JP2007271079A - Torque transmission shaft - Google Patents

Torque transmission shaft Download PDF

Info

Publication number
JP2007271079A
JP2007271079A JP2007055239A JP2007055239A JP2007271079A JP 2007271079 A JP2007271079 A JP 2007271079A JP 2007055239 A JP2007055239 A JP 2007055239A JP 2007055239 A JP2007055239 A JP 2007055239A JP 2007271079 A JP2007271079 A JP 2007271079A
Authority
JP
Japan
Prior art keywords
frp
body cylinder
main body
joint member
torque transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055239A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kawanomoto
靖之 川野元
Yasushi Iida
靖 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007055239A priority Critical patent/JP2007271079A/en
Publication of JP2007271079A publication Critical patent/JP2007271079A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque transmission shaft for sufficiently developing a further lighter weight while satisfying basic requirements including torsional strength and a risky rotating speed, having improved productivity. <P>SOLUTION: The torque transmission shaft comprises a FRP body cylinder, and a FRP joint member provided at the end of the body cylinder, the body cylinder and the FRP joint member being connected to each other via a metal connection element. On one single surface thereof, a serration is formed for press-in joint to the FRP body cylinder. On the other single surface, an irregular-shape engaging portion is formed for connection to the FRP joint member. The irregular shape is preferably a tooth shape in which a tooth height is three-ten times a serration tooth height and a tooth pitch is three-ten times a serration pitch. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、動力を伝達するために用いられるトルク伝達軸に関するものである。   The present invention relates to a torque transmission shaft used for transmitting power.

近年、運転効率の向上や環境保全といった観点から動力伝達部分の軽量化が強く望まれているが、それを達成する一つの手段としてトルク伝達軸のFRP(繊維強化プラスチック)化が検討され、一部で既に採用されるに至っている。そのようなFRP製トルク伝達軸は、FRP製の円筒状本体筒と、この本体の各端部に接合して設けた金属製継手とを有している。   In recent years, weight reduction of the power transmission part has been strongly demanded from the viewpoints of improving driving efficiency and environmental conservation. As one means for achieving this, the use of FRP (fiber reinforced plastic) for the torque transmission shaft has been studied. Has already been adopted by the department. Such a torque transmission shaft made of FRP has a cylindrical main body tube made of FRP and a metal joint provided by being joined to each end of the main body.

ところで、パワープラントにおけるトルク軸は、エンジンやモーターで発生するトルクを駆動側に伝達するものであるから、1,000〜5,000Nm程度の捩り強度を必要とする。また、高速回転時に共振を起こさないよう、危険回転数が5,000〜12,000rpm程度であることも要求される。そのため、これらの基本的要求が満たされるよう、FRP製の円筒状本体筒は、補強繊維の種類、含有量や、補強繊維の配列方向、層構成や、外径、内径、肉厚等のパラメータを考慮した設計がなされる。たとえば、補強繊維の配列方向の選定には、次のようなことが考慮される。すなわち、主として捩り強度に関しては、補強繊維を本体筒の軸方向に対して±45゜の角度で配列するのが最も効果的であるが、主として捩り座屈強度に関しては、軸方向に対して±80〜90゜の角度で配列するのが最も効果的である。また、主として危険回転数に関しては、補強繊維を可能な限り軸方向に配列してその軸方向における曲げ弾性率を大きくし、高い曲げ共振周波数が得られるようにする。   By the way, the torque shaft in the power plant transmits torque generated by the engine or motor to the drive side, and therefore requires a torsional strength of about 1,000 to 5,000 Nm. Further, it is also required that the critical rotational speed is about 5,000 to 12,000 rpm so that resonance does not occur during high-speed rotation. Therefore, in order to satisfy these basic requirements, the FRP cylindrical body cylinder is made of parameters such as the type and content of reinforcing fibers, the arrangement direction of reinforcing fibers, the layer configuration, outer diameter, inner diameter, and wall thickness. The design is taken into consideration. For example, the following is considered in selecting the arrangement direction of the reinforcing fibers. That is, with respect to the torsional strength, it is most effective to arrange the reinforcing fibers at an angle of ± 45 ° with respect to the axial direction of the main body cylinder. It is most effective to arrange at an angle of 80-90 °. Further, mainly with respect to the critical rotation speed, reinforcing fibers are arranged in the axial direction as much as possible to increase the bending elastic modulus in the axial direction so that a high bending resonance frequency can be obtained.

このように、本体筒においては、捩り強度と危険回転数といった基本的要求に関して最も効果的な補強繊維の配列方向が存在するので、これらの要求に好適な配列方向を組み合わせた層構成を採ることになるが、捩り強度の問題は外径や肉厚等の寸法面からも解決できることから、通常は、補強繊維の配列方向への依存性の大きい危険回転数を優先した設計がなされ、補強繊維が軸方向に対して小さな角度で配列された層の割合を多くしている。トルク軸に必要なFRP製本体筒に関する設計が可能となるがトルク軸として性能を発揮するためにはパワープラントとのトルク伝達のため継ぎ手部材との接合が必須となる。ところが、そのために以下において説明するような問題が起こっている。   As described above, in the main body cylinder, there are the most effective reinforcement fiber arrangement directions with respect to basic requirements such as torsional strength and dangerous rotational speed. Therefore, a layer configuration in which arrangement directions suitable for these requirements are combined is adopted. However, since the problem of torsional strength can be solved from dimensions such as the outer diameter and wall thickness, usually, the design is made with priority given to the critical rotation speed, which has a large dependence on the arrangement direction of the reinforcing fibers. The ratio of the layers arranged at a small angle with respect to the axial direction is increased. Although it is possible to design the FRP main body cylinder necessary for the torque shaft, in order to exhibit the performance as the torque shaft, it is essential to join the joint member for torque transmission with the power plant. However, this causes problems as described below.

これまでに色々な発明が成されているが特許文献1ではフィラメントワインディング法によりチューブ状に形成されたFRP製のシャフト本体筒の両端内部に、ゴム弾性体を介して金属製のジョイントヨーク(継ぎ手部材)を圧入して相互に連結してなる車両用プロペラシャフト(トルク軸)に関するものが挙げられる。この発明によってもゴム弾性体とのFRP製本体筒との摩擦力に依存し、十分なねじり強度が得られない、またゴム弾性体が接着される金属製ジョイントヨークは重量が嵩みFRP製本体筒を用いる本来の目的である軽量化に対し十分な効果が得られていないこと、ゴム弾性体の耐久性や耐環境性を考慮した設計が明らかになっていない等の問題があった。   Various inventions have been made so far. However, in Patent Document 1, a metal joint yoke (joint) is connected to both ends of a shaft body made of FRP formed into a tube shape by a filament winding method via a rubber elastic body. For example, a vehicle propeller shaft (torque shaft) that is formed by press-fitting members) and connecting them to each other can be cited. This invention also depends on the frictional force between the rubber elastic body and the FRP main body cylinder, so that sufficient torsional strength cannot be obtained, and the metal joint yoke to which the rubber elastic body is bonded increases in weight and the FRP main body. There have been problems such as that a sufficient effect for weight reduction, which is the original purpose of using a cylinder, has not been obtained, and that the design considering the durability and environmental resistance of the rubber elastic body has not been clarified.

