JPH05177537A - Thin-sliced mono-crystal processing method - Google Patents

Thin-sliced mono-crystal processing method

Info

Publication number
JPH05177537A
JPH05177537A JP3345723A JP34572391A JPH05177537A JP H05177537 A JPH05177537 A JP H05177537A JP 3345723 A JP3345723 A JP 3345723A JP 34572391 A JP34572391 A JP 34572391A JP H05177537 A JPH05177537 A JP H05177537A
Authority
JP
Japan
Prior art keywords
single crystal
thin
wafer
double
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3345723A
Other languages
Japanese (ja)
Inventor
Yuji Inoue
雄二 井上
Shigeo Okado
茂男 岡戸
Tadao Komi
忠雄 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3345723A priority Critical patent/JPH05177537A/en
Publication of JPH05177537A publication Critical patent/JPH05177537A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To provide a processing method for thin-sliced mono-crystal, with which sliced mono-crystal having a thickness below 100mum can be two-side polished effectively. with good yield, and with high quality of processing. CONSTITUTION:The two surfaces of a thin-sliced mono-crystal wafer 6 of 100m thick or less are polished simultaneously using a carrier 1 of metal, which holds the wafer 6 and in which a guide members 5 made of a fiber-reinforced heat resistant resin are arranged being inserted. Wafer 6 is installed in the carrier with the aid of one of the guide members 5. In this condition, the two surfaces of each wafer 6 are polished simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚さ 100μm 以下の薄
片単結晶の両面同時ポリッシング加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-sided simultaneous polishing processing method for thin single crystals having a thickness of 100 μm or less.

【0002】[0002]

【従来の技術】従来、SAW用の LiTaO3 単結晶、 LiN
bO3 単結晶および水晶等の単結晶ウエハの両面ポリッシ
ング加工においては、これらのウエハをスチ−ル材やス
テンレス材、あるいはガラス繊維を含有するエポキシ樹
脂等からなるキャリヤによって保持し、この状態で両面
ポリッシュマシンにセットして、ウエハの両面を同時に
ポリッシング加工していた。
2. Description of the Related Art Conventionally, LiTaO 3 single crystal for SAW, LiN
In double-sided polishing of single crystal wafers such as bO 3 single crystal and crystal, these wafers are held by a carrier made of steel or stainless steel, or epoxy resin containing glass fiber, etc. It was set on the polishing machine and both sides of the wafer were polished at the same time.

【0003】ところで、上記したウエハキャリヤのう
ち、ガラス繊維を含有するエポキシ樹脂製のキャリヤ
は、ウエハのチッピングが少ないという利点を有してい
る。しかし、厚さ 200μm くらいまでは、キャリヤ歯形
が強度的に耐えられるものの、寿命がスチ−ル製キャリ
ヤの 1/3程度と短いという問題があった。また、 100μ
m以下の薄片単結晶ウエハの両面ポリッシング加工にお
いては、キャリヤの強度の点から圧力をかけることがで
きなくなり、実質的に両面ポリッシングができないとい
う問題があった。
By the way, among the above-mentioned wafer carriers, the carrier made of epoxy resin containing glass fiber has an advantage of less chipping of the wafer. However, up to a thickness of about 200 μm, although the carrier tooth profile can withstand strength, there is a problem that the life is short, about 1/3 that of steel carriers. Also, 100μ
In the double-sided polishing process for thin single-crystal wafers of m or less, there is a problem that pressure cannot be applied from the viewpoint of the strength of the carrier, and thus double-sided polishing cannot be substantially performed.

【0004】一方、スチ−ル材やステンレス材からなる
キャリヤは、寿命が長く、強度もあり、 100μm 以下の
薄片単結晶ウエハであっても両面ポリッシング加工を行
うことは可能であるものの、薄片単結晶ウエハの割れや
クラックが多数発生し、特にLiTaO3 単結晶や LiNbO3
単結晶のようなヘキカイ面を有する単結晶ウエハでは、
歩留りが 50%以下となってしまうという問題があった。
On the other hand, a carrier made of a steel material or a stainless steel material has a long service life and strength, and even if it is a thin single crystal wafer of 100 μm or less, it is possible to perform double-side polishing, A large number of cracks and cracks occur on the crystal wafer, especially LiTaO 3 single crystal and LiNbO 3
In a single crystal wafer having a flat surface like a single crystal,
There was a problem that the yield would be less than 50%.

