JPH05180234A - Caulked joint structure of frp pipe - Google Patents

Caulked joint structure of frp pipe

Info

Publication number
JPH05180234A
JPH05180234A JP3203413A JP20341391A JPH05180234A JP H05180234 A JPH05180234 A JP H05180234A JP 3203413 A JP3203413 A JP 3203413A JP 20341391 A JP20341391 A JP 20341391A JP H05180234 A JPH05180234 A JP H05180234A
Authority
JP
Japan
Prior art keywords
pipe
joint
frp
joining
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3203413A
Other languages
Japanese (ja)
Inventor
Kaneo Hamashima
兼男 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3203413A priority Critical patent/JPH05180234A/en
Publication of JPH05180234A publication Critical patent/JPH05180234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enhance joint strength by preventing the orientational disorder of reinforced fiber in an FRP pipe in carrying out caulked jointing to the joint mate member with the FRP pipe heated and compressed. CONSTITUTION:Caulked jointing is carried out by using a joint mate member (whose joint section is made of a metallic yoke of a star-like cylinder, for example), the contour of the joint section (deformed cylindrical section) of which is made be warped circle shape having roughness or waves, and the length of the outer periphery of the cylindrical section is made be 100+1.5% of the inner periphery of a pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のプロペラシャ
フト等に利用できるFRP製パイプのかしめ接合構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a caulking joint structure of an FRP pipe which can be used for a propeller shaft of an automobile.

【0002】[0002]

【従来の技術】自動車のプロペラシャフトは、ミッショ
ンギヤとデファレンシャルギヤとを連結しエンジンの動
力を車輪に伝えるための駆動軸であり、極めて高い強
度、剛性が要求される部品である。プロペラシャフトに
は従来より特殊鋼製のシャフトが使用されてきたが、近
年、軽量化の要請から鋼、アルミニウムに比べ、比強度
(強度/重量)、比弾性率(弾性率/重量)の高い繊維
強化プラスチック(FRP;熱可塑性樹脂のFRPは特
にFRTPとも記される)製のプロペラシャフトを採用
することが検討されている。しかし、継手部品のように
高負荷を受ける部材については充分な剛性・強度を有す
る部品を繊維強化プラスチックで得るのは経済的理由な
どの点で無理である。そのため、繊維強化樹脂製プロペ
ラシャフトは、主軸部分をFRP製パイプとし、そして
継手部分を金属継手として、FRP製パイプの両端部に
金属継手を接合して製造されるのが普通である。
2. Description of the Related Art An automobile propeller shaft is a drive shaft for connecting a transmission gear and a differential gear to transmit the power of an engine to wheels, and is a component that requires extremely high strength and rigidity. Conventionally, special steel shafts have been used for propeller shafts, but in recent years, due to the demand for weight reduction, they have higher specific strength (strength / weight) and higher specific elastic modulus (elastic modulus / weight) than steel and aluminum. The adoption of a propeller shaft made of fiber reinforced plastic (FRP; FRP of thermoplastic resin is also referred to as FRTP) is being studied. However, for a member such as a joint component that is subjected to a high load, it is not possible to obtain a component having sufficient rigidity and strength from fiber reinforced plastic for economical reasons. Therefore, a fiber reinforced resin propeller shaft is usually manufactured by joining a metal joint to both ends of the FRP pipe, with the main shaft portion being an FRP pipe and the joint portion being a metal joint.

