JP2005058533A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus Download PDF

Info

Publication number
JP2005058533A
JP2005058533A JP2003293548A JP2003293548A JP2005058533A JP 2005058533 A JP2005058533 A JP 2005058533A JP 2003293548 A JP2003293548 A JP 2003293548A JP 2003293548 A JP2003293548 A JP 2003293548A JP 2005058533 A JP2005058533 A JP 2005058533A
Authority
JP
Japan
Prior art keywords
frequency
tissue
received signal
subject
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003293548A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
隆夫 鈴木
Takashi Hagiwara
尚 萩原
Yoshinao Sorinaka
由直 反中
Yoshinobu Watanabe
良信 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003293548A priority Critical patent/JP2005058533A/en
Publication of JP2005058533A publication Critical patent/JP2005058533A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ultrasonic diagnostic apparatus capable of tracking a subject tissue accurately without being affected by the frequency-dependent attenuation of a subject. <P>SOLUTION: A frequency analyzing part 123 analyzes the frequency characteristic of a received signal to obtain a center frequency. An orthogonal detection part 114 obtains the phase characteristic of the received signal with the center frequency of the received signal as a reference frequency. A tissue tracking part 115 detects the movement of the subject tissue based on the center frequency of the received signal obtained by the frequency analyzing part 123 and the phase characteristic found by the orthogonal detection part 114, and tracks the position of the subject tissue. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被検体組織の弾性率、歪み量、歪み率、粘性率などの物理的特性を表す組織特性画像を表示する超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus that displays a tissue characteristic image representing physical characteristics such as elastic modulus, strain amount, strain rate, and viscosity of a subject tissue.

従来の超音波診断装置は、超音波を被検体に照射し、その反射エコー信号の強度を対応する画素の輝度に変換することで、被検体の構造を断層画像として得るものであった。また、近年、反射エコー信号の位相を解析することで、被検体の動きを精密に測定し、そこから被検体の弾性率を求めるという試みがある。   A conventional ultrasonic diagnostic apparatus irradiates a subject with ultrasonic waves and converts the intensity of the reflected echo signal into the luminance of a corresponding pixel, thereby obtaining the structure of the subject as a tomographic image. In recent years, there has been an attempt to precisely measure the movement of the subject by analyzing the phase of the reflected echo signal and obtain the elastic modulus of the subject therefrom.

例えば、反射エコー信号の検波出力信号の振幅と位相の両者を用いて、被検体の瞬間的な位置を決定することによって高精度に組織の追跡を行ない、拍動による大振幅変位運動上の微小振動を捕らえる方法が提案されている(例えば、特許文献1参照)。   For example, tissue tracking is performed with high accuracy by determining the instantaneous position of the subject using both the amplitude and phase of the detection output signal of the reflected echo signal, and the minute amplitude on the large-amplitude displacement motion due to pulsation A method for capturing vibration has been proposed (see, for example, Patent Document 1).

また、上記の方法をさらに発展させ、心拍による血管壁の内面および外面の各大振幅変位運動を精密に追跡し、大振幅変位運動に重畳されている微小振動の運動速度を求め、その差から血管壁の局所弾性率を求める方法や、弾性率の空間分布を断層画像に重畳表示する装置が提案されている(例えば、特許文献2参照)。   In addition, the above method is further developed to accurately track the large amplitude displacement motions of the inner and outer surfaces of the blood vessel wall due to heartbeats, determine the motion speed of micro vibrations superimposed on the large amplitude displacement motion, and based on the difference A method for obtaining a local elastic modulus of a blood vessel wall and an apparatus that superimposes and displays a spatial distribution of elastic modulus on a tomographic image have been proposed (for example, see Patent Document 2).