【0005】[0005]

【発明が解決しようとする課題】上述したように、 LiT
aO3 単結晶や LiNbO3 単結晶はヘキカイ面を有し、特に
割れやクラックが生じやすいウエハである。このため、
特に 100μm 以下の薄片単結晶ウエハを両面ポリッシン
グ加工する際、スチ−ル製やステンレス製のキャリヤを
用いたのでは歩留りが極端に低下し、一方ガラス繊維強
化エポキシ樹脂製のキャリヤは強度の点で使用すること
ができず、実質的に 100μm 以下の薄片単結晶ウエハの
両面ポリッシング加工は、量産が不可能とされていた。
[Problems to be Solved by the Invention] As described above, LiT
The aO 3 single crystal and the LiNbO 3 single crystal are wafers that have a sharp surface and are particularly susceptible to cracks and cracks. For this reason,
In particular, when performing single-sided polishing of thin single crystal wafers of 100 μm or less, using a carrier made of steel or stainless steel will significantly reduce the yield.On the other hand, a carrier made of glass fiber reinforced epoxy resin has a strong strength. It could not be used, and it was considered impossible to mass-produce the double-sided polishing process for thin single-crystal wafers of substantially 100 μm or less.

【0006】このようなことから、上記したような薄片
単結晶ウエハのポリッシング加工は、もっぱら人為的な
片面ポリッシング加工によって行われていた。しかしな
がら、このような片面ポリッシング加工においては、ウ
エハ接着、片面ポリッシング加工、ウエハはがし、ウエ
ハ接着、反対面の片面ポリッシング加工等、多くの加工
工程を経ると共に、品質に作業者の技能が大きく関与す
るため、厚みのばらつきも10μm 以上と大きく、また歩
留りの安定性もなく、効率がきわめて悪いポリッシング
で、加工コストも多大であるという難点を有していた。
そして、最近では、焦電センサや高周波用振動子の需要
増加に応じて、薄片酸化物単結晶素子の需要も急速に増
大してきているため、益々 100μm 以下の薄片単結晶ウ
エハを安定して、かつ効率よく両面ポリッシング加工す
ることが可能な加工方法の開発が強く望まれている。
For this reason, the above-described polishing work of the thin-piece single crystal wafer has been performed mainly by artificial one-side polishing work. However, in such one-side polishing, many processing steps such as wafer bonding, one-side polishing, wafer peeling, wafer bonding, and one-side polishing on the opposite side are performed, and the skill of the operator greatly affects the quality. As a result, the thickness variation is as large as 10 μm or more, the yield is not stable, the polishing efficiency is extremely low, and the processing cost is high.
In recent years, the demand for thin-plate oxide single-crystal elements has increased rapidly in response to increasing demand for pyroelectric sensors and high-frequency vibrators, so that thin-plate single-crystal wafers of 100 μm or less can be stably stabilized. Further, it is strongly desired to develop a processing method capable of efficiently performing double-sided polishing.

【0007】本発明は、このような課題に対処するため
になされたもので、厚さ 100μm 以下の薄片単結晶を、
高品質かつ高歩留りで効率よく両面ポリッシング加工す
ることを可能にした薄片単結晶の加工方法を提供するこ
とを目的としている。
The present invention has been made in order to solve such a problem, and a thin single crystal having a thickness of 100 μm or less is formed by
It is an object of the present invention to provide a thin single crystal processing method capable of efficiently performing double-side polishing with high quality and high yield.

【0008】[0008]

【課題を解決するための手段】本発明の薄片単結晶の加
工方法は、厚さ 100μm 以下の薄片単結晶の両面を、同
時にポリッシング加工するにあたり、金属製キャリヤ内
に、繊維強化耐熱性樹脂からなるガイド部材を介して、
前記薄片単結晶を配置し、この状態で両面ポリッシング
加工を行うことを特徴としている。
[Means for Solving the Problems] A method for processing a thin-piece single crystal of the present invention is a method for polishing both surfaces of a single-piece thin crystal having a thickness of 100 μm or less at the same time. Through the guide member
The thin single crystal is arranged, and double-side polishing is performed in this state.