【0003】しかし、FRP製パイプと金属継手(ヨー
ク)の接合は容易ではなく、これまで以下のような接合
法が提案されている: (1) ヨークとパイプを接着剤により接着する方法(特開
昭64−108408号公報参照); (2) ヨークとパイプとの接合部に連通孔を形成し両者を
ボルト締結する方法(実開平1−91118、特開平2
−77322号参照); (3) パイプ成形時に両端に筒状の鋼を一体に包み込んで
成形し、この筒状鋼とヨークとを溶接する方法(実開昭
53−9378号参照); (4) 鋼パイプの両端を残し、中央部外周をFRPにて補
強し、パイプ端部にヨークを溶接する方法(特開昭53
−71244号参照); (5) FRTP製パイプの端部にヨークの異形筒部(完全
な円筒形ではない、例えば輪郭が正八角形の筒部)を挿
入した後、パイプを外側より加熱圧縮してマトリックス
樹脂を溶融変形させることにより接合する方法(特開昭
63−199914号参照)。
However, the joining of the FRP pipe and the metal joint (yoke) is not easy, and the following joining methods have been proposed so far: (1) Method of joining the yoke and the pipe with an adhesive (special feature (See Japanese Unexamined Patent Publication No. 64-108408); (2) A method in which a communication hole is formed in the joint portion between the yoke and the pipe and the two are bolted together (Actually 1-91118, Japanese Patent Laid-Open No. 1118).
(See No. 77322); (3) A method in which tubular steel is integrally wrapped at both ends at the time of forming a pipe and is formed, and the tubular steel and the yoke are welded together (see Japanese Utility Model Laid-Open No. 53-9378); ) A method in which both ends of the steel pipe are left, the outer periphery of the central portion is reinforced with FRP, and a yoke is welded to the end portion of the pipe (JP-A-53-53
(5) No. 71244); (5) After inserting a deformed cylindrical portion of the yoke (not a perfect cylindrical shape, for example, a regular octagonal cylindrical portion) into the end of the FRTP pipe, heat and compress the pipe from the outside. By melting and deforming the matrix resin to form a bond (see JP-A-63-199914).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記
(1)〜(5) の従来の接合法には、それぞれ以下のような
問題がある: (1)の接合法……接着剤層が強化繊維の無い樹脂単体で
あるため、耐熱性、強度等がFRPよりも劣る場合が多
く、接着剤層の強度に大きく左右され、特に熱影響下で
の強度に問題がある.例えば接着剤層が車両の下面に設
けられている排気管等から120 ℃を越えるような高温を
受けないように排気管をプロペラシャフトから遠ざける
等、自動車に無理な設計を必要とし、採用困難な場合が
多い; (2)の接合法……接着剤を用いないので (1)におけるよ
うな耐熱性の問題は無いが、FRP材料は異方性が強
く、特定方向でのノッチ感受性が高いため、材料強度上
問題がある.具体的には大応力負荷時に、FRPのボル
ト穴部よりクラックが発生する危険がある; (3)及び(4) の接合法……一体成形によりFRPパイプ
の端部に設けられた鋼部分に金属継手を溶接するため、
(1)(2)のような接合部位での耐熱性・強度の問題は無い
と言えるが、FRP部の近傍で溶接が行われるため、少
なからず熱影響でFRPを劣化させる恐れがある.この
熱劣化を回避するためにはFRP部を溶接部から遠ざけ
る必要があるが、それにより結果的にパイプの鋼部分が
多くなって軽量化効果が少なくなる; (5)の接合法……上記(1) 〜(4) の接合法に見られる問
題が無く、操作自体も比較的簡便であるので、有用性の
高い接合法と考えられるが、FRTPパイプを外周から
加熱圧縮して接合する際に、同部位においてFRTPパ
イプの直径は僅かであるが小さくなるので、接合部位の
強化繊維の配向が乱れ、繊維のミクロな蛇行、場合によ
り座屈破壊が生じる.こうした繊維の配向の乱れによっ
て接合強度が低下する。
[Problems to be Solved by the Invention]
Each of the conventional joining methods (1) to (5) has the following problems: The joining method of (1): Heat resistance and strength because the adhesive layer is a resin alone without reinforcing fibers. Etc. are often inferior to FRP, and are greatly affected by the strength of the adhesive layer, and there is a problem in strength especially under the influence of heat. For example, it is difficult to adopt because the adhesive layer requires an unreasonable design for the automobile, such as keeping the exhaust pipe away from the propeller shaft so that it does not receive a high temperature exceeding 120 ° C from the exhaust pipe provided on the lower surface of the vehicle. In many cases; (2) Joining method ... Since no adhesive is used, there is no problem of heat resistance as in (1), but FRP material has strong anisotropy and high notch sensitivity in a specific direction. , There is a problem in material strength. Specifically, there is a danger that cracks will occur from the FRP bolt hole when a large stress is applied; (3) and (4) joining methods: Steel parts provided at the end of the FRP pipe by integral molding. For welding metal fittings,
Although it can be said that there is no problem of heat resistance and strength at the joint part like (1) and (2), since welding is performed near the FRP part, there is a possibility that FRP will be deteriorated due to heat influence to some extent. In order to avoid this heat deterioration, it is necessary to keep the FRP part away from the welded part, but as a result, the steel part of the pipe increases and the weight reduction effect decreases. (5) Joining method ...... Above Since there are no problems found in the joining methods of (1) to (4) and the operation itself is relatively simple, it is considered to be a highly useful joining method, but when joining FRTP pipes by heat compression from the outer periphery In addition, since the diameter of the FRTP pipe becomes small at the same portion, the orientation of the reinforcing fiber at the joining portion is disturbed, causing micro meandering of the fiber and, in some cases, buckling failure. The disorder of the orientation of the fibers reduces the bonding strength.

【0005】本発明は、上記問題を解決する目的で為さ
れたものであり、その解決しようとする課題は、繊維強
化樹脂製パイプを加熱圧縮して他部材へかしめ接合する
に際し、繊維強化樹脂中の強化繊維の配向を乱すことな
く、FRP製パイプを他部材に良好に接合できるかしめ
接合構造を提供することにある。
The present invention has been made for the purpose of solving the above-mentioned problems, and the problem to be solved is to solve the problem of fiber-reinforced resin when heat-compressing a fiber-reinforced resin pipe and caulking it to another member. An object of the present invention is to provide a crimped joint structure capable of favorably joining an FRP pipe to another member without disturbing the orientation of the reinforcing fibers inside.

