JPH05168633A - Ultrasonic tissue displacement measuring instrument - Google Patents

Ultrasonic tissue displacement measuring instrument

Info

Publication number
JPH05168633A
JPH05168633A JP34085891A JP34085891A JPH05168633A JP H05168633 A JPH05168633 A JP H05168633A JP 34085891 A JP34085891 A JP 34085891A JP 34085891 A JP34085891 A JP 34085891A JP H05168633 A JPH05168633 A JP H05168633A
Authority
JP
Japan
Prior art keywords
displacement
tissue
ultrasonic
living body
displacement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34085891A
Other languages
Japanese (ja)
Other versions
JPH0767451B2 (en
Inventor
Takashi Okada
孝 岡田
Takemitsu Harada
烈光 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP34085891A priority Critical patent/JPH0767451B2/en
Publication of JPH05168633A publication Critical patent/JPH05168633A/en
Publication of JPH0767451B2 publication Critical patent/JPH0767451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To provide the ultrasonic tissue displacement measuring instrument which can observe displacement of a living body tissue extending over a comparatively long time such as a period of breathing or a heart beat. CONSTITUTION:An ultrasonic wave radiated from an ultrasonic probe 12 by a pulse from a transmitter/receiver 11 and reflected from inside of a living body 13 is received by the transmitter/receiver 11 through the ultrasonic probe 12, and inputted to an orthogonal detector 14. A complex signal subjected to orthogonal detection with a prescribed reference signal by the orthogonal detector 14 is inputted to a self-correlator 24, and based on a result of self-correlation derived therefrom, displacement DELTAx of a tissue in the living body is calculated by a displacement amount computing element 25. A displacement integrator 26 starts an integrating operation at a timing of a reset signal 28 outputted from a living body signal detector 27, based on a signal from a living body signal sensor 29, calculates successively the total displacement amount DELTAX in each time, and outputs it to a DSC 21. In such a way, on an indicator 22, the total displacement amount of a living body cross section tissue running along one piece of ultrasonic beam is displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医療用超音波装置に係
り、特に生体内組織の微小変位や変位速度等を超音波に
よって計測する超音波組織変位計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical ultrasonic device, and more particularly to an ultrasonic tissue displacement measuring device for measuring minute displacements, displacement speeds and the like of tissues in a living body by ultrasonic waves.

【0002】[0002]

【従来の技術】近年、超音波診断装置が各種医療分野に
おいて活用されている。この超音波診断装置によれば、
生体の断層像の表示や超音波ドプラ法による血流速度分
布の表示等が行えるが、特に最近では、超音波パルスド
プラ法を用いて、生体内部組織における超音波の波長以
下の微小変位を計測する研究やその臨床応用の研究が活
発になってきている。
2. Description of the Related Art In recent years, ultrasonic diagnostic equipment has been used in various medical fields. According to this ultrasonic diagnostic apparatus,
Although it is possible to display a tomographic image of the living body and display of blood flow velocity distribution by the ultrasonic Doppler method, particularly recently, the ultrasonic pulse Doppler method is used to measure a minute displacement below the wavelength of the ultrasonic wave in the internal tissue of the living body. Research and research on its clinical application are becoming active.

【0003】この微小変位計測によれば、心筋梗塞や動
脈硬化等の部位の同定や肝臓内の組織性状の診断に有用
な情報を提供することができる可能性がある。例えば、
肝臓等の生体内臓器を微視的に観察すると、臓器内の動
脈の拍動により血管に接触した組織が微小変位し、さら
にその変位が周りの組織に伝わっていく。ここで、正常
組織と異常組織とを比較した場合、組織性状の相違から
上記した変位の伝わり方が異なることがある。従って、
組織変位の観察により、組織の弾性特性による組織性状
の診断ができる可能性があり、この組織変位による診断
が近年注目されている。
According to this minute displacement measurement, there is a possibility that it is possible to provide information useful for identifying a site such as myocardial infarction or arteriosclerosis and diagnosing a tissue property in the liver. For example,
When microscopically observing an in-vivo organ such as the liver, the tissue in contact with the blood vessel is minutely displaced by the pulsation of the artery in the organ, and the displacement is further transmitted to surrounding tissues. Here, when a normal tissue and an abnormal tissue are compared with each other, the above-described way of transmitting the displacement may differ due to the difference in tissue properties. Therefore,
By observing the tissue displacement, there is a possibility that the tissue property can be diagnosed based on the elastic property of the tissue, and the diagnosis based on the tissue displacement has been attracting attention in recent years.