【0009】[0009]

【作用】本発明の薄片単結晶の加工方法においては、両
面ポリッシング時のウエハ保持用キャリヤとして、繊維
強化耐熱性樹脂からなるガイド部材を挿入配置した金属
製キャリヤを用いている。すなわち、薄片単結晶と直接
接する部分となるガイド部材を繊維強化耐熱性樹脂によ
って形成すると共に、機械的な強度が必要とされる部分
は金属製キャリヤによって構成している。これによっ
て、薄片単結晶を硬い金属製キャリヤに接触させること
なく、ソフトに保持することが可能となる。これに加え
て、ガイド部材自体は耐熱性樹脂の強度を繊維によって
高めていると共に、駆動力が加わる部分は金属製キャリ
ヤとしているため、薄片単結晶にチッピングや割れが発
生することを防止した上で、高加圧下での両面ポリッシ
ングが可能となり、薄片単結晶の両面ポリッシングを効
率的にかつ高歩留りで実施することができる。さらに、
繊維によって耐熱性樹脂に強度を持たせて、薄片単結晶
を保持しているため、薄片単結晶の周辺部までもポリッ
シュすることができ、薄片単結晶の周辺部からのチッピ
ングや割れを防止することができる。
In the method for processing a thin single crystal of the present invention, a metal carrier in which a guide member made of fiber reinforced heat resistant resin is inserted and arranged is used as a wafer holding carrier during double-side polishing. That is, the guide member that directly contacts the thin single crystal is formed of a fiber-reinforced heat-resistant resin, and the portion that requires mechanical strength is formed of a metal carrier. This allows the flaky single crystal to be held soft without contacting a hard metal carrier. In addition to this, the guide member itself enhances the strength of the heat-resistant resin by the fiber, and the portion to which the driving force is applied is the metal carrier, so that chipping and cracking of the thin single crystal are prevented. Thus, double-side polishing under high pressure is possible, and double-side polishing of thin single crystal can be efficiently performed with a high yield. further,
Since the heat-resistant resin is given strength by the fiber and holds the thin single crystal, it is possible to polish even the peripheral portion of the thin single crystal and prevent chipping and cracking from the peripheral portion of the thin single crystal. be able to.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0011】図1は、本発明の薄片単結晶の加工方法を
適用した一実施例の加工装置の要部を示す平面図であ
る。同図において、1は金属製キャリヤ例えばスチール
製やステンレス製のキャリヤであり、この金属製キャリ
ヤ1は下定盤2上に配置されている。また、金属製キャ
リヤ1の周囲には、所定ピッチのギヤ1aが設けられて
いる。この金属製キャリヤ1のギヤ1aは、その外周部
に配置されたインターナルギヤ3と中心部に配置された
太陽ギヤ4それぞれに噛み合されており、太陽ギヤ4を
回転駆動させることにより、金属製キャリヤ1は自転し
ながら太陽ギヤ4の周囲を回転運動するよう構成されて
いる。
FIG. 1 is a plan view showing a main part of a processing apparatus of an embodiment to which a thin single crystal processing method of the present invention is applied. In the figure, reference numeral 1 denotes a metal carrier such as a steel or stainless steel carrier, and the metal carrier 1 is arranged on a lower surface plate 2. Further, a gear 1a having a predetermined pitch is provided around the metal carrier 1. The gear 1a of the metallic carrier 1 is meshed with an internal gear 3 arranged on the outer periphery of the gear 1a and a sun gear 4 arranged on the center thereof. The carrier 1 is configured to rotate around the sun gear 4 while rotating on its own axis.

【0012】金属製キャリヤ1には、図2に示すよう
に、複数例えば 2つのウエハ収容部1bが設けられてお
り、このウエハ収容部1b内には繊維強化耐熱性樹脂か
らなるリング状のガイド部材5が挿入配置されている。
そして、このガイド部材5の内側に、両面ポリッシング
加工を施す、厚さ 100μm 以下の薄片単結晶ウエハ6、
例えばLiNb O3 単結晶や LiTaO3 単結晶等の薄片酸化物
単結晶ウエハがセットされる。
As shown in FIG. 2, the metal carrier 1 is provided with a plurality of, for example, two wafer accommodating portions 1b, and in the wafer accommodating portion 1b, a ring-shaped guide made of fiber reinforced heat resistant resin is provided. The member 5 is inserted and arranged.
Then, inside the guide member 5, a thin single crystal wafer 6 having a thickness of 100 μm or less, which is subjected to double-side polishing,
For example LiNb O 3 single crystal and LiTaO 3 thin oxide single crystal wafer of a single crystal or the like is set.