【0006】[0006]

【課題を解決するための手段】本発明のFRP製パイプ
のかしめ接合構造は、FRP製パイプの端部に、接合相
手部材の異形筒部(相手部材の接合部)を挿入した後、
加熱すると共にパイプの端部を外側から押圧してFRP
製パイプと接合相手部材をかしめ接合してなる構造にお
いて、相手部材の異形筒部の輪郭を凹凸ないし波形のあ
る歪んだ円形状とし且つ該筒部の外周長を上記パイプの
内周長の100±1.5%としたことを特徴とする。
According to the caulking joint structure of a FRP pipe of the present invention, after the deformed tubular portion of the joint mating member (the joint portion of the mating member) is inserted into the end portion of the FRP pipe,
FRP by heating and pressing the end of the pipe from the outside
In a structure in which a pipe to be joined and a mating member are caulked and joined, the deformed tubular portion of the mating member has an irregular or wavy distorted circular shape, and the outer circumferential length of the tubular portion is 100 times the inner circumferential length of the pipe. The feature is that it is ± 1.5%.

【0007】ここで「筒部の外周長」とは、筒部の外周
面の一回りの寸法を意味し、「パイプの内周長」とは、
パイプの内周面の一回りの寸法を意味する。接合相手部
材の異形筒部の輪郭が従来のように正多角形では、筒部
の外周長を上記パイプの内周長の100±1.5%とす
ることはできない(敢えて略同一寸法にしようとすると
正多角形の筒部がパイプ内に挿入できなくなる)。本発
明は、FRP製パイプの接合部と相手部材の接合部の夫
々の内周長と外周長を略同一寸法にするには相手部材の
接合部すなわち異形筒部の断面(軸方向に垂直な断面)
の輪郭を凹凸ないし波形のある歪んだ円形状とすればよ
いこと、及びそのようにして接合された部品は接合強度
・耐久性に優れることを見い出して完成されたものであ
る。
Here, the "outer peripheral length of the tubular portion" means a dimension of the outer peripheral surface of the tubular portion, and the "inner peripheral length of the pipe" is
It means the size of the circumference of the inner surface of the pipe. If the contour of the deformed cylindrical portion of the mating member is a regular polygon as in the conventional case, the outer peripheral length of the cylindrical portion cannot be 100 ± 1.5% of the inner peripheral length of the pipe (there should be the same dimensions. And then the regular polygonal cylinder cannot be inserted into the pipe). According to the present invention, in order to make the inner peripheral length and the outer peripheral length of the joint portion of the FRP pipe and the joint portion of the mating member substantially the same, the cross section of the mating member of the mating member, that is, the deformed tubular portion (perpendicular to the axial direction cross section)
The present invention has been completed by finding that the contour of the above-mentioned article should be formed into a concavo-convex shape or a distorted circular shape with a corrugation, and that the parts thus joined together are excellent in joining strength and durability.

【0008】相手部材の接合部の外周長がFRP製パイ
プの内周長の100±1.5%の範囲でなければならな
い理由は次の通りである:101.5%を越える場合 …相対的にかしめ変形時のF
RP製パイプに無理に引っ張られる部分が生じるので、
強化繊維の突っ張り、繊維の層間すべりが発生し、繊維
配向が乱れる。同時に、ボイド等の欠陥が導入されるこ
とによる強度低下と、パイプ接合部外形のR(表面の曲
率半径)が小さくなることによる強度低下が発生する。98.5%未満である場合 …加熱圧縮によるパイプ収縮
量が大きくなるので、FRP中の強化繊維が弛み、繊維
の座屈、蛇行が発生し、また層間すべりも発生する。こ
のような繊維配向の乱れで、FRP材料の強度特性が低
下する。
The reason why the outer peripheral length of the joint of the mating members must be within the range of 100 ± 1.5% of the inner peripheral length of the FRP pipe is as follows: When it exceeds 101.5% ... Relative F when deformed
Since there is a part that is forcibly pulled in the RP pipe,
Stretching of reinforcing fibers and inter-slip of fibers occur, and the fiber orientation is disturbed. At the same time, a decrease in strength occurs due to the introduction of defects such as voids, and a decrease in strength occurs due to the decrease in R (radius of curvature of the surface) of the outer shape of the pipe joint. When it is less than 98.5% ... Since the amount of pipe shrinkage due to heating and compression increases, the reinforcing fibers in the FRP become loose, buckling and meandering of the fibers occur, and inter-layer slip also occurs. Due to such disorder of the fiber orientation, the strength characteristics of the FRP material deteriorate.