【0004】このような組織変位を計測するものとし
て、組織変位計測が行える超音波診断装置が提案されて
いる。この装置は、超音波ドプラ診断法の原理を応用し
たものであり、変位前の受信信号と変位後の受信信号と
の位相差により、超音波ビーム上の組織の変位を演算す
るものである。従って、この原理により超音波の波長よ
り短い分解能で、ミクロンオーダーの組織変位を計測で
きる。
An ultrasonic diagnostic apparatus capable of measuring tissue displacement has been proposed as a device for measuring such tissue displacement. This device applies the principle of the ultrasonic Doppler diagnostic method, and calculates the displacement of the tissue on the ultrasonic beam based on the phase difference between the received signal before displacement and the received signal after displacement. Therefore, according to this principle, micron-order tissue displacement can be measured with a resolution shorter than the wavelength of ultrasonic waves.

【0005】ここで、超音波パルスドプラ法を用いた生
体内組織の微小変位の測定原理を計算式を用いて説明す
る。
Here, the principle of measuring the minute displacement of the in-vivo tissue using the ultrasonic pulse Doppler method will be described using a calculation formula.

【0006】生体内の散乱体から反射してくる超音波受
信信号S1 (t)は、次の(1)式で表される。ここ
に、A1 (t)は振幅、Φ1 (t)は位相、ω0 は送信
信号の角周波数を示す。
The ultrasonic wave reception signal S 1 (t) reflected from the scatterer in the living body is expressed by the following equation (1). Here, A 1 (t) is the amplitude, Φ 1 (t) is the phase, and ω 0 is the angular frequency of the transmission signal.

【0007】 S1 (t)=A1 (t)exp〔−j(ω0 t+Φ1 (t))〕 …(1) 散乱媒質全体がΔxだけ変位したときの受信信号をS2
(t)とすると、これは次の(2)式で表される。
S 1 (t) = A 1 (t) exp [−j (ω 0 t + Φ 1 (t))] (1) The received signal when the entire scattering medium is displaced by Δx is S 2
If it is (t), this is represented by the following equation (2).

【0008】 S2 (t)=S1 (t−Δt) =A1 (t−Δt)exp〔−j(ω0 ・(t−Δt) +Φ1 (t−Δt))〕…(2) ここで、Δtは散乱媒質がΔxだけ変位したときの伝搬
時間差(変位時間)であり、次の(3)式で表される。
ただし、cは音速である。
S 2 (t) = S 1 (t−Δt) = A 1 (t−Δt) exp [−j (ω 0 · (t−Δt) + Φ 1 (t−Δt))] ... (2) Here, Δt is a propagation time difference (displacement time) when the scattering medium is displaced by Δx, and is represented by the following equation (3).
However, c is the speed of sound.

【0009】 Δt=2・Δx/c …(3) この受信信号S1 (t)、S2 (t)を角周波数ω0
直交検波した出力の偏角をθ1 (t)、θ2 (t)とす
ると、これらは次の(4)、(5)式で与えられる。
Δt = 2 · Δx / c (3) The declination of the output obtained by orthogonally detecting the received signals S 1 (t) and S 2 (t) at the angular frequency ω 0 is θ 1 (t) and θ 2 Assuming that (t), these are given by the following equations (4) and (5).

【0010】 θ1 (t)=Φ1 (t) …(4) θ2 (t)=Φ1 (t−Δt)+ω0 Δt …(5) 従って、変位前後の両者の位相差Δθは、次の(6)式
で与えられる。
Θ 1 (t) = Φ 1 (t) (4) θ 2 (t) = Φ 1 (t−Δt) + ω 0 Δt (5) Therefore, the phase difference Δθ between the two before and after the displacement is It is given by the following equation (6).

