqueous electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004080748 2004-03-19
JP2004088595A JP2005302300A (en) 2004-03-19 2004-03-25 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2005302300A true JP2005302300A (en) 2005-10-27

Family

ID=35333568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088595A Pending JP2005302300A (en) 2004-03-19 2004-03-25 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005302300A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001410T5 (en) 2006-06-16 2009-04-23 Sharp Kabushiki Kaisha Positive electrode, manufacturing method thereof, and lithium secondary battery using the same
JP2010086722A (en) * 2008-09-30 2010-04-15 Sony Corp Nonaqueous electrolyte battery
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
WO2011001666A1 (en) 2009-06-30 2011-01-06 パナソニック株式会社 Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102368557A (en) * 2011-11-01 2012-03-07 东莞新能源科技有限公司 Lithium ion battery and anode sheet thereof
US8577529B2 (en) 2009-06-02 2013-11-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
US9552930B2 (en) 2015-01-30 2017-01-24 Corning Incorporated Anode for lithium ion capacitor
US9607778B2 (en) 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
US9672992B2 (en) 2015-01-30 2017-06-06 Corning Incorporated Coke sourced anode for lithium ion capacitor
US9679704B2 (en) 2015-01-30 2017-06-13 Corning Incorporated Cathode for a lithium ion capacitor
US9779885B2 (en) 2012-11-09 2017-10-03 Corning Incorporated Method of pre-doping a lithium ion capacitor
US9911545B2 (en) 2015-01-30 2018-03-06 Corning Incorporated Phenolic resin sourced carbon anode in a lithium ion capacitor
CN111509223A (en) * 2020-04-17 2020-08-07 合肥国轩高科动力能源有限公司 Lithium ion battery anode binder and lithium ion battery anode slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260475A (en) * 1999-03-09 2000-09-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2003331840A (en) * 2002-05-15 2003-11-21 Toyota Central Res & Dev Lab Inc Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JP2004055493A (en) * 2002-07-24 2004-02-19 Sony Corp Positive electrode, and battery provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260475A (en) * 1999-03-09 2000-09-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2003331840A (en) * 2002-05-15 2003-11-21 Toyota Central Res & Dev Lab Inc Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JP2004055493A (en) * 2002-07-24 2004-02-19 Sony Corp Positive electrode, and battery provided with the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001410T5 (en) 2006-06-16 2009-04-23 Sharp Kabushiki Kaisha Positive electrode, manufacturing method thereof, and lithium secondary battery using the same
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2014075352A (en) * 2007-01-18 2014-04-24 Lg Chem Ltd Positive electrode active material and secondary battery including the same
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JP2010086722A (en) * 2008-09-30 2010-04-15 Sony Corp Nonaqueous electrolyte battery
US8577529B2 (en) 2009-06-02 2013-11-05 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
WO2011001666A1 (en) 2009-06-30 2011-01-06 パナソニック株式会社 Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
CN102368557A (en) * 2011-11-01 2012-03-07 东莞新能源科技有限公司 Lithium ion battery and anode sheet thereof
US9779885B2 (en) 2012-11-09 2017-10-03 Corning Incorporated Method of pre-doping a lithium ion capacitor
US9928969B2 (en) 2012-11-09 2018-03-27 Corning Incorporated Method of pre-doping a lithium ion capacitor
US9552930B2 (en) 2015-01-30 2017-01-24 Corning Incorporated Anode for lithium ion capacitor
US9672992B2 (en) 2015-01-30 2017-06-06 Corning Incorporated Coke sourced anode for lithium ion capacitor
US9679704B2 (en) 2015-01-30 2017-06-13 Corning Incorporated Cathode for a lithium ion capacitor
US9754734B2 (en) 2015-01-30 2017-09-05 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
US9653221B2 (en) 2015-01-30 2017-05-16 Corning Incorporated Method of making a carbon composition for an anode
US9911545B2 (en) 2015-01-30 2018-03-06 Corning Incorporated Phenolic resin sourced carbon anode in a lithium ion capacitor
US9607778B2 (en) 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
CN111509223A (en) * 2020-04-17 2020-08-07 合肥国轩高科动力能源有限公司 Lithium ion battery anode binder and lithium ion battery anode slurry

Similar Documents

Publication Publication Date Title
JP4286288B2 (en) Non-aqueous electrolyte battery
JP4696557B2 (en) Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP5164477B2 (en) Nonaqueous electrolyte secondary battery
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
JP2007200646A (en) Lithium secondary battery
US20060014076A1 (en) Non-aqueous electrolyte secondary battery
CN112490518B (en) Positive electrode lithium supplement additive, preparation method thereof, positive electrode and lithium ion battery
JP2006344509A (en) Lithium secondary battery
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
US10062924B2 (en) Lithium-ion secondary battery with a negative electrode containing vanadium
US10637048B2 (en) Silicon anode materials
JP7177277B2 (en) Electrodes for lithium secondary batteries
JP2005302300A (en) Nonaqueous electrolyte battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
KR100873578B1 (en) Anode active material for secondary battery with high capacity
JP4958405B2 (en) Nonaqueous electrolyte secondary battery
CN109075383B (en) Lithium ion secondary battery and battery pack
JP2009087946A (en) Lithium secondary cell
CN114586194B (en) Lithium ion battery and method for manufacturing lithium ion battery
JP2019160576A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706