【0013】上記ガイド部材5の構成材質である繊維強
化耐熱性樹脂としては、一般的なガラス繊維を含有する
エポキシ樹脂(ガラス繊維強化エポキシ樹脂)が例示さ
れるが、本発明においてはこれに限定されるものではな
く、強化繊維としてはセラミックス繊維等を用いること
も可能であり、またマトリックス樹脂自体も各種の有機
系樹脂を用いることができる。
An example of the fiber-reinforced heat-resistant resin that is the constituent material of the guide member 5 is a general glass fiber-containing epoxy resin (glass fiber-reinforced epoxy resin), but the present invention is not limited to this. However, ceramic fibers or the like can be used as the reinforcing fiber, and various organic resins can be used as the matrix resin itself.

【0014】また、上記ガイド部材5の寸法としては、
その内径は加工を施す薄片単結晶ウエハ6の外径より 2
mm程度大きく設定することが好ましく、その幅は薄片単
結晶ウエハ6の外径に対し1/15〜 1/5程度に設定するこ
とが好ましい。さらに、ガイド部材5の当初の厚さは、
薄片単結晶ウエハ6の厚さより10μm 以下程度薄く設定
することが望ましい。なお、金属製キャリヤ1の厚さ
は、ガイド部材5と同程度とすることが好ましい。
The size of the guide member 5 is as follows.
The inner diameter is 2 mm smaller than the outer diameter of the thin single crystal wafer 6 to be processed.
It is preferable to set the width to be about mm larger, and the width thereof is preferably set to about 1/15 to 1/5 of the outer diameter of the thin single crystal wafer 6. Furthermore, the initial thickness of the guide member 5 is
It is desirable to set the thickness of the thin single crystal wafer 6 to be thinner than the thickness of the thin single crystal wafer 10 by about 10 μm or less. The thickness of the metal carrier 1 is preferably about the same as that of the guide member 5.

【0015】そして、上述したように、金属製キャリヤ
1内に挿入配置されたガイド部材5の内側に、厚さ 100
μm 以下の薄片単結晶ウエハ6をセットし、図示を省略
した上定盤を下ろした後、研摩液を供給しながら、金属
製キャリヤ1を自転および回転させつつ、下定盤2およ
び上定盤を回転させることによって、薄片単結晶ウエハ
6のポリッシング加工が両面同時に行われる。加工時の
圧力は、適宜設定するものとするが、一般的な金属製キ
ャリアを用いる際と同程度まで圧力を印加することが可
能である。
Then, as described above, the thickness 100 is provided inside the guide member 5 inserted and arranged in the metallic carrier 1.
After setting a thin single-crystal wafer 6 having a thickness of less than μm and lowering an upper platen (not shown), the lower platen 2 and the upper platen are rotated while rotating and rotating the metal carrier 1 while supplying a polishing liquid. By rotating, the thin single crystal wafer 6 is polished on both sides simultaneously. The pressure at the time of processing is set appropriately, but it is possible to apply the pressure to the same extent as when using a general metal carrier.

【0016】なお、本発明の加工方法は、厚さが 100μ
m 以下であれば種々の単結晶ウエハに適用可能である
が、LiNb O3 単結晶や LiTaO3 単結晶等のようにヘキカ
イ面を有し、特に割れやすい薄片酸化物単結晶ウエハの
両面ポリッシング加工に、本発明は特に有効である。ま
た、厚さが 100μm を超える単結晶ウエハの両面ポリッ
シング加工についても、必ずしも除外するものではな
く、結晶面等の関係から割れやすい場合には、本発明が
有効に適用されるものである。
The processing method of the present invention has a thickness of 100 μm.
If m or less is applicable to a variety of single-crystal wafer, LiNb O 3 having a cleavage plane as such as single crystal or LiTaO 3 single crystal, in particular fragile sided polishing process flake oxide single crystal wafer Moreover, the present invention is particularly effective. Further, double-side polishing processing of a single crystal wafer having a thickness of more than 100 μm is not always excluded, and the present invention can be effectively applied to the case where the single crystal wafer is easily cracked due to the relation of the crystal plane and the like.

【0017】次に、上記実施例の両面ポリッシング加工
装置を用いた具体的な加工例とその評価結果について述
べる。
Next, a concrete processing example using the double-sided polishing processing apparatus of the above embodiment and its evaluation result will be described.

【0018】実施例1 まず、ガラス繊維を含有するエポキシ樹脂からなる、厚
さ72μm で幅 4mmのガイド部材を用意した。次いで、両
面ポリッシュマシンに用いられる厚さ72μm のスチ−ル
製キャリヤの 2個のウエハ収容部内に、それぞれ上記ガ
イド部材を挿入配置した。そして、これらのガイド部材
内に、GC #2500で両面ラッピングした、直径62mm×厚
さ 100μm の Z軸 LiTaO3 ウエハをそれそれセットし
た。同様にして、全部で 6個の LiTaO3 ウエハを両面ポ
リッシュマシンにセットした。
Example 1 First, a guide member made of epoxy resin containing glass fiber and having a thickness of 72 μm and a width of 4 mm was prepared. Next, the above guide members were respectively inserted and arranged in the two wafer accommodating portions of the steel carrier having a thickness of 72 μm used in the double-sided polishing machine. Then, Z-axis LiTaO 3 wafers having a diameter of 62 mm and a thickness of 100 μm, which were both-side lapped with GC # 2500, were set in these guide members. Similarly, a total of 6 LiTaO 3 wafers were set in the double-sided polishing machine.

【0019】次に、コロイダルシリカの溶液を流し、静
かにゆっくり上定盤を下ろした後、定盤およびキャリヤ
を回転させた。回転が安定したら、 250g/cm2 の圧力ま
で徐々に加圧し、この状態で 150分間研磨した。その結
果、割れやクラックの発生はなく、80μm の両面ポリッ
シングウエハを歩留りよく得ることができた。厚みバラ
ツキは 2μm と、非常に良好な結果が得られた。また、
側面もきれいな光沢が見られ、ポリッシングされること
が分かった。
Next, a solution of colloidal silica was poured, the upper platen was gently and slowly lowered, and then the platen and the carrier were rotated. When the rotation was stable, the pressure was gradually increased to 250 g / cm 2 , and polishing was performed for 150 minutes in this state. As a result, 80 μm double-sided polished wafers could be obtained with good yield without cracks or cracks. The thickness variation was 2 μm, which was a very good result. Also,
The sides also had a nice luster and were found to be polished.

【0020】実施例2 両面ポリッシュマシンに用いられる厚さ72μm のスチ−
ル製キャリヤの 2個のウエハ収容部内に、それぞれガラ
ス繊維を含むエポキシ樹脂からなるガイド部材(厚さ72
μm 、幅 3mm)を挿入配置した。そして、これらのガイ
ド部材内に、GC #2500で両面ラッピングした、直径62
mm×厚さ 100μm の Z軸 LiTaO3 ウエハをそれそれセッ
トした。同様にして、全部で 6個の LiTaO3 ウエハを両
面ポリッシュマシンにセットした。
Example 2 A 72 μm thick steel sheet used in a double-sided polishing machine.
Guides made of epoxy resin containing glass fiber (thickness 72
(μm, width 3 mm) was inserted and arranged. Then, inside these guide members, double-sided lapping with GC # 2500, diameter 62
Z-axis LiTaO 3 wafers of mm × thickness 100 μm were individually set. Similarly, a total of 6 LiTaO 3 wafers were set in the double-sided polishing machine.

【0021】次に、コロイダルシリカの溶液を流し、静
かにゆっくり上定盤を下ろした後、定盤およびキャリヤ
を回転させた。回転が安定したら、 170g/cm2 の圧力ま
で徐々に加圧し、この状態で 180分間研磨した。その結
果、割れやクラックの発生はなく、80μm の両面ポリッ
シングウエハを歩留りよく得ることができた。厚みバラ
ツキは 2μm と非常に良好な結果が得られた。また、側
面もきれいな光沢が見られ、ポリッシングされることが
分かった。
Next, a solution of colloidal silica was poured, the upper platen was gently and slowly lowered, and then the platen and the carrier were rotated. When the rotation was stable, the pressure was gradually increased to 170 g / cm 2 , and polishing was performed for 180 minutes in this state. As a result, 80 μm double-sided polished wafers could be obtained with good yield without cracks or cracks. The thickness variation was 2 μm, which was a very good result. In addition, it was found that the side surface had a beautiful gloss and was polished.

【0022】実施例3 両面ポリッシュマシンに用いられる厚さ72μm のスチ−
ル製キャリヤの 2個のウエハ収容部内に、それぞれガラ
ス繊維を含むエポキシ樹脂からなるガイド部材(厚さ72
μm 、幅 4mm)を挿入配置した。そして、これらのガイ
ド部材内に、GC #2500で両面ラッピングした、直径62
mm×厚さ 100μm の Z軸 LiTaO3 ウエハをそれそれセッ
トした。同様にして、全部で 6個の LiTaO3 ウエハを両
面ポリッシュマシンにセットした。
Example 3 A 72 μm thick steel sheet used in a double-sided polishing machine.
Guides made of epoxy resin containing glass fiber (thickness 72
(μm, width 4 mm) was inserted and arranged. Then, inside these guide members, double-sided lapping with GC # 2500, diameter 62
Z-axis LiTaO 3 wafers of mm × thickness 100 μm were individually set. Similarly, a total of 6 LiTaO 3 wafers were set in the double-sided polishing machine.

【0023】次に、コロイダルシリカの溶液を流し、静
かにゆっくり上定盤を下ろした後、定盤およびキャリヤ
を回転させた。回転が安定したら、 150g/cm2 の圧力ま
で徐々に加圧し、この状態で 250分間研磨した。その結
果、割れやクラックの発生はなく、80μm の両面ポリッ
シングウエハを歩留りよく得ることができた。厚みバラ
ツキは 2μm と、非常に良好な結果が得られた。また、
側面もきれいな光沢が見られ、ポリッシングされること
が分かった。
Next, a solution of colloidal silica was poured, the upper platen was gently and slowly lowered, and then the platen and the carrier were rotated. After the rotation was stabilized, the pressure was gradually increased to 150 g / cm 2 , and polishing was performed for 250 minutes in this state. As a result, 80 μm double-sided polished wafers could be obtained with good yield without cracks or cracks. The thickness variation was 2 μm, which was a very good result. Also,
The sides also had a nice luster and were found to be polished.

【0024】実施例4 両面ポリッシュマシンに用いられる厚さ72μm のスチ−
ル製キャリヤの 2個のウエハ収容部内に、それぞれガラ
ス繊維を含むエポキシ樹脂からなるガイド部材(厚さ72
μm 、幅 3mm)を挿入配置した。そして、これらのガイ
ド部材内に、GC #2500で両面ラッピングした、直径62
mm×厚さ 100μm の Z軸 LiTaO3 ウエハをそれそれセッ
トした。同様にして、全部で 6個の LiTaO3 ウエハを両
面ポリッシュマシンにセットした。
Example 4 A 72 μm thick steel sheet used in a double-sided polishing machine.
Guides made of epoxy resin containing glass fiber (thickness 72
(μm, width 3 mm) was inserted and arranged. Then, inside these guide members, double-sided lapping with GC # 2500, diameter 62
Z-axis LiTaO 3 wafers of mm × thickness 100 μm were individually set. Similarly, a total of 6 LiTaO 3 wafers were set in the double-sided polishing machine.

【0025】次に、コロイダルシリカの溶液を流し、静
かにゆっくり上定盤を下ろした後、定盤およびキャリヤ
を回転させた。回転が安定したら、 350g/cm2 の圧力ま
で徐々に加圧し、この状態で 120分間研磨した。その結
果、割れやクラックの発生はなく、80μm の両面ポリッ
シングウエハを歩留りよく得ることができた。厚みバラ
ツキは 2μm と、非常に良好な結果が得られた。また、
側面もきれいな光沢が見られ、ポリッシングされること
が分かった。ただし、ガイド部材には若干の変形が見ら
れた。
Next, a solution of colloidal silica was poured, the upper platen was gently and slowly lowered, and then the platen and the carrier were rotated. After the rotation was stabilized, the pressure was gradually increased to 350 g / cm 2 , and polishing was performed for 120 minutes in this state. As a result, 80 μm double-sided polished wafers could be obtained with good yield without cracks or cracks. The thickness variation was 2 μm, which was a very good result. Also,
The sides also had a nice luster and were found to be polished. However, the guide member was slightly deformed.

【0026】比較例1 図3に示すように、従来のスチ−ル製キャリヤ(厚さ72
μm )11のウエハ収容部11a内に、GC #2500で両
面ラッピングした直径62mm×厚さ 100μm の Z軸 LiTaO
3 ウエハをそれぞれ直接セットした。同様にして、全部
で 6個の LiTaO3 ウエハを両面ポリッシュマシンにセッ
トした。
Comparative Example 1 As shown in FIG. 3, a conventional steel carrier (thickness 72
μm) 11 wafer accommodating portion 11a, Z-axis LiTaO with a diameter of 62 mm and a thickness of 100 μm, both sides lapped with GC # 2500
Three wafers were directly set. Similarly, a total of 6 LiTaO 3 wafers were set in the double-sided polishing machine.

【0027】次に、コロイダルシリカの溶液を流し、静
かにゆっくり上定盤を下ろした後、定盤およびキャリヤ
を回転させた。回転が安定したら、 130g/cm2 の圧力ま
で徐々に加圧し、この状態で 360分間研磨した。その結
果、割れが 50%発生すると共に、チッピングは全てのウ
エハに存在し、また周辺にはきずが多く発生していた。
厚さは82μm であり、厚みバラツキは 4μm とやや悪か
った。
Next, a solution of colloidal silica was poured, the upper platen was gently and slowly lowered, and then the platen and the carrier were rotated. When the rotation was stable, the pressure was gradually increased to 130 g / cm 2 , and polishing was performed for 360 minutes in this state. As a result, 50% of cracks were generated, chipping was present on all wafers, and many flaws were generated in the periphery.
The thickness was 82 μm, and the variation in thickness was 4 μm, which was rather bad.

【0028】[0028]

【発明の効果】以上説明したように、本発明の薄片単結
晶の加工方法によれば、ヘキカイ性が強い LiTaO3 単結
晶や LiNbO3 単結晶等の厚さ 100μm 以下の薄片単結晶
も、割れやチッピング等の歩留りを低下させる要因を発
生させることなく、量産的な効率のよい機械加工によっ
て、両面同時ポリッシング加工を行うことが可能とな
る。また、厚みバラツキを少なくできる等、加工品質も
向上する。さらに、薄片単結晶の外周部までポリッシン
グが可能となるため、デバイス化した際の割れも大幅に
減少させることが可能となる。
As described above, according to the method for processing a thin single crystal of the present invention, even a thin single crystal having a thickness of 100 μm or less, such as LiTaO 3 single crystal or LiNbO 3 single crystal having a strong eccentricity, does not crack. The double-sided simultaneous polishing process can be performed by mass-production and efficient machining without generating a factor such as chipping or chipping that lowers the yield. In addition, processing quality is improved, for example, variation in thickness can be reduced. Further, since polishing can be performed up to the outer peripheral portion of the thin piece single crystal, it is possible to significantly reduce cracks when the device is formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した一実施例の両面ポリッシング
加工装置の要部を示す平面図である。
FIG. 1 is a plan view showing a main part of a double-sided polishing processing apparatus according to an embodiment of the present invention.

【図2】図1に示した両面ポリッシング加工装置のキャ
リヤ部分を拡大して示す断面図である。
FIG. 2 is an enlarged sectional view showing a carrier portion of the double-sided polishing processing apparatus shown in FIG.

【図3】従来の両面ポリッシング加工装置を示す平面図
である。
FIG. 3 is a plan view showing a conventional double-sided polishing processing apparatus.

【符号の説明】[Explanation of symbols]

1……金属製キャリヤ 2……下定盤 3……インタ−ナルギヤ 4……太陽ギヤ 5……ガイド部材 6……薄片単結晶ウエハ 1 ... Metal carrier 2 ... Lower platen 3 ... Internal gear 4 ... Sun gear 5 ... Guide member 6 ... Thin single crystal wafer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 厚さ 100μm 以下の薄片単結晶の両面
を、同時にポリッシング加工するにあたり、 金属製キャリヤ内に、繊維強化耐熱性樹脂からなるガイ
ド部材を介して、前記薄片単結晶を配置し、この状態で
両面ポリッシング加工を行うことを特徴とする薄片単結
晶の加工方法。
1. When polishing both surfaces of a thin single crystal having a thickness of 100 μm or less at the same time, the thin single crystal is arranged in a metal carrier through a guide member made of fiber reinforced heat resistant resin, A method for processing a thin single crystal, which comprises performing double-side polishing in this state.
JP3345723A 1991-12-27 1991-12-27 Thin-sliced mono-crystal processing method Withdrawn JPH05177537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345723A JPH05177537A (en) 1991-12-27 1991-12-27 Thin-sliced mono-crystal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345723A JPH05177537A (en) 1991-12-27 1991-12-27 Thin-sliced mono-crystal processing method

Publications (1)

Publication Number Publication Date
JPH05177537A true JPH05177537A (en) 1993-07-20

Family

ID=18378534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345723A Withdrawn JPH05177537A (en) 1991-12-27 1991-12-27 Thin-sliced mono-crystal processing method

Country Status (1)

Country Link
JP (1) JPH05177537A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727747U (en) * 1993-10-18 1995-05-23 直江津電子工業株式会社 Carrier for polishing semiconductor wafers
JP2007090515A (en) * 2005-08-31 2007-04-12 Shin Etsu Chem Co Ltd Wafer polishing method and wafer
JP2008238287A (en) * 2007-03-26 2008-10-09 Naoetsu Electronics Co Ltd Carrier for double-side polishing device
JP2010280026A (en) * 2009-06-03 2010-12-16 Fujikoshi Mach Corp Apparatus and method of double-side grinding
CN107378654A (en) * 2017-09-26 2017-11-24 天通控股股份有限公司 A kind of polishing method of lithium tantanate substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727747U (en) * 1993-10-18 1995-05-23 直江津電子工業株式会社 Carrier for polishing semiconductor wafers
JP2007090515A (en) * 2005-08-31 2007-04-12 Shin Etsu Chem Co Ltd Wafer polishing method and wafer
JP2008238287A (en) * 2007-03-26 2008-10-09 Naoetsu Electronics Co Ltd Carrier for double-side polishing device
JP2010280026A (en) * 2009-06-03 2010-12-16 Fujikoshi Mach Corp Apparatus and method of double-side grinding
CN107378654A (en) * 2017-09-26 2017-11-24 天通控股股份有限公司 A kind of polishing method of lithium tantanate substrate
CN107378654B (en) * 2017-09-26 2019-03-22 天通控股股份有限公司 A kind of polishing method of lithium tantalate wafer

Similar Documents

Publication Publication Date Title
US8288918B2 (en) Composite substrate and manufacturing method thereof
US7588481B2 (en) Wafer polishing method and polished wafer
JPH09138392A (en) Manufacture of composite substrate
WO2006115039A1 (en) Carrier for double side polishing apparatus, and double side polishing apparatus and double side polishing method using such carrier
JPH05177537A (en) Thin-sliced mono-crystal processing method
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
JPH11309665A (en) Manufacture of oxide single crystal substrate
US8999061B2 (en) Method for producing silicon epitaxial wafer
TW200402563A (en) Manufacturing method of liquid crystal display device and its device
JPS58143954A (en) Carrier for precision polish processing
JP2002326156A (en) Carrier for polishing glass substrate, and glass substrate polishing device
JP2011071283A (en) Lamination soi wafer and method for manufacturing the same
JP2002239895A (en) Polishing holding member, polishing method and polishing device
JP5191137B2 (en) Manufacturing method of glass substrate for magnetic disk
JPH09207064A (en) Carrier for double side polisher and method for polishing both faces of work using the carrier
JP2007001789A (en) Method for polishing glass surface
JPH09262761A (en) Method for polishing semi-conductor wafer
JP2020033214A (en) Method for manufacturing oxide single crystal substrate
JPH0218612B2 (en)
CN214771200U (en) Clamp for polishing ultrathin sample
JPS63221968A (en) Carrier
JP2005034926A (en) Polishing method of wafer substrate, and wafer
JPH076984A (en) Manufacture of single crystal wafer
JPH11104954A (en) Polishing carrier and polishing method
JPH11151666A (en) Back pad and surface recessed and projecting part correction method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311