【0011】 Δθ=θ2 (t)−θ1 (t) =Φ1 (t−Δt)−Φ1 (t)+ω0 Δt …(6) ここで、Φ1 (t−Δt)はΦ1 (t)にほぼ等しいこ
とから、(6)式は次の(7)式となる。
Δθ = θ 2 (t) −θ 1 (t) = Φ 1 (t−Δt) −Φ 1 (t) + ω 0 Δt (6) where Φ 1 (t−Δt) is Φ 1 Since it is almost equal to (t), the equation (6) becomes the following equation (7).

【0012】 Δx=(c/2ω0 )Δθ …(7) ここで、位相差Δθは、例えば特公昭62−44494
号公報で開示されているような通常のカラードプラ装置
で用いられている自己相関法等により求められる。従っ
て、変位量Δxは(7)式から容易に求められる。
Δx = (c / 2ω 0 ) Δθ (7) Here, the phase difference Δθ is, for example, Japanese Patent Publication No. 62-44494.
It is obtained by the autocorrelation method or the like used in a normal color Doppler device as disclosed in Japanese Patent Publication No. Therefore, the displacement amount Δx can be easily obtained from the equation (7).

【0013】[0013]

【発明が解決しようとする課題】このように、従来の超
音波組織変位計測装置では、上記した相関法を用いて
(7)式により組織の変位量Δxを求め、これを表示す
るようになっていた。この場合、相関時間はパルス繰返
し周波数の整数倍であるため、変位量Δxは相関のラグ
時間に等しい比較的短い時間について得られたものとな
る。
As described above, in the conventional ultrasonic tissue displacement measuring apparatus, the displacement amount Δx of the tissue is obtained by the equation (7) using the above-mentioned correlation method, and this is displayed. Was there. In this case, since the correlation time is an integral multiple of the pulse repetition frequency, the displacement amount Δx is obtained for a relatively short time equal to the correlation lag time.

【0014】しかしながら、実際の臨床診断では、例え
ば呼吸や心拍の周期のように比較的長い時間にわたって
組織変位の観察を行うことが要求される場合があり、従
来の超音波組織変位計測装置では対応することができな
いという問題があった。
However, in actual clinical diagnosis, there are cases where it is required to observe the tissue displacement over a relatively long period of time, such as the cycle of breathing or heartbeat, and the conventional ultrasonic tissue displacement measuring device is compatible with this. There was a problem that I could not do it.

【0015】従って、上記問題点を解決しなければなら
ないという課題がある。
Therefore, there is a problem that the above problems must be solved.

【0016】本発明は、かかる問題を解決するためにな
されたもので、呼吸や心拍の周期のような比較的長い時
間にわたって生体組織の変位を観察することができる超
音波組織変位計測装置を得ることを目的する。
The present invention has been made to solve such a problem, and obtains an ultrasonic tissue displacement measuring apparatus capable of observing a displacement of a living tissue over a relatively long time such as a cycle of respiration or a heartbeat. The purpose.

【0017】[0017]

【課題を解決するための手段】請求項1記載の発明に係
る超音波組織変位計測装置は、一定の繰返し周期で超音
波パルスを生体内に送波して生体内組織からの反射波を
受波し、超音波の位相変化に基づき生体組織内の微小変
位を計測する医用超音波装置であって、(i) 生体内組織
からの受信信号と所定の参照信号との直交検波により得
られた信号の自己相関結果から、生体内組織の単位時間
当たりの変位量を演算する変位量演算手段と、(ii)この
変位演算手段により算出された変位量を順次積算する変
位量積算手段とを有するものである。
An ultrasonic tissue displacement measuring apparatus according to a first aspect of the present invention transmits an ultrasonic pulse into a living body at a constant repetition period and receives a reflected wave from a living body tissue. A medical ultrasonic device for measuring a minute displacement in a living tissue based on a phase change of an ultrasonic wave, which is obtained by (i) quadrature detection of a received signal from a living tissue and a predetermined reference signal. From the autocorrelation result of the signal, it has a displacement amount calculating means for calculating the displacement amount of the in-vivo tissue per unit time, and (ii) a displacement amount integrating means for sequentially integrating the displacement amounts calculated by this displacement calculating means. It is a thing.