以下では、図6を参照して、特許文献1に記載された方法について説明する。被検体の同一方向に対して、ΔT周期で送信された超音波パルスの受信信号をy(t)とy(t+ΔT)とする。ここで、tは時刻を表す。一定深度x1からの受信信号の受信時刻t1は、パルス送信時刻をt=0とすると、t1=x1/(C/2)となる。ただし、Cは音速である。このとき、y(t1)とy(t1+ΔT)との間の位相変位をΔθ、時刻t1付近での超音波の中心周波数をfとすると、この期間ΔTにおけるx1の移動量Δxは
Δx=−C・Δθ/4πf …(式1)
となる。これをx1に加算することで、ΔT秒後のx1の位置x1’は
x1’=x1+Δx …(式2)
のように求めることができ、これを繰り返すことで、被検体の同一部位x1を追跡していくことができる。
特開平10−5226号公報 特開2000−229078号公報
Below, with reference to FIG. 6, the method described in patent document 1 is demonstrated. It is assumed that reception signals of ultrasonic pulses transmitted at a ΔT period with respect to the same direction of the subject are y (t) and y (t + ΔT). Here, t represents time. The reception time t1 of the reception signal from the constant depth x1 is t1 = x1 / (C / 2), where the pulse transmission time is t = 0. Where C is the speed of sound. At this time, if the phase displacement between y (t1) and y (t1 + ΔT) is Δθ and the center frequency of the ultrasonic wave near the time t1 is f, the movement amount Δx of x1 in this period ΔT is Δx = −C Δθ / 4πf (Formula 1)
It becomes. By adding this to x1, the position x1 ′ of x1 after ΔT seconds becomes x1 ′ = x1 + Δx (Expression 2)
By repeating this, the same part x1 of the subject can be tracked.
Japanese Patent Laid-Open No. 10-5226 JP 2000-229078 A

しかしながら、被検体組織の追跡を正確に行なうためには、受信信号の超音波の中心周波数fを正確に与える必要があるが、上記特許文献1に記載の組織追跡方法では、送信周波数または直交検波の参照周波数を使用していた。また、超音波パルスは帯域を持っており、被検体の周波数依存減衰の影響を受けて、受信信号の中心周波数が深さに応じて低下し、これによって追跡精度が低下するという問題があった。   However, in order to accurately track the subject tissue, it is necessary to accurately give the center frequency f of the ultrasonic wave of the received signal. However, in the tissue tracking method described in Patent Document 1, the transmission frequency or quadrature detection is performed. The reference frequency was used. In addition, since the ultrasonic pulse has a band, the center frequency of the received signal is lowered according to the depth due to the influence of the frequency-dependent attenuation of the subject, thereby causing a problem that the tracking accuracy is lowered. .

本発明は、上記従来の問題点に鑑みてなされたもので、その目的は、被検体の周波数依存減衰の影響を補正し、より正確に被検体組織を追跡することができ、さらに被検体組織の物理的特性を表す組織特性をより正確に表示できる超音波診断装置を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is to correct the influence of the frequency-dependent attenuation of the subject, and to trace the subject tissue more accurately. It is an object of the present invention to provide an ultrasonic diagnostic apparatus that can more accurately display tissue characteristics representing the physical characteristics of each other.

前記の目的を達成するため、本発明に係る第1の超音波診断装置は、被検体に対して超音波を送受信する超音波送受信手段と、受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、直交検波手段によって得られた受信信号の位相特性に基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段と、周波数解析手段によって得られた受信信号の中心周波数が所望の値となるように送信周波数を制御する制御部とを備えたものである。   To achieve the above object, a first ultrasonic diagnostic apparatus according to the present invention obtains a center frequency by analyzing an ultrasonic transmission / reception means for transmitting / receiving an ultrasonic wave to / from a subject and a frequency characteristic of a received signal. Based on the frequency analysis means, the quadrature detection means for obtaining the phase characteristic of the received signal by quadrature detection of the received signal, the movement of the subject tissue is detected based on the phase characteristic of the received signal obtained by the quadrature detection means, The apparatus includes a tissue tracking unit that tracks the position of the sample tissue, and a control unit that controls the transmission frequency so that the center frequency of the reception signal obtained by the frequency analysis unit becomes a desired value.

この構成によれば、被検体の周波数依存減衰の影響を受けず、正確に被検体組織を追跡することができる。   According to this configuration, the subject tissue can be accurately tracked without being affected by the frequency-dependent attenuation of the subject.

前記の目的を達成するため、本発明に係る第2の超音波診断装置は、被検体に対して超音波を送受信する超音波送受信手段と、受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、周波数解析手段によって得られた受信信号の中心周波数と、直交検波手段によって得られた受信信号の位相特性とに基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段とを備えたものである。   In order to achieve the above object, a second ultrasonic diagnostic apparatus according to the present invention obtains a center frequency by analyzing an ultrasonic transmission / reception means for transmitting / receiving an ultrasonic wave to / from a subject and a frequency characteristic of a received signal. Frequency analysis means, quadrature detection means for obtaining a phase characteristic of the received signal by quadrature detection of the received signal, a center frequency of the received signal obtained by the frequency analyzing means, and a phase characteristic of the received signal obtained by the quadrature detection means And a tissue tracking means for detecting the movement of the subject tissue and tracking the position of the subject tissue.