【0009】接合相手部材の材質は、各種鋼、鉄系合
金、アルミ系合金、チタン系合金、或はFRP等であっ
て良い。この場合、少なくともFRPパイプを加熱圧縮
接合する際に変形等の生じない材質でなければならな
い。相手部材の接合部(異形筒部)の形状、即ち上記の
「輪郭が凹凸ないし波形のある歪んだ円形状」には、極
めて多様な形状が含まれると理解されるべきである。そ
のような形状として例えば下記実施例で説明する星状形
や、図7(a) 〜(c) に示すような冠形、へこみ円形等が
挙げられる。
The material of the joining mating member may be various steels, iron-based alloys, aluminum-based alloys, titanium-based alloys, FRP or the like. In this case, at least the FRP pipe must be made of a material that will not be deformed when it is heat-compression bonded. It should be understood that the shape of the joint portion (the deformed cylindrical portion) of the mating member, that is, the above-mentioned “distorted circular shape having an uneven contour or a wavy shape” includes a wide variety of shapes. Examples of such shapes include a star shape described in the following embodiments, a crown shape as shown in FIGS. 7 (a) to 7 (c), and an indented circle.

【0010】本発明で使用されるパイプ材料のFRP
は、マトリックス樹脂がポリエチレンテレフタレート
(PET)、ポリエーテルエーテルケトン(PEE
K)、高密度ポリエチレン(HDPE)、ポリスチレン
(PS)、スチレン・アクリロニトリル共重合樹脂(S
AN)、ポリカーボネート(PC)等の熱可塑性樹脂で
あるFRP(即ちFRTP:Fiber reiforced thermopl
astic resin)でも、またマトリックス樹脂が不飽和ポリ
エステル樹脂(UP)、エポキシ樹脂(EP)、フェノ
ール樹脂(PF)等の熱硬化性樹脂であるFRPでもよ
い。しかし、硬化状態で保管し接合時に加熱軟化させる
パイプとし得る点で、熱可塑性樹脂のFRP(=FRT
P)が好ましい。
FRP of pipe material used in the present invention
The matrix resin is polyethylene terephthalate (PET), polyether ether ketone (PEE)
K), high density polyethylene (HDPE), polystyrene (PS), styrene-acrylonitrile copolymer resin (S
FRP (Fiber reiforced thermopl), which is a thermoplastic resin such as AN) and polycarbonate (PC)
astic resin) or the matrix resin may be FRP, which is a thermosetting resin such as unsaturated polyester resin (UP), epoxy resin (EP), and phenol resin (PF). However, because it can be used as a pipe that is stored in the cured state and softened by heating when joining, it is possible to use FRP (= FRT) of thermoplastic resin.
P) is preferred.

【0011】FRPの強化繊維としては、この分野で多
用されているガラス繊維、炭素繊維が使用できるのは勿
論、必要な強度を有するFRP成形体を生じさせること
のできる繊維であれば他の無機又は有機繊維、例えばシ
リカ繊維、アラミド繊維(ケブラー繊維)、金属繊維等
も使用できる。また各種繊維をハイブリッドしたもので
あっても良い。FRP製パイプは、いわゆるフィラメン
トワインディング法で製造されたものを用いるのが、強
度の点で好ましい。
As the reinforcing fiber of FRP, glass fiber and carbon fiber, which are widely used in this field, can be used, and other inorganic materials can be used as long as they can produce an FRP molded product having required strength. Alternatively, organic fibers such as silica fibers, aramid fibers (Kevlar fibers), metal fibers and the like can be used. It may also be a hybrid of various fibers. As the FRP pipe, it is preferable to use a pipe manufactured by a so-called filament winding method in terms of strength.

【0012】[0012]

【作用】FRP製パイプに挿入される接合相手部材の異
形筒部の輪郭を凹凸ないし波形のある歪んだ円形状にす
ることは、異形筒部の外周長とFRP製パイプの内周長
を略同一長さにすることを可能にする。相手部材の接合
部の外周長とFRP製パイプの内周長が略同一長さであ
ると、かしめ変形させるパイプに過度の伸縮が強要され
ない。従ってかしめ後における繊維の配向に乱れが少な
く、FRP材料の強度低下が起こらない。そのため接合
相手部材とFRP製パイプは強固に接合する。
By making the contour of the deformed cylindrical portion of the mating member to be inserted into the FRP pipe into a concavo-convex or corrugated distorted circular shape, the outer peripheral length of the deformed cylindrical portion and the inner peripheral length of the FRP pipe are made substantially Allows for the same length. When the outer peripheral length of the joint portion of the mating member and the inner peripheral length of the FRP pipe are substantially the same length, excessive expansion and contraction of the pipe to be caulked and deformed is not required. Therefore, the fiber orientation after caulking is less disturbed, and the strength of the FRP material is not reduced. Therefore, the joining partner member and the FRP pipe are firmly joined.