すなわち、軽量化に関して言えば、円筒状本体筒のFRP化によってかなりの部分が軽量化されているが、両端部の継ぎ手部材が金属であるために重量の軽減に限界があるからである(例えば、特許文献2参照)。かかる問題を解決しようとして、従来FRP製の円筒状本体筒と、この本体筒の端部に接合して設けたFRP製の継手部分とを有し、成形時に一体化することで軽量化を発現しようとした、トルク伝達用シャフトが提案されている(例えば、特許文献3参照)。しかしながら、この場合でも、FRP製本体筒と継ぎ手部材との間で連続的に成形することは困難であるため、境界層での接着強度に依存することとなり、実際に製作した製品において、パワープラントで発生したトルクを駆動側に伝達する際に発生する捩り強度を十分に備え、かつ充分な軽量化を図る状態となっているかは不明な状態にあった。
特開平3−223513号公報 特公昭62−53373号公報 特開平6−87341号公報
That is, when it comes to weight reduction, a considerable part has been reduced in weight by the FRP conversion of the cylindrical main body tube, but because the joint members at both ends are made of metal, there is a limit in reducing the weight (for example, , See Patent Document 2). In order to solve this problem, it has a conventional FRP cylindrical main body cylinder and an FRP joint part joined to the end of this main body cylinder, and it is lightened by integrating at the time of molding An attempt has been made to use a torque transmission shaft (see, for example, Patent Document 3). However, even in this case, since it is difficult to form continuously between the FRP main body cylinder and the joint member, it depends on the adhesive strength at the boundary layer. It has been unclear whether the torsional strength generated when transmitting the torque generated in step 1 to the drive side is sufficient and the weight is sufficiently reduced.
JP-A-3-223513 Japanese Patent Publication No.62-53373 Japanese Patent Laid-Open No. 6-87341

本発明は、かかる従来のトルク伝達軸に鑑み、捩り強度や危険回転数といった基本的要求を満足しつつ、より一層の軽量化を十分に発現させることができ、更に生産性に優れたトルク伝達軸を提供せんとするものである。   In view of such a conventional torque transmission shaft, the present invention can sufficiently achieve further weight reduction while satisfying basic requirements such as torsional strength and dangerous rotational speed, and further achieves torque transmission with excellent productivity. It is intended to provide an axis.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明のトルク伝達軸は、FRP製本体筒と、該本体筒の端部にFRP製継ぎ手部材を有し、該本体筒とFRP製継ぎ手部材が金属製接続素子を介して連結されていることを特徴とするものである。   The present invention employs the following means in order to solve such problems. That is, the torque transmission shaft of the present invention has an FRP main body cylinder and an FRP joint member at the end of the main body cylinder, and the main body cylinder and the FRP joint member are coupled via a metal connecting element. It is characterized by being.

かかる本発明のトルク伝達軸の好ましい態様は、以下の通りである。
(1)一方の片表面には、該FRP製本体筒との圧入接合のためセレーションが形成され、もう一方の片表面には、FRP製継ぎ手部材と連結するための凹凸形状から成る係合部が形成されていること。
(2)上記FRP製継ぎ手部材が、フランジ形状を有すること。
(3)上記FRP製継ぎ手部材が、シートモールドコンパウンドまたはバルクモールドコンパウンドで形成されているものであること。
(4)上記凹凸形状は、歯高さがセレーション歯高さの3〜10倍、歯ピッチがセレーションピッチの3〜10倍の歯型形状であること。
Preferred embodiments of the torque transmission shaft of the present invention are as follows.
(1) On one surface, serrations are formed for press-fitting with the FRP main body cylinder, and on the other surface, an engaging portion having an uneven shape for connection to an FRP joint member is formed. Is formed.
(2) The FRP joint member has a flange shape.
(3) The FRP joint member is formed of a sheet mold compound or a bulk mold compound.
(4) The concavo-convex shape is a tooth shape whose tooth height is 3 to 10 times the serration tooth height and whose tooth pitch is 3 to 10 times the serration pitch.

本発明によれば、最も軽量なFRP製トルク伝達軸を提供することができる。   According to the present invention, the lightest FRP torque transmission shaft can be provided.

本発明は、前記課題、つまり捩り強度や危険回転数といった基本的要求を満足しつつ、より一層の軽量化を十分に発現させることができ、更に生産性に優れたトルク伝達軸について鋭意検討し、FRP製本体筒と、該本体筒の端部にFRP製継ぎ手部材を有し、該本体筒と該FRP製継ぎ手部材とを、特定な金属製接続素子を介入させて、これらを連結させてみたところ、前記課題を一挙に解決することを究明したものである。   The present invention has been intensively studied on a torque transmission shaft that can sufficiently realize further weight reduction while satisfying the above-mentioned problems, that is, basic requirements such as torsional strength and dangerous rotational speed, and is excellent in productivity. The FRP main body tube has an FRP joint member at the end of the main body tube, and the main body tube and the FRP joint member are connected to each other by intervening a specific metal connecting element. As a result, it has been clarified that the above problems can be solved at once.

本発明におけるFRP製本体筒は、強化繊維とマトリックス樹脂から構成される繊維強化プラスチックの積層体から構成され、中央部における強化繊維の積層構成は円周方向巻き80〜90°、軸方向巻き0〜20°、概略45°の配向角度から組み合わされた積層体から構成される。特に自動車用のトルク伝達軸は高速で回転するため曲げ共振における危険回転数を高く設計すること、併せてエンジンから伝達される高いトルクに対するねじり強度を保持することが必要となる。そのため、危険回転数を高く設計するためには強化繊維をFRP製本体筒の軸方向に配向することが好ましく0〜20°の範囲で設計される。一方、ねじり強度は強化繊維の45°方向に配向させることが有効であり、かつ座屈変形を防止するため円周方向巻きを含むことが好ましい。   The FRP main body cylinder in the present invention is composed of a laminate of fiber reinforced plastics composed of reinforcing fibers and a matrix resin, and the laminated structure of reinforcing fibers in the central portion is a circumferential winding of 80 to 90 ° and an axial winding of 0. It is comprised from the laminated body combined from the orientation angle of about 20 degrees and about 45 degrees. In particular, since the torque transmission shaft for automobiles rotates at a high speed, it is necessary to design a high critical rotational speed in bending resonance and to maintain the torsional strength against the high torque transmitted from the engine. Therefore, in order to design a high critical rotational speed, it is preferable to orient the reinforcing fibers in the axial direction of the FRP main body tube, and it is designed in the range of 0 to 20 °. On the other hand, it is effective to orient the torsional strength in the 45 ° direction of the reinforcing fiber, and it is preferable to include circumferential winding in order to prevent buckling deformation.