【0018】請求項2記載の発明では、請求項1記載の
超音波組織変位計測装置における変位量積算手段に、繰
返し周期の整数倍を単位時間とする時間間隔で変位量演
算手段の出力を順次加算する加算器と、この加算器の加
算結果を記憶するメモリとを具備させることとする。
According to a second aspect of the invention, the displacement amount integrating means in the ultrasonic tissue displacement measuring apparatus according to the first aspect sequentially outputs the displacement amount calculating means at time intervals with an integral multiple of the repetition period as a unit time. An adder for adding and a memory for storing the addition result of this adder are provided.

【0019】[0019]

【作用】本発明に係る超音波組織変位計測装置では、生
体内組織の単位時間当たりの変位量が順次積算され、出
力される。
In the ultrasonic tissue displacement measuring apparatus according to the present invention, the displacement amount of the in-vivo tissue per unit time is sequentially integrated and output.

【0020】[0020]

【実施例】以下実施例について、本発明を詳細に説明す
る。ここでは、生体内組織の微小変位のうち超音波ビー
ムに沿う方向の成分を計測するものとして説明するが、
もちろん、二次元的に組織変位を計測する装置に以下に
述べる実施例を応用することも容易である。
The present invention will be described in detail with reference to the following examples. Here, the description will be made assuming that the component in the direction along the ultrasonic beam of the minute displacement of the tissue in the living body is measured.
Of course, it is easy to apply the embodiments described below to a device that two-dimensionally measures the tissue displacement.

【0021】図1は、本発明の一実施例における超音波
組織変位計測装置を表したもので、超音波ドプラ法を応
用して生体内組織の微小変位を計測するものである。こ
の装置には送受信器11が備えられ、図示しない走査制
御器から所定のタイミングで出力される超音波ビーム走
査制御信号に従い、一定の送信繰返し周期で駆動パルス
を発生し、超音波探触子12に供給する。
FIG. 1 shows an ultrasonic tissue displacement measuring apparatus according to an embodiment of the present invention, in which a minute displacement of a tissue in a living body is measured by applying an ultrasonic Doppler method. This device is provided with a transmitter / receiver 11, which generates a drive pulse at a constant transmission repetition period in accordance with an ultrasonic beam scanning control signal output from a scanning controller (not shown) at a predetermined timing, and the ultrasonic probe 12 Supply to.

【0022】超音波探触子12内には超音波振動子(図
示せず)が設けられており、駆動パルスによって発生し
た超音波が生体13内に放射されることになる。生体1
3内の各組織からの反射波は、超音波探触子12の超音
波振動子によって受波され、受信信号は送受信器11に
よって位相合成などの処理が行われた後、直交検波器1
4へ出力される。
An ultrasonic transducer (not shown) is provided in the ultrasonic probe 12, and the ultrasonic wave generated by the driving pulse is radiated into the living body 13. Living body 1
The reflected wave from each tissue in 3 is received by the ultrasonic transducer of the ultrasonic probe 12, the received signal is subjected to processing such as phase combination by the transmitter / receiver 11, and then the quadrature detector 1
4 is output.

【0023】直交検波器14によって直交検波された受
信信号は、振幅演算器16によって振幅値が演算され、
Bモード断層画像形成のためデジタルスキャンコンバー
タ(以下、DSCという)21に出力され、ここで一時
的に記憶される。
The amplitude value of the received signal quadrature-detected by the quadrature detector 14 is calculated by the amplitude calculator 16,
It is output to a digital scan converter (hereinafter referred to as DSC) 21 for B-mode tomographic image formation, and temporarily stored here.