【0013】[0013]

【実施例】【Example】

実施例1 本実施例では、図3〔 (a)は側面図、 (b)は正面図〕に
示すようなFRTP製パイプ2の両端部に、図4〔 (a)
は側面図、(b) はB−B線断面図、 (c)は斜視図〕に示
すような金属製ヨーク3,3を接合して、図1に示すよ
うなFRTP製主軸部分2と金属製継手部分3,3とか
らなる自動車用プロペラシャフト1を製造する。
Example 1 In this example, as shown in FIG. 3 [(a) is a side view and (b) is a front view], both ends of the FRTP pipe 2 are provided with
Is a side view, (b) is a cross-sectional view taken along the line BB, and (c) is a perspective view). The metal yokes 3 and 3 as shown in FIG. The propeller shaft 1 for an automobile including the joint parts 3 and 3 is manufactured.

【0014】ここで使用されるFRTP製パイプの形状
材質等は次の通りである:パイプ諸寸法 :内径75.0mm、外径81.0mm、
長さ800mm、肉厚3mm、内周長235.6mm;強化用繊維 :直径7μmの長炭素繊維(東レ株式会社製
「T−300」);マトリックス樹脂 :ポリエチレンテレフタレート:PE
T(出光石油化学株式会社製「タフエイト」,融点22
0℃);繊維配向 :パイプの中心軸に対し、+45゜と−45゜
方向の交互配向;繊維体積率 :Vf=55%;成形方法 :上記繊維及び樹脂を予めテープ状に成形した
プリプレグを作成し、このプリプレグテープを加熱して
樹脂を溶融し、繊維が蛇行しないように一定張力を加え
ながらマンドレルに巻き付けるフィラメントワインディ
ング法。
The shape and material of the FRTP pipe used here are as follows: Various pipe dimensions : inner diameter 75.0 mm, outer diameter 81.0 mm,
Length 800 mm, wall thickness 3 mm, inner circumference length 235.6 mm; reinforcing fiber : long carbon fiber with a diameter of 7 μm (“T-300” manufactured by Toray Industries, Inc.); matrix resin : polyethylene terephthalate: PE
T (“Tough Eight” manufactured by Idemitsu Petrochemical Co., Ltd., melting point 22)
0 ° C.); Fiber orientation : Alternate orientation in + 45 ° and −45 ° directions with respect to the central axis of the pipe; Fiber volume ratio : Vf = 55%; Molding method : A prepreg obtained by previously molding the above fibers and resin into a tape shape. A filament winding method in which this prepreg tape is heated to melt the resin and is wound around a mandrel while applying constant tension so that the fibers do not meander.

【0015】上記FRTP製パイプに接合されるヨーク
(継手)は鋳鋼製であり、一般的なプロペラシャフトの
ヨークであるが、パイプとの接合部となる筒部はその断
面が星状形となるように機械加工が施され、所定の寸法
に仕上げてある。筒部の外周長は235.3mmであ
り、パイプ内周長235.6mmと略同一長さである。
筒部の外接円の直径は74.9mmとなっているので、
パイプ内へ支障なく挿入できる。
The yoke (joint) to be joined to the FRTP pipe is made of cast steel and is a yoke of a general propeller shaft, but the tubular portion to be joined to the pipe has a star-shaped cross section. It has been machined and finished to the specified dimensions. The outer peripheral length of the cylindrical portion is 235.3 mm, which is substantially the same as the pipe inner peripheral length 235.6 mm.
Since the diameter of the circumscribed circle of the cylinder is 74.9 mm,
Can be inserted into the pipe without any problem.

【0016】接合するに当たっては、図5に示すように
100℃に予熱したFRTP製パイプ2の両端部へ25
0℃に加熱した金属製ヨーク3を挿入し、続いて250
℃に加熱した圧縮用金型6,6…により外周からパイプ
2を圧縮変形させてヨーク3にかしめ接合し、図1に示
すようなプロペラシャフト1を製造した。なお、圧縮成
形時にはFRTPパイプ2の接合部は240℃まで昇温
しており、マトリックス樹脂は溶融していた。パイプの
その他の部位は100℃を保っており、実質的に変形等
は見られなかった。
In joining, as shown in FIG. 5, 25 to both ends of the FRTP pipe 2 preheated to 100 ° C.
Insert the metal yoke 3 heated to 0 ° C, then 250
The pipe 2 was compressed and deformed from the outer periphery by the compression dies 6, 6 heated to ℃ and caulked to the yoke 3 to manufacture the propeller shaft 1 as shown in FIG. In addition, at the time of compression molding, the joint portion of the FRTP pipe 2 was heated to 240 ° C., and the matrix resin was melted. The other parts of the pipe were maintained at 100 ° C., and substantially no deformation or the like was observed.