この構成によれば、被検体の周波数依存減衰の影響を受けず、正確に被検体組織を追跡することができる。   According to this configuration, the subject tissue can be accurately tracked without being affected by the frequency-dependent attenuation of the subject.

前記の目的を達成するため、本発明に係る第3の超音波診断装置は、被検体に対して超音波を送受信する超音波送受信手段と、受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、周波数解析手段によって得られた受信信号の中心周波数を参照周波数として受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、周波数解析手段によって得られた受信信号の中心周波数と、直交検波手段によって得られた受信信号の位相特性とに基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段とを備えたものである。   In order to achieve the above object, a third ultrasonic diagnostic apparatus according to the present invention obtains a center frequency by analyzing an ultrasonic transmission / reception means for transmitting / receiving an ultrasonic wave to / from a subject and a frequency characteristic of a received signal. A frequency analysis means, a quadrature detection means for obtaining a phase characteristic of the received signal by quadrature detection of the received signal using the center frequency of the received signal obtained by the frequency analyzing means as a reference frequency, and a received signal obtained by the frequency analyzing means Based on the center frequency and the phase characteristic of the received signal obtained by the orthogonal detection means, a tissue tracking means for detecting the movement of the subject tissue and tracking the position of the subject tissue is provided.

この構成によれば、被検体の周波数依存減衰の影響を受けず、正確に被検体組織を追跡することができる。   According to this configuration, the subject tissue can be accurately tracked without being affected by the frequency-dependent attenuation of the subject.

第1から第3の超音波診断装置において、周波数解析手段は、直交検波後の複素信号を周波数解析することが好ましい。これにより、サンプリング周波数を低くすることができ、処理量を減少させることができる。   In the first to third ultrasonic diagnostic apparatuses, the frequency analysis means preferably performs frequency analysis on the complex signal after quadrature detection. As a result, the sampling frequency can be lowered and the amount of processing can be reduced.

また、第1から第3の超音波診断装置はさらに、組織追跡手段によって得られた複数の被検体組織の動きから被検体の組織の物理的特性を表す組織特性量を計算する手段を備えることが好ましい。これにより、被検体の周波数依存減衰の影響を受けず、正確な組織特性量を得ることができる。   The first to third ultrasonic diagnostic apparatuses further include means for calculating a tissue characteristic amount representing a physical characteristic of the subject tissue from the movements of the plurality of subject tissues obtained by the tissue tracking means. Is preferred. Thereby, an accurate tissue characteristic amount can be obtained without being affected by the frequency-dependent attenuation of the subject.

この場合、組織特性量は弾性率、歪み量または歪み率、粘性率である。   In this case, the tissue characteristic amount is an elastic modulus, a strain amount or strain rate, and a viscosity.

本発明によれば、被検体の周波数依存減衰の影響を受けず、正確に被検体組織を追跡することができ、それにより弾性率、歪み量または歪み率、粘性率などの組織特性量を正確に得ることのできる優れた超音波診断装置を提供することが可能になる、という格別な効果を奏する。   According to the present invention, the subject tissue can be accurately tracked without being affected by the frequency-dependent attenuation of the subject, whereby the tissue characteristic amount such as the elastic modulus, the strain amount or the strain rate, and the viscosity rate can be accurately measured. It is possible to provide an excellent ultrasonic diagnostic apparatus that can be obtained easily.

以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、以下の各実施形態では、組織特性量として弾性率を例に挙げて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings. In the following embodiments, the elastic modulus is taken as an example of the tissue characteristic amount.

(第1の実施の形態)
図1Aおよび図1Bは、それぞれ、本発明の第1の実施の形態に係る超音波診断装置の一構成例およびより具体的構成例を示す機能ブロック図である。図1Aおよび図1Bにおいて、制御部100は、超音波診断装置全体を制御する。送信部102は、制御部100からパルス幅、タイミング、パルスの数等の指示を受けて、探触子101を駆動するための高圧パルスを発生する。探触子101は、送信部102からの送信パルスを超音波に変換して被検体に照射するとともに、被検体内部から反射してきた超音波エコーを電気信号に変換する。受信部103は、受信信号を増幅するとともに、定められた位置および方向からの超音波のみを検出する。断層画像処理部104は、被検体の内部構造を画像化する。
(First embodiment)
FIG. 1A and FIG. 1B are functional block diagrams respectively showing a configuration example and a more specific configuration example of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention. 1A and 1B, the control unit 100 controls the entire ultrasound diagnostic apparatus. In response to an instruction from the control unit 100 such as a pulse width, timing, and the number of pulses, the transmission unit 102 generates a high-voltage pulse for driving the probe 101. The probe 101 converts a transmission pulse from the transmission unit 102 into an ultrasonic wave and irradiates the subject, and converts an ultrasonic echo reflected from the inside of the subject into an electric signal. The receiving unit 103 amplifies the received signal and detects only ultrasonic waves from a predetermined position and direction. The tomographic image processing unit 104 images the internal structure of the subject.

直交検波部114は、受信信号を直交検波して受信信号の位相特性を求め、組織追跡部115は、受信信号の位相特性を解析し、受信信号の位相特性と音速から(式1)(式2)を用いて、組織の動きを検出し被検体組織の位置を追跡する。   The quadrature detection unit 114 performs quadrature detection on the received signal to obtain the phase characteristic of the received signal, and the tissue tracking unit 115 analyzes the phase characteristic of the received signal, and calculates (Equation 1) (Equation 1) from the phase characteristic and sound velocity of the received signal. 2) is used to detect the movement of the tissue and track the position of the subject tissue.

周波数解析部123は、受信信号の周波数依存減衰の影響を解析して中心周波数を求めて補正値を送信部102に与え、補正後の中心周波数が所望の周波数となるように、制御部100は送信部102を制御してパルスの幅を変えることで送信周波数を変化させる。   The frequency analysis unit 123 analyzes the influence of the frequency-dependent attenuation of the received signal, obtains the center frequency, gives a correction value to the transmission unit 102, and the control unit 100 sets the corrected center frequency to a desired frequency. The transmission frequency is changed by controlling the transmission unit 102 to change the pulse width.

以上のように、本実施の形態によれば、組織追跡演算に用いる中心周波数を所望の周波数とすることができ、被検体の周波数依存減衰特性がいかなる特性であっても、より正確に被検体組織を追跡することができる。   As described above, according to the present embodiment, the center frequency used for the tissue tracking calculation can be set to a desired frequency, and the subject can be more accurately measured regardless of the frequency-dependent attenuation characteristic of the subject. The organization can be tracked.

さらに、この追跡データをもとに、被検体組織の物理的特性を表す組織特性をより正確に表示できる。   Furthermore, based on this tracking data, tissue characteristics representing physical characteristics of the subject tissue can be displayed more accurately.

図1Bに示すように、弾性率画像処理部105は、直交検波部114と、組織追跡部115と、図1Aに示す組織特性演算処理部120としての弾性率計算部116および弾性率画像作成部117とからなり、被検体の弾性率の2次元分布を画像化する。   As shown in FIG. 1B, the elastic modulus image processing unit 105 includes an orthogonal detection unit 114, a tissue tracking unit 115, an elastic modulus calculation unit 116 and an elastic modulus image creation unit as the tissue characteristic calculation processing unit 120 shown in FIG. 1A. 117, and the two-dimensional distribution of the elastic modulus of the subject is imaged.

弾性率計算部116は、直交検波部114により追跡された複数の組織の動きから組織の歪み量を計算し、血圧測定部108で測定した血圧値と歪み量から組織の局所弾性率を計算する。弾性率画像作成部117は、弾性率の2次元分布を画像化した弾性率画像を作成する。   The elastic modulus calculation unit 116 calculates the amount of tissue strain from the movements of a plurality of tissues tracked by the orthogonal detection unit 114, and calculates the local elastic modulus of the tissue from the blood pressure value and the amount of strain measured by the blood pressure measurement unit 108. . The elastic modulus image creation unit 117 creates an elastic modulus image obtained by imaging a two-dimensional distribution of elastic modulus.

心電測定部109は、心電図を測定し、R波によって、組織追跡部115および弾性率計算部116の初期化を行なう。周波数解析部123は、受信信号の周波数特性を解析して中心周波数を求めて送信部102に与え、制御部100は、送信部102に与えられる中心周波数を制御する。   The electrocardiogram measurement unit 109 measures the electrocardiogram, and initializes the tissue tracking unit 115 and the elastic modulus calculation unit 116 with the R wave. The frequency analysis unit 123 analyzes the frequency characteristics of the received signal to obtain a center frequency and gives it to the transmission unit 102, and the control unit 100 controls the center frequency given to the transmission unit 102.

画像合成部106は、断層画像と弾性率画像、さらに心電波形などを合成し、モニタ107上に表示する。また、断層画像メモリ110は断層画像を、弾性率画像メモリ111は弾性率画像を、波形メモリ112は心電波形をそれぞれ記録する。   The image synthesis unit 106 synthesizes a tomographic image and an elastic modulus image, and an electrocardiographic waveform, and displays them on the monitor 107. The tomographic image memory 110 records a tomographic image, the elastic modulus image memory 111 records an elastic modulus image, and the waveform memory 112 records an electrocardiographic waveform.

図2は、モニタ107の表示画面の一例を示す図である。モニタ画面には、断層画像200上に弾性率画像201が重畳表示されるほか、断層画像の反射強度と画面上の輝度との対応を示す断層画像用の反射強度スケール202や、弾性率と画面上の色調または輝度との対応を示す弾性率画像用の弾性率スケール203、心電波形204などが表示される。図2の断層画像200および弾性率画像201は、一例として、粥腫301のある血管の長軸断面302を示している。   FIG. 2 is a diagram illustrating an example of the display screen of the monitor 107. On the monitor screen, the elastic modulus image 201 is superimposed and displayed on the tomographic image 200, the reflection intensity scale 202 for the tomographic image showing the correspondence between the reflection intensity of the tomographic image and the luminance on the screen, the elastic modulus and the screen. An elastic modulus scale 203 for an elastic modulus image, an electrocardiogram waveform 204, and the like showing the correspondence with the upper color tone or luminance are displayed. The tomographic image 200 and the elastic modulus image 201 in FIG. 2 show a long-axis cross section 302 of a blood vessel with an atheroma 301 as an example.

このように、本実施の形態によれば、被検体の周波数依存減衰の影響を補正し、より正確に被検体組織を追跡することができ、さらに被検体組織の物理的特性を表す組織特性をより正確に表示できる超音波診断装置を提供することが可能になる。   As described above, according to the present embodiment, the influence of the frequency-dependent attenuation of the subject can be corrected, the subject tissue can be traced more accurately, and the tissue characteristics representing the physical characteristics of the subject tissue can be obtained. It is possible to provide an ultrasonic diagnostic apparatus that can display more accurately.

(第2の実施の形態)
図3は、本発明の第2の実施の形態に係る超音波診断装置の一構成例を示す機能ブロック図である。図3に示す本実施の形態では、周波数解析部123は、受信信号の周波数特性を解析して中心周波数を求め、組織追跡部115は、周波数解析部123によって得られた中心周波数と、直交検波部114によって得られた位相特性とに基づいて、被検体組織の動きを検出し、その位置を追跡する。
(Second Embodiment)
FIG. 3 is a functional block diagram showing a configuration example of the ultrasonic diagnostic apparatus according to the second embodiment of the present invention. In the present embodiment shown in FIG. 3, the frequency analysis unit 123 analyzes the frequency characteristics of the received signal to obtain the center frequency, and the tissue tracking unit 115 performs orthogonal detection with the center frequency obtained by the frequency analysis unit 123. Based on the phase characteristics obtained by the unit 114, the movement of the subject tissue is detected and its position is tracked.

以上のように、本実施の形態によれば、被検体の周波数依存減衰特性がいかなる特性であっても、正確に被検体組織を追跡することができる。   As described above, according to the present embodiment, the subject tissue can be accurately tracked regardless of the frequency-dependent attenuation characteristic of the subject.

(第3の実施の形態)
図4は、本発明の第3の実施の形態に係る超音波診断装置の一構成例を示す機能ブロック図である。図4に示す本実施の形態では、周波数解析部123は、受信信号の周波数特性を解析して中心周波数を求め、直交検波部114は、周波数解析部123によって得られた中心周波数を参照周波数として直交検波を行い、受信信号の位相特性を求める。組織追跡部115は、周波数解析部123によって得られた中心周波数と、直交検波部114によって得られた位相特性とに基づいて、被検体組織の動き検出し、その位置を追跡する。
(Third embodiment)
FIG. 4 is a functional block diagram showing a configuration example of an ultrasonic diagnostic apparatus according to the third embodiment of the present invention. In the present embodiment shown in FIG. 4, the frequency analysis unit 123 analyzes the frequency characteristics of the received signal to obtain the center frequency, and the quadrature detection unit 114 uses the center frequency obtained by the frequency analysis unit 123 as a reference frequency. Quadrature detection is performed to obtain the phase characteristics of the received signal. The tissue tracking unit 115 detects the movement of the subject tissue based on the center frequency obtained by the frequency analysis unit 123 and the phase characteristics obtained by the quadrature detection unit 114, and tracks its position.

以上のように、本実施の形態によれば、被検体の周波数依存減衰特性がいかなる特性であっても、さらに正確に被検体組織を追跡することができる。   As described above, according to the present embodiment, the subject tissue can be traced more accurately regardless of the frequency-dependent attenuation characteristic of the subject.

(第4の実施の形態)
なお、上記各実施形態では、周波数解析を行なう受信信号は直交検波前の信号を用いたが、図5に示すように、スイッチ124を設け、可動切片をa接点側に切り換えることで、直交検波後の複素信号を用いることもできる。この構成によれば、サンプリング周波数を低くすることができ、処理量を減少させることができるというメリットがある。
(Fourth embodiment)
In each of the above embodiments, the received signal for performing the frequency analysis is a signal before quadrature detection. However, as shown in FIG. 5, by providing a switch 124 and switching the movable segment to the a contact side, quadrature detection is performed. Later complex signals can also be used. According to this configuration, there is an advantage that the sampling frequency can be lowered and the processing amount can be reduced.

なお、上記各実施の形態では、被検体組織の追跡波形を用いて局所弾性率を求め、その2次元分布を画像化する超音波診断装置について説明したが、本発明の趣旨は追跡波形の精度を向上させることにあり、追跡波形を用いて、歪み量や、粘性率、脈波速度などを求める超音波診断装置はすべて本発明に含まれるものである。   In each of the above-described embodiments, the ultrasonic diagnostic apparatus for obtaining the local elastic modulus using the tracking waveform of the subject tissue and imaging the two-dimensional distribution has been described. However, the gist of the present invention is the accuracy of the tracking waveform. Any ultrasonic diagnostic apparatus that uses a tracking waveform to obtain a distortion amount, a viscosity, a pulse wave velocity, and the like is included in the present invention.

本発明に係る超音波診断装置は、被検体の周波数依存減衰の影響を受けず、正確に被検体組織を追跡することができ、それにより弾性率、歪み量または歪み率、粘性率などの組織特性量を正確に得ることのできるという利点を有し、医療等の用途に適用できる。   The ultrasonic diagnostic apparatus according to the present invention can accurately track a subject tissue without being affected by the frequency-dependent attenuation of the subject, and thereby a tissue such as elastic modulus, strain amount or strain rate, viscosity rate, and the like. It has the advantage that the characteristic amount can be obtained accurately, and can be applied to medical uses.

本発明の第1の実施形態に係る超音波診断装置の一構成例を示す機能ブロック図1 is a functional block diagram showing a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment of the present invention. 本発明の第1の実施形態に係る超音波診断装置のより具体的構成例を示す機能ブロック図FIG. 1 is a functional block diagram showing a more specific configuration example of an ultrasonic diagnostic apparatus according to the first embodiment of the present invention. モニタの表示画面の一例を示す図The figure which shows an example of the display screen of a monitor 本発明の第2の実施形態に係る超音波診断装置の一構成例を示す機能ブロック図Functional block diagram showing a configuration example of an ultrasonic diagnostic apparatus according to the second embodiment of the present invention 本発明の第3の実施形態に係る超音波診断装置の一構成例を示す機能ブロック図Functional block diagram showing a configuration example of an ultrasonic diagnostic apparatus according to the third embodiment of the present invention 本発明の第4の実施形態に係る超音波診断装置の一構成例を示す機能ブロック図Functional block diagram showing a configuration example of an ultrasonic diagnostic apparatus according to the fourth embodiment of the present invention 従来の超音波診断装置における被検体組織の追跡方法を説明するための図The figure for demonstrating the tracking method of the target tissue in the conventional ultrasonic diagnostic apparatus