【0024】一方、直交検波器14においては、受信信
号と所定の参照信号との直交検波が行われ、複素信号
I、Qが出力される。これらの複素信号I、Qは自己相
関器24に入力され、ここで複素信号である実数部信号
Iと虚数部信号Qとの共役複素積の演算が行われ、自己
相関が求められる。この自己相関結果は、変位量演算器
25に出力され、ここで生体内組織の変位Δxの演算が
行われる。なお、組織変位Δxを求めるまでの以上の受
信信号処理は、上記(1)〜(7)までの計算式を実現
したものであり、上述したように例えば特公昭62−4
4494号に記載された自己相関法を応用したものであ
る。
On the other hand, the quadrature detector 14 performs quadrature detection of the received signal and a predetermined reference signal and outputs complex signals I and Q. These complex signals I and Q are input to the autocorrelator 24, where the conjugate complex product of the real number part signal I and the imaginary number part signal Q, which are complex signals, is calculated to obtain the autocorrelation. This autocorrelation result is output to the displacement amount calculator 25, where the displacement Δx of the in-vivo tissue is calculated. The above received signal processing until the tissue displacement Δx is obtained is realized by the calculation formulas (1) to (7), and as described above, for example, Japanese Patent Publication No. 62-4.
This is an application of the autocorrelation method described in No. 4494.

【0025】さて、変位量演算器25から出力された変
位信号Δxは変位量積分器26に入力され、ここで順次
積算される。この変位量積分器26には、本装置内若し
くは外部に設けられた生体信号検出器27から出力され
たリセット信号28が入力さるようになっている。この
生体信号検出器27は、生体信号センサ29から得られ
る図3(a)に示すような心電図信号の例えばR波を検
出し、このタイミングで同図(b)に示すリセット信号
28を出力する。この場合、R波以外の信号(Q、S、
T波等)を基準としてもよい。さらに、心電図信号の代
わりに呼吸のタイミングを検出してこれを基準としても
よい。
The displacement signal Δx output from the displacement amount calculator 25 is input to the displacement amount integrator 26, where it is sequentially integrated. A reset signal 28 output from a biological signal detector 27 provided inside or outside the apparatus is input to the displacement integrator 26. The biological signal detector 27 detects, for example, an R wave of the electrocardiogram signal shown in FIG. 3A obtained from the biological signal sensor 29, and outputs a reset signal 28 shown in FIG. .. In this case, signals other than the R wave (Q, S,
T wave, etc.) may be used as a reference. Further, instead of the electrocardiogram signal, the timing of respiration may be detected and used as a reference.

【0026】図2は、変位量積分器26の要部を表した
ものである。この変位量積分器26には加算器31が備
えられ、変位量演算器25で求められた変位量Δxと、
メモリ32から読出信号34のタイミングで読み出され
た変位量積算値とを加算するようになっている。メモリ
32としては、例えばラインメモリが用いられ、いま着
目している1本の超音波ビームに沿った組織の変位量積
算値(以下、1ライン分の積算値と呼ぶ。)が格納可能
となっている。
FIG. 2 shows a main part of the displacement amount integrator 26. The displacement amount integrator 26 is provided with an adder 31, and the displacement amount Δx obtained by the displacement amount calculator 25,
The displacement amount integrated value read from the memory 32 at the timing of the read signal 34 is added. As the memory 32, for example, a line memory is used, and it becomes possible to store a displacement amount integrated value of tissue along one ultrasonic beam of interest (hereinafter, referred to as an integrated value for one line). ing.

【0027】図3(c)に示すように、いま、心電図の
R波(図3(a))に対応するリセット信号28のタイ
ミングを時刻t0 とし、単位時間、すなわちある時刻t
i-1 から次の時刻ti までの変位量をΔxi とすると、
基準時刻t0 から時刻ti までの総変位量ΔXi は次の
(8)式のように表される。
As shown in FIG. 3 (c), the timing of the reset signal 28 corresponding to the R wave of the electrocardiogram (FIG. 3 (a)) is now time t 0 , and the unit time, that is, a certain time t.
If the displacement amount from i−1 to the next time t i is Δx i ,
The total displacement amount ΔX i from the reference time t 0 to the time t i is expressed by the following equation (8).

【0028】 ΔXi =ΔXi-1 +Δxi …(8) ここに、ΔXi-1 は時刻ti-1 までの総変位量を示す。
また、上記した単位時間としては、繰返し周期の整数倍
を採用する。
ΔX i = ΔX i-1 + Δx i (8) Here, ΔX i-1 indicates the total displacement amount up to time t i-1 .
Further, as the unit time described above, an integral multiple of the repetition period is adopted.