以上のように、本発明におけるFRP製本体筒は、要求される仕様に合わせて、積層構成は円周方向巻き80〜90°、軸方向巻き0〜20°、概略45°の配向角度から組み合わされた積層体から構成され、さらに該FRP製本体筒の内径、外径などの寸法条件により、FRP製本体筒の危険回転数、ねじり強度の性能が設計される。   As described above, the main body cylinder made of FRP according to the present invention is combined from the orientation angle of the circumferential winding of 80 to 90 °, the axial winding of 0 to 20 °, and approximately 45 ° according to the required specifications. Further, the performance of the FRP main body cylinder in terms of the critical rotational speed and torsional strength is designed according to the dimensional conditions such as the inner diameter and outer diameter of the FRP main body cylinder.

更に、FRP製本体筒の両端部には接合のための補強層を設けることが好ましい。この補強層はFRP製本体筒の軸方向に対し80〜90°の角度で構成され、後述する金属製接続素子の長さに合わせて設けることができる。また該補強層の厚さは必要とされる接合強度に合わせ増減することが可能である。また該補給層のFRP製本体筒の中央部に向かう先端部はテーパー形状とすることで、FRP製本体筒の成形性を妨げることなく、強度的に優れたFRP製本体筒を得ることができる。   Furthermore, it is preferable to provide a reinforcing layer for joining at both ends of the FRP body cylinder. The reinforcing layer is formed at an angle of 80 to 90 ° with respect to the axial direction of the FRP main body cylinder, and can be provided in accordance with the length of a metal connecting element described later. The thickness of the reinforcing layer can be increased or decreased according to the required bonding strength. Further, the tip portion of the replenishment layer toward the central portion of the FRP main body cylinder is tapered so that an FRP main body cylinder excellent in strength can be obtained without impeding the moldability of the FRP main body cylinder. .

本発明におけるFRP製本体筒を構成するマトリクス樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂を使用するが、他の樹脂、たとえばポリアミド、ポリカーボネード、ポリエーテルイミドなどの熱可塑性樹脂を用いても良い。また、強化繊維については炭素繊維、ガラス繊維、アラミド繊維等を使用することが可能であり、これらを併用することも可能である。   As the matrix resin constituting the FRP main body cylinder in the present invention, a thermosetting resin such as an epoxy resin, a phenol resin, a polyimide resin, a vinyl ester resin, and an unsaturated polyester resin is used, but other resins such as polyamide, Thermoplastic resins such as polycarbonate and polyetherimide may be used. As the reinforcing fiber, carbon fiber, glass fiber, aramid fiber, or the like can be used, and these can be used in combination.

本発明におけるFRP製継ぎ手部材は、一般に用いられるFRPの成形方法、ハンドレイアップ、レジントランスファーモールデイング(RTM)などいずれの方法によっても成形が可能であるが、本発明においては、シートモールディングコンパウンドまたはバルクモールディングコンパウンドを用いることが好ましい。シートモールディングコンパウンド(sheet molding compound、以下、「SMC」と略す。)は、ガラス繊維のチョップドストランド(繊維のストランドを適切な長さに切断したもの)、マット、ロービングクロス、ポリエステルなどの有機繊維系不織布などに、不飽和ポリエステル樹脂、ビニルエステル樹脂配合物などの熱硬化性樹脂を含浸させた後、ゲル化させた成形材料である。この成形材料を継ぎ手部材成形用の金型に所定量セットし、加圧+加熱することで熱硬化性樹脂を硬化させ、所定の形状を有する、FRP製継ぎ手部材を得ることができる。   The FRP joint member in the present invention can be molded by any of the commonly used FRP molding methods, hand layup, resin transfer molding (RTM), etc., but in the present invention, the sheet molding compound or It is preferable to use a bulk molding compound. Sheet molding compound (hereinafter abbreviated as “SMC”) is chopped strand of glass fiber (fiber strand cut into appropriate length), matte, roving cloth, organic fiber system such as polyester This is a molding material in which a nonwoven fabric is impregnated with a thermosetting resin such as an unsaturated polyester resin or a vinyl ester resin compound and then gelled. A predetermined amount of this molding material is set in a mold for molding a joint member, and the thermosetting resin is cured by pressing and heating to obtain a FRP joint member having a predetermined shape.

また、必要に応じて、SMCには、低収縮剤、充填材、増粘剤、離型剤、着色剤などが添加されていてもよい。バルクモールディングコンパウンド(bulk molding compound、以下、「BMC」と略す。)は、ガラス繊維のチョップドストランド、ポリエステルなどの有機繊維のチョップドストランドなどに、硬化剤および縮合剤を配合した不飽和ポリエステル樹脂、ビニルエステル樹脂などを混入または含浸させ、さらにこれをゲル化させた成形材料である。また、必要に応じて、BMCには、充填材、増粘剤、離型剤、着色剤などが添加されていてもよい。また、このようなSMC、BMCは、繊維の含有量、繊維の長さなどを選択、調整することにより、機械的強度、弾性率などを制御することができる。   Moreover, a low shrinkage agent, a filler, a thickener, a release agent, a colorant, and the like may be added to the SMC as necessary. Bulk molding compound (hereinafter abbreviated as “BMC”) is a glass fiber chopped strand, an organic polyester chopped strand such as polyester, an unsaturated polyester resin, vinyl, and the like. It is a molding material in which an ester resin or the like is mixed or impregnated and further gelled. Moreover, a filler, a thickener, a mold release agent, a coloring agent, etc. may be added to BMC as needed. Moreover, such SMC and BMC can control mechanical strength, elastic modulus, etc. by selecting and adjusting the fiber content, fiber length, and the like.

更に、後述する金属製接続素子と係合するための凹凸部を金型に加工を施しておけば、後加工が不要となり精度の高く、低コストの加工が可能となる。後述する金属製接続素子との接続強度を確保するため、歯型形状、角形スプライン形状、インボリュートスプライン形状とすることが好ましい。   Further, if the uneven portion for engaging with a metal connecting element to be described later is processed in the mold, post-processing is not required, and high-precision and low-cost processing is possible. In order to secure connection strength with a metal connecting element described later, it is preferable to have a tooth shape, a square spline shape, and an involute spline shape.

また、このFRP製継ぎ手部材の成形時に、かかる金属製接続素子をインサート成形して、一体化することも可能である。   Further, at the time of forming the FRP joint member, it is also possible to insert-mold the metal connecting element and integrate it.