符号の説明Explanation of symbols

100 制御部
101 探触子
102 送信部
103 受信部
104 断層画像処理部
105 弾性率画像処理部
106 画像合成部
107 モニタ
108 血圧測定部
109 心電測定部
110 断層画像メモリ
111 弾性率画像メモリ
112 波形メモリ
114 直交検波部
115 組織追跡部
116 弾性率計算部
117 弾性率画像作成部
120 組織特性演算処理部
123 周波数解析部
124 スイッチ
200 断層画像
201 弾性率画像
202 断層画像用の反射強度スケール
203 弾性率画像用の弾性率スケール
204 心電波形
301 粥種
302 血管の長軸断面
DESCRIPTION OF SYMBOLS 100 Control part 101 Probe 102 Transmitting part 103 Receiving part 104 Tomographic image processing part 105 Elastic modulus image processing part 106 Image composition part 107 Monitor 108 Blood pressure measuring part 109 ECG measuring part 110 Tomographic image memory 111 Elastic modulus image memory 112 Waveform Memory 114 Orthogonal detection unit 115 Tissue tracking unit 116 Elastic modulus calculation unit 117 Elastic modulus image creation unit 120 Tissue characteristic calculation processing unit 123 Frequency analysis unit 124 Switch 200 Tomographic image 201 Elastic modulus image 202 Reflection intensity scale for tomographic image 203 Elastic modulus Elasticity scale for images 204 ECG waveform 301 Species 302 Long-axis cross section of blood vessel

Claims (8)

被検体に対して超音波を送受信する超音波送受信手段と、
受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、
受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、
前記直交検波手段によって得られた前記受信信号の位相特性に基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段と、
前記周波数解析手段によって得られた受信信号の中心周波数が所望の値となるように送信周波数を制御する制御部とを備えた超音波診断装置。
Ultrasound transmitting and receiving means for transmitting and receiving ultrasound to and from the subject;
A frequency analysis means for analyzing the frequency characteristics of the received signal to obtain a center frequency;
A quadrature detection means for quadrature detection of the received signal to obtain a phase characteristic of the received signal;
Tissue tracking means for detecting the movement of the subject tissue based on the phase characteristics of the received signal obtained by the orthogonal detection means, and tracking the position of the subject tissue;
An ultrasonic diagnostic apparatus comprising: a control unit that controls a transmission frequency so that a center frequency of a reception signal obtained by the frequency analysis unit becomes a desired value.
被検体に対して超音波を送受信する超音波送受信手段と、
受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、
受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、
前記周波数解析手段によって得られた受信信号の中心周波数と、前記直交検波手段によって得られた受信信号の位相特性とに基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段とを備えた超音波診断装置。
Ultrasound transmitting and receiving means for transmitting and receiving ultrasound to and from the subject;
A frequency analysis means for analyzing the frequency characteristics of the received signal to obtain a center frequency;
A quadrature detection means for quadrature detection of the received signal to obtain a phase characteristic of the received signal;
Based on the center frequency of the received signal obtained by the frequency analyzing means and the phase characteristic of the received signal obtained by the quadrature detecting means, the movement of the subject tissue is detected and the position of the subject tissue is tracked. An ultrasonic diagnostic apparatus comprising a tissue tracking means.
被検体に対して超音波を送受信する超音波送受信手段と、
受信信号の周波数特性を解析して中心周波数を求める周波数解析手段と、
前記周波数解析手段によって得られた受信信号の中心周波数を参照周波数として受信信号を直交検波して受信信号の位相特性を求める直交検波手段と、
前記周波数解析手段によって得られた受信信号の中心周波数と、前記直交検波手段によって得られた受信信号の位相特性とに基づいて、被検体組織の動きを検出し、被検体組織の位置を追跡する組織追跡手段とを備えた超音波診断装置。
Ultrasound transmitting and receiving means for transmitting and receiving ultrasound to and from the subject;
A frequency analysis means for analyzing the frequency characteristics of the received signal to obtain a center frequency;
Quadrature detection means for obtaining a phase characteristic of the received signal by performing quadrature detection of the received signal using the center frequency of the received signal obtained by the frequency analyzing means as a reference frequency;
Based on the center frequency of the received signal obtained by the frequency analyzing means and the phase characteristic of the received signal obtained by the quadrature detecting means, the movement of the subject tissue is detected and the position of the subject tissue is tracked. An ultrasonic diagnostic apparatus comprising a tissue tracking means.
前記周波数解析手段は、直交検波後の複素信号を周波数解析する請求項1から3のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1, wherein the frequency analysis unit performs frequency analysis on a complex signal after quadrature detection. 前記超音波診断装置はさらに、
前記組織追跡手段によって得られた複数の被検体組織の動きから被検体の組織の物理的特性を表す組織特性量を計算する手段を備えた請求項1から4のいずれかに記載の超音波診断装置。
The ultrasonic diagnostic apparatus further includes
The ultrasonic diagnosis according to any one of claims 1 to 4, further comprising means for calculating a tissue characteristic amount representing a physical characteristic of a tissue of a subject from movements of a plurality of subject tissues obtained by the tissue tracking means. apparatus.
前記組織特性量は弾性率である請求項5記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 5, wherein the tissue characteristic amount is an elastic modulus. 前記組織特性量は歪み量または歪み率である請求項5記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 5, wherein the tissue characteristic amount is a strain amount or a strain rate. 前記組織特性量は粘性率である請求項5記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 5, wherein the tissue characteristic amount is a viscosity.
JP2003293548A 2003-08-14 2003-08-14 Ultrasonic diagnostic apparatus Withdrawn JP2005058533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293548A JP2005058533A (en) 2003-08-14 2003-08-14 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293548A JP2005058533A (en) 2003-08-14 2003-08-14 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2005058533A true JP2005058533A (en) 2005-03-10