【0029】この(8)式の加算は、加算器31により
行われる。すなわち、まず、リセット信号28が入力さ
れると、切換器35はすべてのビットが“0”である初
期値を保持する初期値保持部(図示せず)側に切り換え
られ、メモリ32の内容が初期化される。この後、切換
器35は加算器31の出力側に切り換えられ、加算器3
1からの出力データは順次メモリ32の該当アドレスに
格納される。
The addition of the equation (8) is performed by the adder 31. That is, first, when the reset signal 28 is input, the switch 35 is switched to the side of the initial value holding unit (not shown) that holds the initial values in which all bits are "0", and the contents of the memory 32 are changed. It is initialized. After this, the switch 35 is switched to the output side of the adder 31 and the adder 3
The output data from 1 is sequentially stored in the corresponding address of the memory 32.

【0030】例えば、時刻ti において変位量演算器2
5から出力された変位量Δxi は、メモリ32の対応ア
ドレスに格納された時刻ti-1 までの積算変位量ΔX
i-1 と加算され、再びメモリ32の同一アドレスに格納
される。このような処理を順次行うことにより、各時刻
における総変位量ΔXi が求められ、順次出力されるこ
ととなる。
For example, at time t i , the displacement calculator 2
The displacement amount Δx i output from 5 is the accumulated displacement amount ΔX until the time t i−1 stored in the corresponding address of the memory 32.
It is added to i-1 and stored again at the same address in the memory 32. By sequentially performing such processing, the total displacement amount ΔX i at each time is obtained and sequentially output.

【0031】このようにして変位量積分器26から出力
された変位量積算データΔXi は、DSC21に送られ
て一時的に記憶される。これにより、DSC21には生
体断面のBモード断層画像データと、1ライン分の積算
値とが格納される。そして、これらのデータはDSC2
1から読み出され、D/A変換器(図示せず)によって
アナログ信号に変換された後、表示器22に送られる。
これにより表示器22には、Bモードにおける生体断面
の断層画像と、1本の超音波ビームに沿った生体断面組
織の変位量積算データとが表示されることとなる。
The displacement amount integration data ΔX i output from the displacement amount integrator 26 in this manner is sent to the DSC 21 and temporarily stored therein. As a result, the DSC 21 stores the B-mode tomographic image data of the biological section and the integrated value for one line. And these data are DSC2
1 is read out from the digital camera 1 and converted into an analog signal by a D / A converter (not shown), and then sent to the display 22.
As a result, the display 22 displays the tomographic image of the living body cross section in the B mode and the displacement amount integrated data of the living body cross section tissue along one ultrasonic beam.

【0032】図4は、Bモードによる生体断面の断層画
像の一例を表し、図5は、図4における1本の超音波ビ
ームLL′に沿った生体断面組織の総変位量を時間経過
とともに表したものである。図5において、x軸は超音
波ビームの方向LL′、すなわち生体組織の深さ方向を
示し、z軸は総変位量を示す。また、y軸は時間軸を示
す。なお、ここでは変位量(z軸)を深さ方向(x軸)
と直交する方向に表示しているが、実際には、変位の方
向自体は深さ方向(x軸)と同一である。
FIG. 4 shows an example of a tomographic image of a biological section in the B mode, and FIG. 5 shows the total displacement of the biological section tissue along one ultrasonic beam LL ′ in FIG. It was done. In FIG. 5, the x-axis shows the direction LL ′ of the ultrasonic beam, that is, the depth direction of the living tissue, and the z-axis shows the total displacement amount. Further, the y-axis shows the time axis. Note that here, the displacement amount (z axis) is the depth direction (x axis).
Although it is displayed in a direction orthogonal to, the actual displacement direction is the same as the depth direction (x axis).