かかるFRP製継ぎ手部材は、フランジ形状とすることが相手部材との連結方法として好ましく、かくすることにより、継ぎ手部材の連結部はFRP製本体筒より径を大きく設計することが可能となり、FRP製継ぎ手部材でのトルク伝達が無理なく実施可能となる。特にボルト連結部は、面圧強度が必要とされるため、必要な強度を有する素子材を配置することもできる。   The FRP joint member is preferably flanged as a method of connecting to the mating member. By doing so, the connecting portion of the joint member can be designed to have a larger diameter than the FRP main body cylinder. Torque transmission at the joint member can be carried out without difficulty. In particular, since the bolt connecting portion requires a surface pressure strength, an element material having a required strength can be disposed.

本発明における金属製接続素子の一方の片面(外側面)には、該FRP製本体筒との圧入接合時に切り込み歯構成する軸方向に延びたセレーションが配置される。良好な切り込み状態を確保するため、かかるセレーションの先端Rは0.04mm程度が好ましく、また頂角は60〜100°が強度確保の点で好ましい。ピッチは1〜3mm、歯高さは0.5〜2mmが機械加工、および接合強度確保の点で好ましい。FRP製本体筒の端部に配置された強化繊維による補強層とこのセレーション形状により、設定された圧入代の元、圧入接合によりセレーション先端部のFRP製本体筒内周面への確実・強固な切り込みがなされ、かつ補強層の把持効果によりトルク伝達が確実に成される。また、該金属製接続素子の、他方の片面(内側面)には、該FRP製継ぎ手部材と係合するための凹凸部が形成される。   On one side (outer side) of the metallic connecting element in the present invention, an axially extending serration that constitutes a notch at the time of press-fitting with the FRP main body cylinder is disposed. In order to ensure a good cutting state, the tip R of the serration is preferably about 0.04 mm, and the apex angle is preferably 60 to 100 ° from the viewpoint of securing strength. A pitch of 1 to 3 mm and a tooth height of 0.5 to 2 mm are preferable in terms of machining and ensuring bonding strength. Reinforcement layer by reinforcing fiber arranged at the end of the FRP main body cylinder and this serration shape, with the set press-fitting allowance, the press-bonding to the inner peripheral surface of the FRP main body cylinder of the serration tip Incision is made, and torque transmission is ensured by the gripping effect of the reinforcing layer. Further, an uneven portion for engaging with the FRP joint member is formed on the other one surface (inner surface) of the metal connection element.

この凹凸部は歯型形状であることが好ましく、中でも、角形スプライン形状、インボリュートスプライン形状が好ましく用いられる。該金属製接続素子の軸方向長さ、肉厚などの形状寸法は必要とされる強度と安全率から決定されるが、凹凸部として好ましく用いられる歯型形状の歯高さはセレーション歯高さの3〜10倍、歯ピッチはセレーションピッチの3〜10倍であることがねじり強度確保および軽量化の点で好ましい。   It is preferable that this uneven | corrugated | grooved part is a tooth | gear shape, and a square spline shape and an involute spline shape are used preferably especially. Shape dimensions such as the axial length and thickness of the metal connecting element are determined from the required strength and safety factor, but the tooth height of the tooth shape preferably used as the uneven portion is the serration tooth height. 3 to 10 times, and the tooth pitch is preferably 3 to 10 times the serration pitch from the viewpoint of securing torsional strength and weight reduction.

前述したFRP製継ぎ手部材もSMC材またはBMC材を使用するため歯高さがセレーションの3倍未満、歯ピッチが3倍未満の細かな形状ではプレス成形時に十分な、形状の賦形と補強繊維の配向が行えないことがあり、材料強度を発現させることが困難となる場合があるからである。また、歯高さがセレーションの10倍を超え、歯ピッチが10倍を超えると金属製継ぎ手部の肉厚が厚くなるため、金属製接続素子の重量が大となり、本来目的である軽量化の効果が薄れる場合があるためである。   The above-mentioned FRP joint member also uses SMC material or BMC material, so that it is sufficient to shape and reinforce the shape with a fine shape with a tooth height of less than 3 times the serration and a tooth pitch of less than 3 times. This is because it may be difficult to orient the material and it may be difficult to develop material strength. In addition, if the tooth height exceeds 10 times the serration and the tooth pitch exceeds 10 times, the thickness of the metal joint becomes thick, which increases the weight of the metal connecting element, which is the original purpose of reducing the weight. This is because the effect may be diminished.

上述のセレーションの寸法から凹凸部を形成する歯型形状の歯高さは1.5mm〜20mm、ピッチは3〜30mmとなる。   From the dimensions of the serrations described above, the tooth height of the tooth shape that forms the concavo-convex portion is 1.5 mm to 20 mm, and the pitch is 3 to 30 mm.

FRP製本体筒は炭素繊維やガラス繊維などの強化繊維に樹脂を含浸させシート状に加工したプリプレグをマンドレルに巻き付けて成形するシートワインディングや、前述の強化繊維に樹脂を含浸させながらマンドレルに巻き付けて成形するシートワインディングにより形成される。このFRP製本体筒は強度性能およびバランス特性のため高精度の円筒度および真直度が要求されるため、必要とされる精度以上のマンドレルにて成形される必要がある。
(1)この時、マンドレルに凹凸形状を予め設け、成形時にFRP製本体筒の内面側に強化繊維を沿わした状態で凹凸形状を設けることは非常に困難である。
(2)マンドレルに凹凸形状を設けた場合、脱芯作業を行うためにはマンドレルを分割構成にする必要がでて来る。この場合、製造コストのアップを伴うこと、ねじり強度や品質性能の確保が困難となる。
(3)成形後に機械加工によって凹凸形状を付与することも可能であるが、製造工程が増えコストアップとなる。
FRP body cylinders are made by wrapping a mandrel with a prepreg that has been impregnated with carbon fiber or glass fiber and impregnating a resin into a sheet, and then wrapping the mandrel while impregnating the aforementioned reinforcing fiber with resin. It is formed by sheet winding to be molded. Since this FRP main body cylinder requires high precision cylindricity and straightness for strength performance and balance characteristics, it is necessary to be molded with a mandrel with a precision higher than required.
(1) At this time, it is very difficult to provide an uneven shape on the mandrel in advance and to provide the uneven shape with reinforcing fibers along the inner surface side of the FRP main body cylinder at the time of molding.
(2) When the mandrel is provided with a concavo-convex shape, it is necessary to divide the mandrel in order to perform the decentering operation. In this case, it is difficult to ensure the torsional strength and quality performance due to an increase in manufacturing cost.
(3) Although it is possible to give a concavo-convex shape by machining after molding, the manufacturing process increases and the cost increases.

以上の理由から、本発明ではFRP製本体筒と金属製接続素子との接合に、セレーションと圧入による接合を用いている。更に、FRP製本体筒の接合部分に円周方向の補強層を配することで、セレーションの確実な食い込みと把持力を得て必要なねじり強度を得ることができる。   For the above reasons, the present invention uses serration and press-fitting joining to join the FRP main body tube and the metal connecting element. Furthermore, by providing a circumferential reinforcing layer at the joint portion of the FRP main body cylinder, it is possible to obtain the necessary torsional strength by obtaining a reliable biting and gripping force of serration.

一方、FRP製継ぎ手部材はSMC材またはBMC材による成形方法では、FRP製本体筒で用いた強化繊維による補強層の配置を接合部分に行うことが困難なため、把持力を得ることができない。そのためFRP製継ぎ手部材ではセレーションと圧入による接合方法では十分なねじり強度を得ることが困難である。逆にSMC材などを用いたプレス成形では、セレーションに比べ大きな凹凸形状を成形体に、加工することが可能となり、該金属製素子の外側に同形状の凹凸を配置すれば簡単に接合することが可能となる。更に、SMC材やBMC材のプレス成形時に金属製接続素子のインサート成形を行えば、金属製接続素子とFRP製継ぎ手部材の一体化も簡単に実施することが可能となる。   On the other hand, the FRP joint member cannot be obtained with a molding method using an SMC material or a BMC material because it is difficult to place the reinforcing layer with the reinforcing fiber used in the FRP main body cylinder at the joint portion. For this reason, it is difficult to obtain a sufficient torsional strength with a joining method using serration and press-fitting with an FRP joint member. On the other hand, press molding using SMC material, etc. makes it possible to process large irregularities in the molded body compared to serrations, and if the irregularities of the same shape are placed outside the metal element, they can be joined easily. Is possible. Furthermore, if insert molding of the metal connection element is performed during press molding of the SMC material or BMC material, the integration of the metal connection element and the FRP joint member can be easily performed.

上述した、3つの構成部材を組み立てることにより本発明のトルク伝達軸を得ることができる。   The torque transmission shaft of the present invention can be obtained by assembling the three components described above.

以下、本発明の好ましい実施の態様について図面を参照して具体的に説明する。図1、2は本発明が適用されたトルク伝達軸の一態様を示している。FRP製本体筒2の両端にはFRP製継ぎ手部材3が接合され一体化している。図2の断面で示すようにFRP製本体筒2とFRP製継ぎ手部材3は接合部分に設けられた金属製接続素子4を介して接合されている。図3は本発明に用いるFRP製本体筒2の一態様を示す。FRP製本体筒2の両端接合部には円周方向巻きによる部分補強層2bが設けられている。補強層の中央部側は成形性のため、テーパー状とすることも好ましい。FRP製本体筒の中央部における強化繊維の積層構成は80〜90°で構成される内層円周方向巻き2cおよび外層円周方向巻き2d、軸方向巻き0〜20°、概略45°の配向角度から組み合わされた主層2aから構成される。この主層2aはトルク伝達軸の主要特性である軸方向弾性率やねじり強度の特性に合わせて、適切な角度、肉厚を採用することができる。図4は本発明に用いるFRP製継ぎ手部材3の一態様を示す。FRP製継ぎ手部材3はSMC材やBMC材を用いたプレス成形にて形成され、FRP製本体筒との接合部分には、後述する金属製接続素と契合する凹凸部3aが設けられている。またフランジ部3bには外部機器との接続を行うためのボルト孔3cが形成されている。図5は本発明に用いる金属製接続素子4の一態様を示す。金属製接続素子4は円筒スリーブ形状で外表面には、FRP製本体筒との圧入接合を行うためのセレーション部4aが加工されている。また、圧入接合のため、セレーション外径はFRP製本体筒の内径より大きな外径を有する。FRP製継ぎ手部材の凹凸部3aの形状に合わせた凹凸形状が4bとして金属製接続素子4の内側に形成される。金属製接続素子の先端部はFRP製本体筒の圧入接合の案内とするため、テーパー部4cが設けられている。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings. 1 and 2 show an embodiment of a torque transmission shaft to which the present invention is applied. FRP joint members 3 are joined and integrated at both ends of the FRP main body cylinder 2. As shown in the cross section of FIG. 2, the FRP main body cylinder 2 and the FRP joint member 3 are joined via a metal connection element 4 provided at the joint portion. FIG. 3 shows an embodiment of the FRP main body cylinder 2 used in the present invention. A partial reinforcing layer 2b by circumferential winding is provided at both ends of the FRP main body cylinder 2. The central portion side of the reinforcing layer is also preferably tapered because of formability. The laminated structure of the reinforcing fibers in the central portion of the FRP main body cylinder is an inner layer circumferential winding 2c and an outer layer circumferential winding 2d constituted by 80 to 90 °, an axial winding 0 to 20 °, and an orientation angle of approximately 45 °. It is comprised from the main layer 2a combined from. The main layer 2a can adopt an appropriate angle and thickness in accordance with the axial elastic modulus and torsional strength characteristics, which are the main characteristics of the torque transmission shaft. FIG. 4 shows an embodiment of the FRP joint member 3 used in the present invention. The FRP joint member 3 is formed by press molding using an SMC material or a BMC material, and an uneven portion 3a that engages with a metal connecting element to be described later is provided at a joint portion with the FRP main body cylinder. The flange portion 3b is formed with a bolt hole 3c for connection with an external device. FIG. 5 shows an embodiment of the metal connection element 4 used in the present invention. The metal connecting element 4 has a cylindrical sleeve shape, and a serration portion 4a for press-fitting with an FRP main body cylinder is processed on the outer surface. Further, because of press-fit joining, the outer diameter of the serration has an outer diameter larger than the inner diameter of the FRP main body cylinder. An uneven shape that matches the shape of the uneven portion 3a of the FRP joint member is formed inside the metal connection element 4 as 4b. The tip of the metal connecting element is provided with a tapered portion 4c for guiding the press-fitting of the FRP main body cylinder.

以下、本発明のトルク伝達軸の最良の実施態様の例にとって、図面を参照しながら説明する。   Hereinafter, an example of the best mode of the torque transmission shaft of the present invention will be described with reference to the drawings.

(実施例1)
図1、2に本発明によるトルク伝達軸1をしめす。トルク伝達軸はFRP製本体筒2、FRP製継ぎ手部材3、金属製接続素子4によって構成されている。
Example 1
1 and 2 show a torque transmission shaft 1 according to the present invention. The torque transmission shaft is constituted by an FRP main body cylinder 2, an FRP joint member 3, and a metal connection element 4.

フィラメントワインディング法によってFRP製本体筒2を成形した。全体の形状および、積層構成を図3に示す。すなわち、炭素繊維束(平均単糸径:7μm、単糸数:12,000本、引張強度3530MPa 、引張弾性率:230GPa)を6本引き揃え、これを、酸無水物系硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂を含浸しながら、外径70mm、長さ1,400mmのマンドレルに、まず、その一端部100mmの部分に軸方向に対して±83゜の角度で往復8層巻き付けて厚み2.5mmの部分補強層2bを形成する。このとき軸方向に往復距離を変化させテーパー形状とした。次に連続して他端部に+83°にて内層円周方向巻き2c厚さ0.2mmを形成しながら移動して同様に部分補強層2bを形成し、引き続きマンドレルの全長にわたって軸方向に対して±12゜の角度で4層巻き付けて厚み2.1mmの主層2aを形成し、さらに、マンドレルの全長にわたって軸方向に対して−83゜で外層円周方向巻き2d厚さ0.2mmを形成した。 The main body cylinder 2 made of FRP was formed by the filament winding method. The overall shape and the laminated structure are shown in FIG. That is, carbon fiber bundles (average single yarn diameter: 7 μm, number of single yarns: 12,000, tensile strength 3530 MPa , Tensile elastic modulus: 230 GPa), and a mandrel having an outer diameter of 70 mm and a length of 1,400 mm while being impregnated with a bisphenol A type epoxy resin containing an acid anhydride curing agent and a curing accelerator. First, a reinforcement layer 2b having a thickness of 2.5 mm is formed by winding eight reciprocal layers around the end portion 100 mm at an angle of ± 83 ° with respect to the axial direction. At this time, the reciprocating distance was changed in the axial direction to form a taper shape. Next, while continuously forming the inner layer circumferential winding 2c thickness of 0.2 mm at + 83 ° at the other end, the partial reinforcing layer 2b is formed in the same manner, and then the axial direction is formed over the entire length of the mandrel. The main layer 2a having a thickness of 2.1 mm is formed by winding four layers at an angle of ± 12 °, and further, the outer layer circumferential winding 2d thickness of 0.2 mm is formed at −83 ° with respect to the axial direction over the entire length of the mandrel. Formed.

次に、マンドレルを回転させながら100℃で2時間更に、150℃で4時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部100mmの部分を切断、除去して、中央部外径が75mm、各端部の外径が80mm、内径が70mm、長さが1,200mmの、1.2kgの図3に示すようなFRP製本体筒2を得た。図3において、2aはFRP製本体筒2の全長にわたって延在するする主層であり、2bは上記FRP製本体筒2の端部において上記主層2aと一体に設けた部分補強層である。   Next, while rotating the mandrel, the epoxy resin is cured by heating at 100 ° C. for 2 hours and further at 150 ° C. for 4 hours, and after pulling out the mandrel, each end portion of 100 mm is cut and removed, A 1.2 kg FRP main body cylinder 2 having an outer diameter of 75 mm, an outer diameter of 80 mm, an inner diameter of 70 mm, and a length of 1,200 mm as shown in FIG. 3 was obtained. In FIG. 3, 2a is a main layer extending over the entire length of the FRP main body cylinder 2, and 2b is a partial reinforcing layer provided integrally with the main layer 2a at the end of the FRP main body cylinder 2.

FRP製継ぎ手部材3はプレス成形により成形した。形状は図7に示す。すなわち、カットされた補強繊維と樹脂主剤と硬化材の配合されたシート材を継ぎ手部材形状に合わせたキャビティを有する上下型にセットし、温度をかけながら圧力を負荷し、キャビティの形状に賦形させ、かつ加熱することで熱硬化製樹脂を硬化させ、FRP製継ぎ手部材3を得ることができる。このとき係合部には、後述する金属製接続素子と契合するための雄形状の凹凸部3aを設け、フランジ面にはこの他の部材と結合するためのボルト孔3cを設けた。FRP製継ぎ手の該寸はフランジ外径は150mm、板厚15mm、全長65mm、凹凸部外径60mm、内径38mmであり、ピッチ円直径120mmに8ヶのボルト孔を有する、このときFRP製継ぎ手部材の重量は0.63kg/個であった。   The FRP joint member 3 was formed by press molding. The shape is shown in FIG. In other words, a sheet material containing a cut reinforcing fiber, a resin main ingredient, and a hardener is set in an upper and lower mold having a cavity that matches the shape of the joint member, and pressure is applied while applying temperature to shape the cavity shape. And the thermosetting resin is cured by heating, and the FRP joint member 3 can be obtained. At this time, the engaging portion was provided with a male uneven portion 3a for engaging with a metal connecting element to be described later, and a bolt hole 3c for coupling with other members was provided on the flange surface. The dimensions of the FRP joint are as follows: flange outer diameter is 150 mm, plate thickness is 15 mm, total length is 65 mm, uneven portion outer diameter is 60 mm, inner diameter is 38 mm, and pitch bolt diameter is 120 mm, and there are 8 bolt holes. The weight of was 0.63 kg / piece.

次に、金属製接続素子4について図6に示す。外周面に、セレーション部4aを有し、先端R0.04mm、歯高さ0.9mm、頂角90°、ピッチ2mmの加工が施されている。   Next, the metal connection element 4 is shown in FIG. A serration portion 4a is provided on the outer peripheral surface, and the tip R is 0.04 mm, the tooth height is 0.9 mm, the apex angle is 90 °, and the pitch is 2 mm.

圧入接合するために、セレーション外径は70.4mmとした。接合長は40mmとし、最小部肉厚を4.3mmとした。4cは、FRP製本体筒を圧入する際の案内部とするため10°の角度を付与した。また、接続部内周面には係合部雌形状の凹凸部4bが設けられている。この形状は、上述したFRP製継ぎ手部材3の係合部と噛み合うよう歯型形状寸法を一致させる。この実施例での歯型形状は歯数18、m=3、基準径54mmで構成され、ピッチ9.42mmで歯高さは約6mmであった。   For press-fit joining, the serrated outer diameter was 70.4 mm. The joining length was 40 mm, and the minimum thickness was 4.3 mm. An angle of 10 ° was given to 4c to serve as a guide portion when the FRP main body cylinder was press-fitted. Moreover, the engaging part female-shaped uneven | corrugated | grooved part 4b is provided in the connection part inner peripheral surface. This shape makes the tooth shape dimensions coincide with each other so as to mesh with the engaging portion of the FRP joint member 3 described above. The tooth shape in this example was composed of 18 teeth, m = 3, a reference diameter of 54 mm, a pitch of 9.42 mm, and a tooth height of about 6 mm.

セレーションの歯形状との寸法比は、歯高さ6/0.9=6.7、歯ピッチ9.42/2=4.71であった。この時の金属製接続素子の重量は0.47kg/個であった。   The dimensional ratio of the serration to the tooth shape was a tooth height of 6 / 0.9 = 6.7 and a tooth pitch of 9.42 / 2 = 4.71. The weight of the metal connecting element at this time was 0.47 kg / piece.

これらの3つの部材を順次接合することにより図1,2に示す、トルク伝達軸1を得ることができる。先ず、金属製接続素子4をFRP製継ぎ手部材3へ嵌めてから、FRP製本体筒2の両端にFRP製継ぎ手部材を圧入接合することにより全体の組み立てが完了する。   The torque transmission shaft 1 shown in FIGS. 1 and 2 can be obtained by sequentially joining these three members. First, after fitting the metal connection element 4 to the FRP joint member 3, the FRP joint member is press-fitted and joined to both ends of the FRP main body cylinder 2 to complete the entire assembly.

今回実施例での組み立て後の重量は3.4kgであり、FRP製本体筒の軽量化効果を活かしたトルク伝達軸が得られた。   The weight after assembly in this example was 3.4 kg, and a torque transmission shaft utilizing the weight reduction effect of the FRP main body cylinder was obtained.

(比較例1)
フィラメントワインディング法によってFRP製本体筒2を成形した。全体の形状および、積層構成を図3に示す。すなわち、炭素繊維束(平均単糸径:7μm、単糸数:12,000本、引張強度3530MPa、引張弾性率:230GPa)を6本引き揃え、これを、酸無水物系硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂を含浸しながら、外径70mm、長さ1,400mmのマンドレルに、まず、その一端部100mmの部分に軸方向に対して±83゜の角度で往復8層巻き付けて厚み2.5mmの部分補強層2bを形成する。このとき軸方向に往復距離を変化させテーパー形状とした。次に連続して他端部に+83°にて内層円周方向巻き2cを形成しながら移動して同様に部分補強層2bを形成し、引き続きマンドレルの全長にわたって軸方向に対して±12゜の角度で4層巻き付けて厚み2.1mmの主層2aを形成し、さらに、マンドレルの全長にわたって軸方向に対して−83゜で外層円周方向巻き2dを形成した。
(Comparative Example 1)
The main body cylinder 2 made of FRP was formed by the filament winding method. The overall shape and the laminated structure are shown in FIG. That is, six carbon fiber bundles (average single yarn diameter: 7 μm, number of single yarns: 12,000, tensile strength: 3530 MPa, tensile elastic modulus: 230 GPa) are aligned, and these are made into an acid anhydride curing agent and a curing accelerator. First, a mandrel having an outer diameter of 70 mm and a length of 1,400 mm is wound around a mandrel having an outer diameter of 70 mm and a length of 1,400 mm, and eight reciprocal layers are wound at an angle of ± 83 ° with respect to the axial direction. A partial reinforcing layer 2b having a thickness of 2.5 mm is formed. At this time, the reciprocating distance was changed in the axial direction to form a taper shape. Next, the inner layer circumferential direction winding 2c is continuously formed at the other end portion at + 83 ° while moving to form the partial reinforcing layer 2b in the same manner. A main layer 2a having a thickness of 2.1 mm was formed by winding four layers at an angle, and an outer circumferential winding 2d was formed at −83 ° with respect to the axial direction over the entire length of the mandrel.

次に、マンドレルを回転させながら100℃で2時間更に、150℃で4時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部100mmの部分を切断、除去して、中央部外径が75mm、各端部の外径が80mm、内径が70mm、長さが1,200mmの、1.2kgの図3に示すようなFRP製本体筒2を得た。図3において、2aはFRP製本体筒2の全長にわたって延在するする主層であり、2bは上記FRP製本体筒2の端部において上記主層2aと一体に設けた部分補強層である。   Next, while rotating the mandrel, the epoxy resin is cured by heating at 100 ° C. for 2 hours and further at 150 ° C. for 4 hours, and after pulling out the mandrel, each end portion of 100 mm is cut and removed, A 1.2 kg FRP main body cylinder 2 having an outer diameter of 75 mm, an outer diameter of 80 mm, an inner diameter of 70 mm, and a length of 1,200 mm as shown in FIG. 3 was obtained. In FIG. 3, 2a is a main layer extending over the entire length of the FRP main body cylinder 2, and 2b is a partial reinforcing layer provided integrally with the main layer 2a at the end of the FRP main body cylinder 2.

継ぎ手部材はスチール製を用い、該フランジ部分の寸法を実施例と合わせた。このためスチール製継ぎ手部材の重量は約2.4kg/個であった。   The joint member was made of steel, and the dimensions of the flange portion were matched with those of the examples. For this reason, the weight of the steel joint member was about 2.4 kg / piece.

更に、金属製継ぎ手部材の接続部分には、セレーション部を有し、先端R0.04mm、歯高さ0.9mmの加工が施されている。接合長は40mmとし、最小部肉厚を5mmとした。FRP製本体筒の両端にスチール製継ぎ手部材を圧入接合することによりトルク軸を得ることができる。今回比較例でのトルク軸の重量は6kgであり、本発明のトルク伝達軸より2.6kg重くFRP製本体筒を用いた軽量化効果が十分に得られなかった。   Further, the connection portion of the metal joint member has a serration portion and is processed with a tip R of 0.04 mm and a tooth height of 0.9 mm. The joining length was 40 mm and the minimum thickness was 5 mm. A torque shaft can be obtained by press-fitting and joining steel joint members to both ends of the FRP body cylinder. In this comparative example, the weight of the torque shaft was 6 kg, which was 2.6 kg heavier than the torque transmission shaft of the present invention, and the weight reduction effect using the FRP main body cylinder could not be sufficiently obtained.

本発明は、トルク伝達軸として利用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be used as a torque transmission shaft, but its application range is not limited thereto.

本発明の一例を示すトルク伝達軸の正面図である。It is a front view of a torque transmission shaft showing an example of the present invention. 本発明の一例を示すトルク伝達軸の正面断面図である。It is front sectional drawing of the torque transmission shaft which shows an example of this invention. 本発明におけるFRP製本体筒の一例を示す正面、断面図である。It is the front and sectional view showing an example of the FRP main body cylinder in the present invention. 本発明におけるFRP製継ぎ手部材の一例を示す正面、側面図である。It is the front and side view which show an example of the joint member made from FRP in this invention. 本発明における金属製接続素子の一例を示す正面、側面図である。It is the front and side view which show an example of the metal connection element in this invention. 本発明における金属製接続素子の一例を示す正面、側面図である。It is the front and side view which show an example of the metal connection element in this invention. 本発明におけるFRP製継ぎ手部材の一例を示す正面、側面図である。It is the front and side view which show an example of the joint member made from FRP in this invention.

符号の説明Explanation of symbols

1 :トルク伝達軸
2 :FRP製本体筒
2a:主層
2b:部分補強層
2c:内層円周方向巻き層
2d:外層円周方向巻き層
3 :FRP製継ぎ手部材
3a:凹凸部
3b:フランジ部
3c:ボルト孔
4 :金属製接続素子
4a:セレーション部
4b:凹凸部
DESCRIPTION OF SYMBOLS 1: Torque transmission shaft 2: FRP main body cylinder 2a: Main layer 2b: Partial reinforcement layer 2c: Inner layer circumferential direction winding layer 2d: Outer layer circumferential direction winding layer 3: FRP joint member 3a: Concavity and convexity 3b: Flange portion 3c: Bolt hole 4: Metal connection element 4a: Serration part 4b: Concavity and convexity

Claims (5)

FRP製本体筒と、該本体筒の端部にFRP製継ぎ手部材を有し、該本体筒とFRP製継ぎ手部材が金属製接続素子を介して連結されていることを特徴とするトルク伝達軸。 A torque transmission shaft having an FRP main body cylinder and an FRP joint member at an end of the main body cylinder, and the main body cylinder and the FRP joint member are connected via a metal connecting element. 上記金属製接続素子の一方の片表面には、該FRP製本体筒との圧入接合のためセレーションが形成され、もう一方の片表面には、FRP製継ぎ手部材と連結するための凹凸形状から成る係合部が形成されていることを特徴とする請求項1に記載のトルク伝達軸。 Serrations are formed on one surface of the metal connecting element for press-fitting with the FRP main body cylinder, and the other surface is formed with a concavo-convex shape for connection to an FRP joint member. The torque transmission shaft according to claim 1, wherein an engagement portion is formed. 上記FRP製継ぎ手部材が、フランジ形状を有することを特徴とする請求項1または2に記載のトルク伝達軸。 The torque transmission shaft according to claim 1, wherein the FRP joint member has a flange shape. 上記FRP製継ぎ手部材が、シートモールドコンパウンドまたはバルクモールドコンパウンドで形成されているものであることを特徴とする請求項1〜3のいずれかに記載のトルク伝達軸。 The torque transmission shaft according to any one of claims 1 to 3, wherein the FRP joint member is formed of a sheet mold compound or a bulk mold compound. 上記凹凸形状は、歯高さがセレーション歯高さの3〜10倍、歯ピッチがセレーションピッチの3〜10倍の歯型形状であることを特徴とする請求項2記載のトルク伝達軸。 3. The torque transmission shaft according to claim 2, wherein the uneven shape is a tooth shape having a tooth height of 3 to 10 times the serration tooth height and a tooth pitch of 3 to 10 times the serration pitch.
JP2007055239A 2006-03-10 2007-03-06 Torque transmission shaft Pending JP2007271079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055239A JP2007271079A (en) 2006-03-10 2007-03-06 Torque transmission shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006065313 2006-03-10
JP2007055239A JP2007271079A (en) 2006-03-10 2007-03-06 Torque transmission shaft

Publications (1)

Publication Number Publication Date
JP2007271079A true JP2007271079A (en) 2007-10-18

Family

ID=38674079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055239A Pending JP2007271079A (en) 2006-03-10 2007-03-06 Torque transmission shaft

Country Status (1)

Country Link
JP (1) JP2007271079A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263071A (en) * 2008-04-24 2009-11-12 Showa Marutsutsu Co Ltd Fitting for paper pipe, and paper pipe
CN103216538A (en) * 2013-04-12 2013-07-24 贺辜文 Novel shaft coupler and manufacture method of novel shaft coupler
JP2019072840A (en) * 2017-06-29 2019-05-16 日本精工株式会社 Oscillation device and superfinishing device, and method for manufacturing bearing, method for manufacturing vehicle and method for manufacturing machine
CN109968182A (en) * 2017-11-09 2019-07-05 日本精工株式会社 The manufacturing method of agitating device and superfinishing equipment and bearing, the manufacturing method of vehicle, mechanical manufacturing method
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263071A (en) * 2008-04-24 2009-11-12 Showa Marutsutsu Co Ltd Fitting for paper pipe, and paper pipe
CN103216538A (en) * 2013-04-12 2013-07-24 贺辜文 Novel shaft coupler and manufacture method of novel shaft coupler
CN103216538B (en) * 2013-04-12 2015-05-20 贺辜文 Novel shaft coupler and manufacture method of novel shaft coupler
JP2019072840A (en) * 2017-06-29 2019-05-16 日本精工株式会社 Oscillation device and superfinishing device, and method for manufacturing bearing, method for manufacturing vehicle and method for manufacturing machine
JP2019150947A (en) * 2017-06-29 2019-09-12 日本精工株式会社 Oscillation device and superfinishing device, and method for manufacturing bearing, method for manufacturing vehicle and method for manufacturing machine
JP2019214124A (en) * 2017-06-29 2019-12-19 日本精工株式会社 Oscillating device and super-finishing device, and method for manufacturing bearing, method for manufacturing vehicle, method for manufacturing machine
US11638976B2 (en) 2017-06-29 2023-05-02 Nsk Ltd. Oscillating device, superfinishing device, method of manufacturing bearing, method of manufacturing vehicle, and method of manufacturing machine
JP7276027B2 (en) 2017-06-29 2023-05-18 日本精工株式会社 Members using fiber reinforced resin
CN109968182A (en) * 2017-11-09 2019-07-05 日本精工株式会社 The manufacturing method of agitating device and superfinishing equipment and bearing, the manufacturing method of vehicle, mechanical manufacturing method
CN109968182B (en) * 2017-11-09 2023-08-15 日本精工株式会社 Rocking device, superfinishing device, bearing, vehicle, and machine manufacturing method
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle
KR102208388B1 (en) 2018-08-23 2021-01-27 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Similar Documents

Publication Publication Date Title
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
US7874925B2 (en) Transmission shaft joint design
JP5683798B2 (en) FRP drive shaft
US7731593B2 (en) Composite transmission shaft joint
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
JP2007271079A (en) Torque transmission shaft
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
JP2011017413A (en) Shaft for power transmission shaft
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP3269287B2 (en) FRP cylinder and manufacturing method thereof
US7338380B2 (en) Composite shaft end assembly and composite shaft formed therewith
JP2020159534A (en) FRP composite molded product
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
CN113942248A (en) Manufacturing method of composite material transmission shaft and composite material transmission shaft
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
CN112638689A (en) Pipe body for transmission shaft and transmission shaft
JP3339212B2 (en) FRP cylinder and method of manufacturing the same
JPH0742974B2 (en) Manufacturing method of transmission shaft made of fiber reinforced plastic
JP3433850B2 (en) FRP cylinder and manufacturing method thereof
JP6547081B1 (en) Method of manufacturing power transmission shaft
JP7324589B2 (en) Pipe body and power transmission shaft used for power transmission shaft
JP2004293708A (en) Propeller shaft of fiber-reinforced plastic, and manufacturing method for the same
JP2004293716A (en) Shaft for power transmission
JPH03223513A (en) Propeller shaft for vehicle