【0017】こうして製作されたプロペラシャフトの接
合部の断面状態を見ると、図2に示すようにFRTP製
パイプ2は金属製ヨーク3の星状形筒部3aに完全に添
うように変形しており、この変形したパイプ2中の繊維
4は、従来とは異なり適正に樹脂5と複合されていた。
その理由は、接合されるFRTP製パイプ2と金属製ヨ
ーク3の夫々の内周長と外周長が略同一寸法に設定され
ていたことにより、縮成形接合時にFRTP製パイプ2
の過度の収縮が防止され、強化繊維4が緩むことなく蛇
行、座屈等を起こさなかった為であると判った。
Looking at the cross-sectional state of the joint portion of the propeller shaft thus manufactured, as shown in FIG. 2, the FRTP pipe 2 is deformed so as to completely fit the star-shaped cylindrical portion 3a of the metal yoke 3. However, the fibers 4 in the deformed pipe 2 were properly combined with the resin 5 unlike the conventional one.
The reason is that the inner peripheral length and the outer peripheral length of the FRTP pipe 2 and the metal yoke 3 to be joined are set to be substantially the same, so that the FRTP pipe 2 at the time of compression molding joining is performed.
It was found that the excessive shrinkage was prevented and the reinforcing fiber 4 did not loosen and did not meander or buckle.

【0018】比較例 ヨークの接合部形状を異にする以外は実施例1と全く同
じ形状のプロペラシャフトを製造した。ヨーク接合部の
断面形状は、直径74.9mmの円に内接する正八角形
である。該ヨークに実施例1と同要領にて加熱圧縮成形
によりパイプを接合して得られたプロペラシャフトの接
合部の捩り強度を調査したところ、実施例1のものより
もかなり低強度であることが分かった(図6参照)。こ
のプロペラシャフトでは、パイプの内周長は実施例1と
同じ235.6mmであるが、ヨーク接合部の外周長は
229.6mmであるので、パイプ内周長に対するヨー
ク接合部外周長は97.5%となり、圧縮成形時にパイ
プの周方向に2.5%ほど繊維の弛みが発生する。事
実、接合部のパイプ断面形状を詳細に調査したところ、
図8に示すようにヨーク3の正八角形筒部3bにかしめ
接合されたFRTP製パイプ2中の強化繊維4が弛んで
座屈、蛇行しており、この緩みが材料強度の低下の原因
になっていることが分かった。
Comparative Example A propeller shaft having exactly the same shape as that of Example 1 was manufactured except that the shape of the joining portion of the yoke was different. The cross section of the yoke joint is a regular octagon inscribed in a circle having a diameter of 74.9 mm. When the torsional strength of the joint portion of the propeller shaft obtained by joining the pipe to the yoke by heat compression molding in the same manner as in Example 1 was investigated, it was found to be considerably lower than that in Example 1. Okay (see Figure 6). In this propeller shaft, the inner peripheral length of the pipe is 235.6 mm, which is the same as that of the first embodiment, but the outer peripheral length of the yoke joint is 229.6 mm. Therefore, the outer peripheral length of the yoke joint with respect to the inner peripheral length of the pipe is 97. This is 5%, and fiber slackening occurs in the circumferential direction of the pipe by about 2.5% during compression molding. In fact, when we investigated the pipe cross-sectional shape of the joint in detail,
As shown in FIG. 8, the reinforcing fiber 4 in the FRTP pipe 2 caulked and joined to the regular octagonal tube portion 3b of the yoke 3 loosens and buckles or meanders, and this looseness causes a decrease in material strength. I found out.

【0019】実施例2 接合部形状を異にする様々なヨークを用いて、9種のプ
ロペラシャフトを製造し、それらの接合強度(捩り強
度)を比較評価した。なお、ヨークにかしめ接合するパ
イプ及び接合方法は実施例1と同様である。各ヨークの
接合部断面形状はいずれも星状形(頂点を直線で結ぶと
正八角形となる星状形)であるが、それらの星状形の一
辺はφ57mm,φ61mm,φ64mm,φ69m
m,φ75mm,φ86mm,φ95mm,φ115m
m,φ150mmの円弧形と各ヨークごとに異なってい
る。従って接合部の外周長は各ヨーク毎に異なり、パイ
プ内周長に対する比率は夫々102%,101.5%,
101%,100.5%,100%,99.5%,99
%,98.5%,98%に相当する。
Example 2 Nine kinds of propeller shafts were manufactured by using various yokes having different joint shapes, and their joint strengths (torsional strengths) were comparatively evaluated. The pipe for caulking and joining the yoke and the joining method are the same as in the first embodiment. The cross-sectional shape of each joint of each yoke is a star shape (a star shape that becomes a regular octagon when the vertices are connected by a straight line), but one side of these star shapes is φ57 mm, φ61 mm, φ64 mm, φ69 m
m, φ75 mm, φ86 mm, φ95 mm, φ115 m
m, φ150 mm arc-shaped and different for each yoke. Therefore, the outer peripheral length of the joint differs for each yoke, and the ratio to the inner peripheral length of the pipe is 102%, 101.5%,
101%, 100.5%, 100%, 99.5%, 99
%, 98.5%, 98%.