【0033】図5に示すように、生体組織の各深さにお
ける変位量が長い時間にわたって表示される。ここで、
深さ方向の測定ポイント数としては例えば500ポイン
ト程度、また時間軸方向には測定時間間隔20msで5
0ポイント程度とることができるが、これ以上の測定ポ
イント数及び測定時間間隔数としてもよい。
As shown in FIG. 5, the displacement amount at each depth of the living tissue is displayed for a long time. here,
The number of measurement points in the depth direction is, for example, about 500 points, and 5 in the time axis direction at a measurement time interval of 20 ms.
About 0 points can be set, but the number of measurement points and the number of measurement time intervals may be more than this.

【0034】また、図4において、測定の対象経路すな
わち超音波ビームの方向LL′を任意に設定することに
より、図5の表示はこれに対応するものとなる。
Further, in FIG. 4, the path of measurement, that is, the direction LL 'of the ultrasonic beam is arbitrarily set, and the display of FIG. 5 corresponds to this.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
生体内組織の単位時間当たりの変位量を順次積算して出
力することとしたので、呼吸や心拍の周期のような比較
的長い時間にわたって組織変位を観察することができる
という効果がある。
As described above, according to the present invention,
Since the displacement amount of the in-vivo tissue per unit time is sequentially integrated and output, there is an effect that the tissue displacement can be observed over a relatively long time such as a cycle of respiration or a heartbeat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における超音波組織変位計測
装置の要部を示すブロック図である。
FIG. 1 is a block diagram showing a main part of an ultrasonic tissue displacement measuring apparatus according to an embodiment of the present invention.

【図2】この超音波組織変位計測装置の変位量積算器の
要部を示すブロック図である。
FIG. 2 is a block diagram showing a main part of a displacement amount integrator of this ultrasonic tissue displacement measuring apparatus.

【図3】この変位量積算器のリセット信号及びその出力
タイミングの基礎として用いられる心電図の信号を示す
説明図である。
FIG. 3 is an explanatory diagram showing a reset signal of the displacement amount integrator and an electrocardiographic signal used as a basis of output timing thereof.

【図4】この超音波組織変位計測装置によるBモード表
示の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of B mode display by this ultrasonic tissue displacement measuring apparatus.

【図5】この超音波組織変位計測装置による生体組織の
総変位量表示の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a total displacement amount display of a living tissue by this ultrasonic tissue displacement measuring device.

【符号の説明】[Explanation of symbols]

11 送受信器 12 超音波探触子 13 生体 14 直交検波器 24 自己相関器 25 変位量演算器 26 変位量積分器 27 生体信号検出器 29 生体信号センサ 11 Transceiver 12 Ultrasonic probe 13 Living body 14 Quadrature detector 24 Autocorrelator 25 Displacement calculator 26 Displacement integrator 27 Biosignal detector 29 Biosignal sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一定の繰返し周期で超音波パルスを生体
内に送波して生体内組織からの反射波を受波し、超音波
の位相変化に基づき生体組織内の微小変位を計測する医
用超音波装置において、 生体内組織からの受信信号と所定の参照信号との直交検
波により得られた信号の自己相関結果から、生体内組織
の単位時間当たりの変位量を演算する変位量演算手段
と、 この変位演算手段により算出された変位量を順次積算す
る変位量積算手段とを具備することを特徴とする超音波
組織変位計測装置。
1. A medical instrument for measuring a minute displacement in a living tissue based on a phase change of the ultrasonic wave, by transmitting an ultrasonic pulse into the living body at a constant repetition period, receiving a reflected wave from a tissue in the living body. In the ultrasonic device, displacement amount calculation means for calculating the displacement amount per unit time of the in-vivo tissue from the autocorrelation result of the signal obtained by orthogonal detection of the received signal from the in-vivo tissue and the predetermined reference signal, An ultrasonic tissue displacement measuring device, comprising: a displacement amount accumulating means for sequentially accumulating the displacement amounts calculated by the displacement calculating means.
【請求項2】 前記変位量積算手段は、前記繰返し周期
の整数倍を単位時間とする時間間隔で前記変位量演算手
段の出力を順次加算する加算器と、この加算器の加算結
果を記憶するメモリとを含むことを特徴とする請求項1
記載の超音波組織変位計測装置。
2. The displacement amount accumulating means stores an adder that sequentially adds the outputs of the displacement amount calculating means at time intervals whose unit time is an integral multiple of the repetition period, and the addition result of the adder. And a memory.
The ultrasonic tissue displacement measuring device described.
JP34085891A 1991-12-24 1991-12-24 Ultrasonic tissue displacement measuring device Expired - Fee Related JPH0767451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34085891A JPH0767451B2 (en) 1991-12-24 1991-12-24 Ultrasonic tissue displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34085891A JPH0767451B2 (en) 1991-12-24 1991-12-24 Ultrasonic tissue displacement measuring device