Family

ID=34370462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293548A Withdrawn JP2005058533A (en) 2003-08-14 2003-08-14 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2005058533A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132203A1 (en) * 2005-06-07 2006-12-14 Hitachi Medical Corporation Ultrasonographic device and ultrasonic elastic image acquisition method
KR100932472B1 (en) 2005-12-28 2009-12-18 주식회사 메디슨 Ultrasound Diagnostic System for Detecting Lesions
US8021302B2 (en) 2007-03-07 2011-09-20 Kabushiki Kaisha Toshiba Ultrasonic apparatus and ultrasonic diagnostic method
JP2015024132A (en) * 2013-06-18 2015-02-05 コニカミノルタ株式会社 Ultrasonic diagnostic device, ultrasonic diagnostic method and program
CN111035410A (en) * 2018-10-11 2020-04-21 深圳迈瑞生物医疗电子股份有限公司 Ultrasound system, method of generating image data, and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132203A1 (en) * 2005-06-07 2006-12-14 Hitachi Medical Corporation Ultrasonographic device and ultrasonic elastic image acquisition method
JP5258291B2 (en) * 2005-06-07 2013-08-07 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic elastic image acquisition method
KR100932472B1 (en) 2005-12-28 2009-12-18 주식회사 메디슨 Ultrasound Diagnostic System for Detecting Lesions
US8021302B2 (en) 2007-03-07 2011-09-20 Kabushiki Kaisha Toshiba Ultrasonic apparatus and ultrasonic diagnostic method
JP2015024132A (en) * 2013-06-18 2015-02-05 コニカミノルタ株式会社 Ultrasonic diagnostic device, ultrasonic diagnostic method and program
CN111035410A (en) * 2018-10-11 2020-04-21 深圳迈瑞生物医疗电子股份有限公司 Ultrasound system, method of generating image data, and storage medium
CN111035410B (en) * 2018-10-11 2023-11-07 深圳迈瑞生物医疗电子股份有限公司 Ultrasound system, method of generating image data, and storage medium

Similar Documents

Publication Publication Date Title
JP5294687B2 (en) Ultrasonic measuring device and control method thereof
US7404798B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method
US10278671B2 (en) Shear wave detection in medical ultrasound imaging
JP4189405B2 (en) Ultrasonic diagnostic equipment
JP4766546B2 (en) Ultrasonic diagnostic equipment
WO2008023618A1 (en) Ultrasonograph
JP2004073287A (en) Ultrasonic diagnostic system, ultrasonic image display device and method for displaying ultrasonic image
KR101922522B1 (en) Sound speed imaging using shear waves
JPWO2007034738A1 (en) Ultrasonic diagnostic equipment
JP2006325704A (en) Ultrasonic diagnostic apparatus
JP2001061840A (en) Ultrasonograph
JP2006115937A (en) Ultrasonic diagnostic apparatus
CN106955125B (en) Motion independence in acoustic radiation force pulse imaging
US20100312110A1 (en) Ultrasonograph
JP2005058533A (en) Ultrasonic diagnostic apparatus
JP6663029B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
EP2853918B1 (en) Shear wave detection in medical ultrasound imaging
JP4627221B2 (en) Ultrasonic diagnostic equipment
JP2005027941A (en) Ultrasonic diagnostic apparatus
JPH0767451B2 (en) Ultrasonic tissue displacement measuring device
JP2006230618A (en) Ultrasonic diagnostic apparatus
JPWO2006126485A1 (en) Ultrasonic diagnostic equipment
JP5239118B2 (en) Ultrasonic diagnostic equipment
JP2007097938A (en) Ultrasonic diagnostic apparatus
JP2007054226A (en) Ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107