【0020】以上のように、接合時の強化繊維の弛み量
が変化するように設定して得られた各種プロペラシャフ
トの接合部捩じり強度を比較した結果を図6に示す。パ
イプ接合部の内周長に対してヨーク接合部の外周長が1
00%を越える場合は、パイプの接合成形時に強化繊維
が引っ張られ、100%未満の場合は強化繊維が弛む傾
向にある。図6から明らかなように、パイプ内周長に対
する星状形ヨーク接合部の外周長の比率が100±1%
の範囲では高強度がほぼ一定に保たれ、それを越えると
強度が徐々に低下し、100±1.5%を越えると急激
な強度低下が見られる。このことから、パイプ内周長に
対する星状形外周長の比率は100±1.5%以内、特
に100±1%以内が好ましいことが判る。
FIG. 6 shows the results of comparing the torsional strength of the joints of various propeller shafts obtained by setting the amount of slackening of the reinforcing fibers at the time of joining as described above. The outer circumference of the yoke joint is 1 relative to the inner circumference of the pipe joint.
When it exceeds 100%, the reinforcing fibers tend to be pulled during the joint molding of the pipe, and when it is less than 100%, the reinforcing fibers tend to loosen. As is clear from FIG. 6, the ratio of the outer peripheral length of the star-shaped yoke joint to the inner peripheral length of the pipe is 100 ± 1%.
In the range of 1, the high strength is kept almost constant, and when it exceeds it, the strength gradually decreases, and when it exceeds 100 ± 1.5%, a sharp decrease in strength is observed. From this, it is understood that the ratio of the star-shaped outer circumference to the pipe inner circumference is preferably within 100 ± 1.5%, particularly preferably within 100 ± 1%.

【0021】上記実施例では、プロペラシャフトのヨー
クとFRTPパイプの接合の場合を示したが、本発明は
これに限定されることはなく、接合相手部材の外周にF
RP製パイプを嵌め込み、加熱圧縮することにより得ら
れる各種の接合製品・部品に適用できる。接合相手部材
とFRP製パイプの形状は特に限定されるものではな
く、基本的には接合相手部材の外周長と、FRP製パイ
プの開口部内周長が所定の範囲であればよい。かしめ接
合時(加熱圧縮時)のFRP製パイプの均一な変形を考
慮したものであれば更に好ましい。
In the above embodiment, the case where the yoke of the propeller shaft and the FRTP pipe are joined has been shown, but the present invention is not limited to this, and the F on the outer periphery of the mating member.
It can be applied to various bonded products and parts obtained by fitting RP pipes and heating and compressing. The shapes of the joining partner member and the FRP pipe are not particularly limited, and basically, the outer circumference length of the joining partner member and the inner circumference length of the opening of the FRP pipe may be within a predetermined range. It is more preferable that the uniform deformation of the FRP pipe at the time of caulking (when heated and compressed) is taken into consideration.

【0022】[0022]

【発明の効果】本発明のかしめ接合構造によれば、FR
P製パイプに接合される相手部材の接合部を特定の形
状、外周長とすることによって、かしめ変形されるFR
P製パイプ中の強化繊維の配向の乱れ(蛇行、座屈)が
防止されるので、FRP材料の強度低下が起こらず、従
来のかしめ接合構造に比べ、一段と高い接合強度を示
す。また接着剤、ボルト締結、溶接等による接合に比べ
接合方法が簡単で、量産向きである。
According to the crimped joint structure of the present invention, FR
FR which is caulked and deformed by making the joint part of the mating member joined to the P pipe have a specific shape and outer peripheral length
Since the disturbance of the orientation of the reinforcing fibers in the P pipe (meandering, buckling) is prevented, the strength of the FRP material does not decrease and the joint strength is much higher than that of the conventional caulking joint structure. In addition, the joining method is simpler than joining by means of an adhesive, bolt fastening, welding, etc., and is suitable for mass production.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例のかしめ接合構造を有するプロペラシ
ャフトを示す斜視図である。
FIG. 1 is a perspective view showing a propeller shaft having a caulking joint structure according to an embodiment.

【図2】該プロペラシャフトの接合部を示す部分断面図
である。
FIG. 2 is a partial cross-sectional view showing a joint portion of the propeller shaft.

【図3】一実施例に係るプロペラシャフトの主軸部分と
なるFRP製パイプを示す図である。
FIG. 3 is a view showing an FRP pipe which is a main shaft portion of a propeller shaft according to an embodiment.

【図4】該FRP製パイプにかしめ接合される金属製ヨ
ークを示す図である。
FIG. 4 is a view showing a metal yoke which is caulked and joined to the FRP pipe.

【図5】一実施例に係るかしめ接合方法の説明図であ
る。
FIG. 5 is an explanatory diagram of a caulking joining method according to an embodiment.

【図6】接合されるヨーク・パイプの外周長/内周長比
率と、接合して得られたプロペラシャフトの捩り強度と
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the outer peripheral length / inner peripheral length ratio of the joined yoke pipe and the torsional strength of the propeller shaft obtained by joining.

【図7】FRP製パイプに対して適する接合部の断面形
状の例を示す図である。
FIG. 7 is a diagram showing an example of a cross-sectional shape of a joint suitable for an FRP pipe.

【図8】従来のプロペラシャフトの接合部を示す部分断
面図である。
FIG. 8 is a partial cross-sectional view showing a joint portion of a conventional propeller shaft.

【符号の説明】 1 プロペラシャフト 2 FRTP製パイプ(主軸部分) 3 金属製ヨーク(継手部分) 4 強化繊維[Explanation of symbols] 1 Propeller shaft 2 FRTP pipe (spindle part) 3 Metal yoke (joint part) 4 Reinforcing fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16C 3/02 9242−3J F16D 3/26 X 8012−3J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F16C 3/02 9242-3J F16D 3/26 X 8012-3J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 FRP製パイプの端部に、接合相手部材
の異形筒部を挿入した後、加熱すると共にパイプの端部
を外側から押圧してFRP製パイプと接合相手部材をか
しめ接合してなる構造において、接合相手部材の異形筒
部の輪郭を凹凸ないし波形のある歪んだ円形状とし且つ
該筒部の外周長を上記パイプの内周長の100±1.5
%としたことを特徴とするFRP製パイプのかしめ接合
構造。
1. A deformed tubular portion of a joining partner member is inserted into an end portion of a FRP pipe, and after heating, the end portion of the pipe is pressed from the outside to caulkly join the FRP pipe and the joining partner member. In the structure described above, the contour of the deformed cylindrical portion of the joining partner member has a concavo-convex or corrugated and distorted circular shape, and the outer peripheral length of the cylindrical portion is 100 ± 1.5 of the inner peripheral length of the pipe.
The crimped joint structure of the FRP pipe characterized in that
JP3203413A 1991-07-19 1991-07-19 Caulked joint structure of frp pipe Pending JPH05180234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203413A JPH05180234A (en) 1991-07-19 1991-07-19 Caulked joint structure of frp pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203413A JPH05180234A (en) 1991-07-19 1991-07-19 Caulked joint structure of frp pipe

Publications (1)

Publication Number Publication Date
JPH05180234A true JPH05180234A (en) 1993-07-20

Family

ID=16473665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203413A Pending JPH05180234A (en) 1991-07-19 1991-07-19 Caulked joint structure of frp pipe

Country Status (1)

Country Link
JP (1) JPH05180234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089580A (en) * 2000-07-31 2002-03-27 General Electric Co <Ge> Mechanical coupling for cooperating rotatable members
JP2016173157A (en) * 2015-03-17 2016-09-29 株式会社ショーワ Power transmission shaft
CN106985417A (en) * 2017-04-18 2017-07-28 浙江理工大学 A kind of carbon fiber weaves the interface connecting method of multiple tube
JP2020139531A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Manufacturing method of power transmission shaft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089580A (en) * 2000-07-31 2002-03-27 General Electric Co <Ge> Mechanical coupling for cooperating rotatable members
JP2016173157A (en) * 2015-03-17 2016-09-29 株式会社ショーワ Power transmission shaft
CN106985417A (en) * 2017-04-18 2017-07-28 浙江理工大学 A kind of carbon fiber weaves the interface connecting method of multiple tube
JP2020139531A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Manufacturing method of power transmission shaft
WO2020174700A1 (en) * 2019-02-27 2020-09-03 株式会社ショーワ Power transmission shaft and method for manufacturing power transmission shaft

Similar Documents

Publication Publication Date Title
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
US4664644A (en) Fiber reinforced plastic drive shaft and method of manufacturing thereof
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
US4248062A (en) Drive shaft assembly and method for making same
US4238539A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a knurl interlock
US4421497A (en) Fiber-reinforced drive shaft
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
CA1148484A (en) Reinforced tubular structure and method of fabrication thereof
US20180100538A1 (en) Fibre Reinforced Polymer Matrix Composite Torque Tubes or Shafts
US5851152A (en) Drive shaft with reinforced plastic tube and a joint-connecting body connected nonrotatably endwise
US4030754A (en) Composite lightweight wheel rim
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
JPH0242681B2 (en)
US20110192528A1 (en) Process for producing tube member made of fiber-reinforced resin
JPS6352251B2 (en)
GB2051303A (en) Fibre-reinforced composite shaft with metallic connector sleeves
GB2127938A (en) Method of forming a composite drive shaft tube
JPH05180234A (en) Caulked joint structure of frp pipe
US7143510B2 (en) Method of fabricating a shaft assembly
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
JP2007271079A (en) Torque transmission shaft
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
JPH0791433A (en) Propeller shaft and its manufacture
JPS5932504A (en) Frp wheel rim