Publications (2)

Publication Number Publication Date
JPH05168633A true JPH05168633A (en) 1993-07-02
JPH0767451B2 JPH0767451B2 (en) 1995-07-26

Family

ID=18340960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34085891A Expired - Fee Related JPH0767451B2 (en) 1991-12-24 1991-12-24 Ultrasonic tissue displacement measuring device

Country Status (1)

Country Link
JP (1) JPH0767451B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011504A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Ultrasonograph and ultrasonograph control method
JP2018538039A (en) * 2015-11-12 2018-12-27 レスピノル アーエス Ultrasound method and apparatus for respiratory monitoring
JPWO2020213620A1 (en) * 2019-04-17 2020-10-22
CN112161557A (en) * 2020-08-31 2021-01-01 武汉轻工工程技术有限公司 Horizontal displacement measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095675A (en) * 1995-11-21 2005-04-14 Toshiba Corp Ultrasonic diagnostic equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011504A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Ultrasonograph and ultrasonograph control method
JPWO2006011504A1 (en) * 2004-07-28 2008-05-01 松下電器産業株式会社 Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP4602972B2 (en) * 2004-07-28 2010-12-22 パナソニック株式会社 Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
US8414491B2 (en) 2004-07-28 2013-04-09 Panasonic Corporation Ultrasonograph and ultrasonograph control method
JP2018538039A (en) * 2015-11-12 2018-12-27 レスピノル アーエス Ultrasound method and apparatus for respiratory monitoring
US11253223B2 (en) 2015-11-12 2022-02-22 Respinor As Ultrasonic method and apparatus for respiration monitoring
US11766233B2 (en) 2015-11-12 2023-09-26 Respinor As Ultrasonic method and apparatus for respiration monitoring
JPWO2020213620A1 (en) * 2019-04-17 2020-10-22
CN112161557A (en) * 2020-08-31 2021-01-01 武汉轻工工程技术有限公司 Horizontal displacement measuring method

Also Published As

Publication number Publication date
JPH0767451B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US6770034B2 (en) Ultrasonic diagnostic apparatus
US6099471A (en) Method and apparatus for real-time calculation and display of strain in ultrasound imaging
US5840028A (en) Ultrasonic diagnostic equipment
US7404798B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method
KR870000638B1 (en) Ultrasonic fluid observing apparatus
JP4766546B2 (en) Ultrasonic diagnostic equipment
JPH0570769B2 (en)
JP4602906B2 (en) Ultrasonic diagnostic equipment
JPH0417842A (en) Ultrasonic diagnostic apparatus
JPWO2004103185A1 (en) Ultrasonic diagnostic equipment
EP1021129B1 (en) Ultrasound imaging for displaying strain
US6258031B1 (en) Ultrasound diagnostic apparatus
KR100352054B1 (en) Ultrasonic imaging method and apparatus
BAKER Applications of pulsed Doppler techniques
JP4191980B2 (en) Ultrasonic diagnostic apparatus and ultrasonic measurement method
US20100312110A1 (en) Ultrasonograph
JPH05168633A (en) Ultrasonic tissue displacement measuring instrument
JP5014132B2 (en) Ultrasonic diagnostic equipment
JP2955630B1 (en) Cardiac function testing device
JP2801450B2 (en) Ultrasonic tissue displacement measuring device
JP4691185B2 (en) Ultrasonic image display device
JP2005058533A (en) Ultrasonic diagnostic apparatus
JPH10314171A (en) Ultrasonic diagnostic device
JPWO2006126485A1 (en) Ultrasonic diagnostic equipment
Kasai et al. Real‐time blood‐flow imaging system using ultrasonic doppler techniques

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees