JPH05163575A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH05163575A
JPH05163575A JP3350779A JP35077991A JPH05163575A JP H05163575 A JPH05163575 A JP H05163575A JP 3350779 A JP3350779 A JP 3350779A JP 35077991 A JP35077991 A JP 35077991A JP H05163575 A JPH05163575 A JP H05163575A
Authority
JP
Japan
Prior art keywords
substrate
thin film
conductor
film
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3350779A
Other languages
Japanese (ja)
Inventor
Takeshi Obata
毅 小畑
Kazuhiro Baba
和宏 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3350779A priority Critical patent/JPH05163575A/en
Publication of JPH05163575A publication Critical patent/JPH05163575A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform thin film of a large area without leaving a gap on an insulating substrate by DC glow discharge plasma CVD with a simple device. CONSTITUTION:A thin conductor film 14 is formed on an insulating substrate 13 and the periphery of the resulting substrate 17 is coated with an annular conductor sheet 16. The inside of the sheet 16 and the top of the periphery of the film 14 are brought into linear contact with each other and the substrate 17 and the conductor sheet 16 are kept at the same electric potential so as to prevent the generation of arc. The desired thin film 15 is then formed on the substrate 17 by DC glow discharge plasma CVD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流グロ―放電プラズマ
CVD法により、絶縁性基体上にも薄膜形成を可能とす
る薄膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film on an insulating substrate by a direct current glow discharge plasma CVD method.

【0002】[0002]

【従来の技術】今日、エレクトロニクス・デバイスのス
ケ―ルは年々縮小化の傾向にある。今までになかった小
さなスケ―ルのデバイスを作製するためには、従来のバ
ルク技術ではもはや不可能になってきており、より高度
な薄膜化が要求されている。そういったなかで、薄膜の
作製技術が注目され、様々な薄膜の形成手法が研究・開
発されてきた。なかでも、気体のプラズマ放電を利用し
た薄膜の作製方法は、クリ―ンな条件で薄膜を形成する
ことができるため、様々なデバイスの作製に広く利用さ
れている。なかでも、直流グロ―放電プラズマを利用し
た化学的気相合成法(直流グロ―放電PCVD法)は、
電極間に直流電圧を印加し、気体原料をプラズマ状態に
励起する事により化学的に分解したものを薄膜として堆
積させる方法であり、簡便な装置で、稠密な薄膜を得る
ことができ、また、大面積で、比較的凹凸のあるものに
も均一に薄膜を形成することができるという利点を持っ
ている。ただし、直流グロ―放電PCVD法では、導電
性の基体には薄膜を形成できるが、通常絶縁性の基体に
は薄膜を形成することができないという欠点が存在す
る。
2. Description of the Related Art Today, the scale of electronic devices is shrinking year by year. In order to fabricate a small-scale device that has never existed before, it is no longer possible with the conventional bulk technology, and more advanced thinning is required. Under such circumstances, attention has been paid to thin film manufacturing techniques, and various thin film forming techniques have been researched and developed. Among them, the method of forming a thin film using a plasma discharge of gas can form the thin film under a clean condition, and is therefore widely used for manufacturing various devices. Among them, the chemical vapor phase synthesis method using direct current glow discharge plasma (direct current glow discharge PCVD method) is
It is a method of depositing a chemically decomposed thin film as a thin film by applying a DC voltage between the electrodes and exciting the gas raw material into a plasma state, and with a simple device, a dense thin film can be obtained. It has an advantage that a thin film can be uniformly formed even on a large area and relatively uneven. However, the DC glow discharge PCVD method has a drawback in that a thin film can be formed on a conductive substrate, but a thin film cannot be normally formed on an insulating substrate.

【0003】[0003]

【発明が解決しようとする課題】以上述べたように、従
来の直流グロ―放電PCVD法は簡便な装置で大面積の
均一な薄膜を得る有効な手段であるが、通常絶縁性基体
上に薄膜を形成することが不可能である。絶縁性基体上
に薄い導体膜を設け、該導体膜を通じて電気的導通を得
ることにより、直流グロ―放電PCVD法で薄膜を形成
する事も可能ではあるが、この場合、導体膜と対向電極
との間のア―ク発生により、薄膜に損傷やむらが生じる
という欠点が存在した。しかしながら、大面積で均一な
薄膜の形成法としてはかなり有望であるので、その絶縁
性基体上への薄膜形成技術の確立が熱望されていた。例
えば、磁気ディスクの分野においては、磁気記録媒体を
磁気ヘッドの衝突や摩擦から守るための保護膜を必要と
するが、この磁気ディスクの保護膜としては、特願昭6
2−234328号にあるような直流グロ―放電プラズ
マCVD法による硬質非晶質炭素膜が良好な結果を得て
いる。従来、磁気ディスクにおいては、磁気記録媒体を
支持する基体として導電性のアルミニウム製基体を用い
ていたが、最近では、表面をより平坦に加工できるガラ
ス製基体を用いる事が検討されている。
As described above, the conventional DC glow discharge PCVD method is an effective means for obtaining a uniform thin film having a large area with a simple device. However, a thin film is usually formed on an insulating substrate. Is impossible to form. It is also possible to form a thin film by a direct current glow discharge PCVD method by providing a thin conductor film on an insulating substrate and obtaining electrical conduction through the conductor film. In this case, the conductor film and the counter electrode are formed. There was a drawback that the thin film was damaged or uneven due to the generation of arc during the period. However, since it is quite promising as a method for forming a large-area and uniform thin film, there has been a strong demand for establishment of a thin-film forming technique on the insulating substrate. For example, in the field of magnetic disks, a protective film is required to protect the magnetic recording medium from the collision and friction of the magnetic head.
The hard amorphous carbon film by the direct current glow discharge plasma CVD method as described in JP-A-2-234328 has obtained good results. Conventionally, in a magnetic disk, a conductive aluminum substrate is used as a substrate for supporting a magnetic recording medium, but recently, use of a glass substrate capable of processing the surface to be flatter has been considered.

【0004】そこで我々は、平坦性に優れたガラス製基
体上に導電性の磁気記録媒体を形成して作った基板上
に、優れた特性をもつ直流グロ―放電プラズマCVD法
による硬質非晶質炭素膜を保護膜として形成する方法を
検討してきた。しかしながら、従来の方法では、プラズ
マ放電時にア―クが発生し、保護膜の損傷が見られた。
また、ア―ク放電を防止する方法として、図5(a)の
ように磁気ディスク基板71の外周を面接触で覆うよう
な外周押さえ72で覆う方法があるが、この場合、図5
(b)のように磁気ディスク基板71の外周に硬質非晶
質炭素保護膜74が形成されない隙間75が生じるとい
う欠点が存在した。本発明は上記の欠点を改善し、絶縁
性基体にも直流グロ―放電プラズマCVD法により、簡
便な装置で、大面積の均一な薄膜を隙間なく形成する方
法を提供することを目的とする。
Therefore, we have formed a hard amorphous material by a direct current glow discharge plasma CVD method having excellent characteristics on a substrate made by forming a conductive magnetic recording medium on a glass substrate having excellent flatness. A method of forming a carbon film as a protective film has been investigated. However, in the conventional method, an arc was generated during plasma discharge, and the protective film was damaged.
Further, as a method of preventing arc discharge, there is a method of covering the outer circumference of the magnetic disk substrate 71 with surface contact as shown in FIG. 5A, but in this case, as shown in FIG.
As shown in (b), there is a defect that a gap 75 in which the hard amorphous carbon protective film 74 is not formed is formed on the outer periphery of the magnetic disk substrate 71. It is an object of the present invention to improve the above-mentioned drawbacks and to provide a method for forming a uniform thin film of a large area on an insulating substrate by a direct current glow discharge plasma CVD method with a simple apparatus without gaps.

【0005】[0005]

【課題を解決するための手段】本発明は、絶縁性基体上
に導体薄膜が形成された基板の外周を環状の導体板で覆
い、前記導体薄膜の全外周端部で前記導体板と線接触さ
せることにより基板と導体板を同電位に保持しつつ基板
上に直流グロ―放電プラズマ気相成長法によって薄膜を
堆積させることよりなり、前記導体板は、前記基板の外
周より大径の内周端と、前記基板の外周より小径の内周
端とを有し、その径が連続的に変化する内周面を有する
ことを特徴とする薄膜の形成方法である。
According to the present invention, an outer periphery of a substrate having a conductive thin film formed on an insulating substrate is covered with an annular conductive plate, and the entire outer peripheral edge of the conductive thin film makes line contact with the conductive plate. By holding the substrate and the conductor plate at the same potential by depositing a thin film on the substrate by the direct current glow discharge plasma vapor deposition method, wherein the conductor plate has an inner circumference larger than the outer circumference of the substrate. A method for forming a thin film is characterized in that it has an end and an inner peripheral end having a diameter smaller than the outer periphery of the substrate, and has an inner peripheral surface whose diameter continuously changes.

【0006】以下、図面に基づいて本発明を説明する。
図1は本発明による薄膜の形成方法に用いられる形成装
置の一例の中心部の構成図である。絶縁性基体13とし
ては薄膜を支持できる材料であれば特に問題はない。ま
た、絶縁性基体13上に形成する導体薄膜14の形成方
法は、均質な被膜が形成される方法であれば特別な制限
はなく、蒸着法、プラズマCVD法ないしはスパッタ法
等を用いることができる。このようにして作成された基
板17は、電極板12上に設置され、さらにその外周は
環状の導体板16で隙間なく覆われる。また、導体板1
6の内周面は、基板17の上に形成された導体薄膜14
の外周上部と線接触しており、こうすることにより、電
極板12、導体薄膜14、導体板16は全て同電位に保
たれ、直流グロ―放電時のア―ク発生が防止される。
The present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a central portion of an example of a forming apparatus used in a thin film forming method according to the present invention. There is no particular problem with the insulating substrate 13 as long as it is a material capable of supporting a thin film. The method of forming the conductor thin film 14 formed on the insulating substrate 13 is not particularly limited as long as it is a method of forming a uniform coating, and a vapor deposition method, a plasma CVD method, a sputtering method, or the like can be used. .. The substrate 17 thus formed is placed on the electrode plate 12, and the outer periphery of the substrate 17 is covered with the annular conductor plate 16 without any gap. Also, the conductor plate 1
The inner peripheral surface of 6 is the conductor thin film 14 formed on the substrate 17.
The electrode plate 12, the conductor thin film 14, and the conductor plate 16 are all kept at the same potential, and the occurrence of arc during DC glow discharge is prevented.

【0007】次に、対向電極11と基板17の間に直流
電圧を印加し、所望の薄膜15を直流グロ―放電法によ
り形成する。図2はそれに用いられる装置全体の一例を
示す構成図である。図2において真空槽21に陰極板3
1を設置し、その上に絶縁性基体32上に導体薄膜33
を形成した基板36を設置し、さらに、基板36の外周
は導体板35で覆われ、基板36は陰極板31と同電位
に保たれている。ここで導体板35は同時に直流グロ―
放電中のア―ク発生を防ぐ役割も果たしている。また、
基板36の上方に平行に陽極板30を設置する。原料2
6は固体、液体、気体のいずれでも良いが、適当な方法
で気体にして用いる。原料気体はマスフロ―コントロ―
ラ(MFC)25で流量を調整した後、気体導入バルブ
24を通して供給される。ここで図2には一対の原料と
MFCのみを描いたが、複数の元素からなる膜を基板上
に形成したいときは、原料と、それに見合ったMFCを
必要な数だけ用意すれば良い。真空槽21内は排気装置
22と排気バルブ23により適当な圧力に調整される。
基板36と陽極板30との間には直流電源27により直
流電圧が印加され、直流グロ―放電が発生し、基板36
上に所望の薄膜34が形成される。形成される所望の薄
膜34の膜質は、真空槽21内の圧力や直流電源27に
より印加される電圧等により大きく変化するが、真空槽
21内の圧力が0.1Torr〜20Torr、そして
直流電源27により印加される電圧値は正常グロ―放電
が維持できる値の時に均一な膜を得ることができる。
Next, a direct current voltage is applied between the counter electrode 11 and the substrate 17 to form a desired thin film 15 by a direct current glow discharge method. FIG. 2 is a block diagram showing an example of the entire apparatus used for it. In FIG. 2, the cathode plate 3 is attached to the vacuum chamber 21.
1 and the conductor thin film 33 on the insulating substrate 32.
A substrate 36 on which is formed is placed, and the outer periphery of the substrate 36 is covered with a conductor plate 35, and the substrate 36 is kept at the same potential as the cathode plate 31. Here, the conductor plate 35 is simultaneously dc
It also plays a role in preventing arcing during discharge. Also,
The anode plate 30 is installed in parallel above the substrate 36. Raw material 2
6 may be a solid, a liquid or a gas, but it is used as a gas by an appropriate method. Raw material gas is mass flow control
After the flow rate is adjusted by the LA (MFC) 25, the gas is supplied through the gas introduction valve 24. Although only a pair of raw materials and MFCs are shown in FIG. 2, when it is desired to form a film composed of a plurality of elements on a substrate, the raw materials and the required number of MFCs can be prepared. The inside of the vacuum chamber 21 is adjusted to an appropriate pressure by an exhaust device 22 and an exhaust valve 23.
A DC voltage is applied between the substrate 36 and the anode plate 30 by the DC power supply 27, and DC glow discharge is generated.
A desired thin film 34 is formed on top. The film quality of the desired thin film 34 to be formed greatly changes depending on the pressure in the vacuum chamber 21 and the voltage applied by the DC power source 27, but the pressure in the vacuum chamber 21 is 0.1 Torr to 20 Torr, and the DC power source 27 A uniform film can be obtained when the applied voltage value is such that normal glow discharge can be maintained.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。絶
縁性基体として、ガラス製の5.25インチ磁気ディス
クを用い、その上に導体薄膜として、コバルト・クロム
・タンタルを含む磁気記録媒体層をスパッタ法により約
20μm形成させ、さらに、その上にシリコン被膜を室
温でアルゴンガスを用いたRFスパッタ法により、アル
ゴンガス圧力を10-3〜10-2Torr、RF電力を1
00〜150Wという条件下で約50オングストロ―ム
形成させた。このようにして形成されたガラス基板上
に、硬質非晶質炭素膜を直流グロ―放電PCVD法によ
り形成した。
EXAMPLES Examples of the present invention will be described below. A 5.25-inch magnetic disk made of glass was used as an insulating substrate, and a magnetic recording medium layer containing cobalt, chromium, and tantalum was formed thereon to a thickness of about 20 μm by a sputtering method as a conductor thin film, and silicon was further formed thereon. The coating was subjected to an RF gas sputtering method using argon gas at room temperature at an argon gas pressure of 10 −3 to 10 −2 Torr and an RF power of 1
About 50 angstroms were formed under the condition of 00 to 150W. A hard amorphous carbon film was formed on the glass substrate thus formed by a DC glow discharge PCVD method.

【0009】硬質非晶質炭素膜は図3に示した装置を用
いて形成した。排気装置52で真空槽51を10-6To
rr台まで排気した後、原料としてCH4とH2とを体積
混合比CH4/H2が0.01〜0.1の範囲で導入し、
真空槽51内の気体の全圧を0.1〜20Torrとし
た。ガラス製磁気ディスク基体43は、そこに形成され
ている導体薄膜44(この場合、磁気記録媒体層とシリ
コン被膜)の内周部分と、金属製治具47との接触を通
じてア―ス電位の陰極板42と同電位にしてある。さら
に、金属製治具47上にはア―ク放電防止の為の絶縁性
カバ―48が設けてある。磁気ディスクのように中央に
穴を持つ基板においては、このように基板の内周を通じ
て電気的導通を得ることも可能である。
The hard amorphous carbon film was formed using the apparatus shown in FIG. The exhaust chamber 52 is used to move the vacuum chamber 51 to 10 -6 To
After evacuated to rr stand, a volume mixing ratio of the CH 4 and H 2 as raw materials CH 4 / H 2 is introduced in the range of 0.01 to 0.1,
The total pressure of the gas in the vacuum chamber 51 was 0.1 to 20 Torr. The glass magnetic disk substrate 43 is a cathode having an earth potential through contact between a metal jig 47 and the inner peripheral portion of the conductor thin film 44 (in this case, the magnetic recording medium layer and the silicon coating) formed thereon. It has the same potential as the plate 42. Further, an insulating cover 48 for preventing arc discharge is provided on the metal jig 47. In the case of a substrate having a hole in the center like a magnetic disk, it is possible to obtain electrical conduction through the inner circumference of the substrate in this way.

【0010】また、内周に斜面を有する環状のステンレ
ス製板46で導体薄膜44の外周を覆った。ステンレス
製板46の内周の斜面の角度θを50〜70度、ステン
レス製板46が導体薄膜44の外周に覆いかぶさる長さ
dを1mm以下とする事により、導体薄膜44上に外周
いっぱいまで隙間なく硬質非晶質炭素膜45を形成する
事が可能となった。また、ステンレス製板46の代わり
に、ステンレス以外の導電性材料の板を使用しても同じ
ように良好な結果が得られた。ステンレス製板46の内
周面と導体薄膜44の外周上部との線接触によりステン
レス製板46と導体薄膜44とは同電位に保たれ、それ
により直流グロ―放電時のア―ク発生を防止でき、損傷
やむらのない硬質非晶質炭素膜45を形成する事ができ
るようになった。ここで、ステンレス製板46の内周の
構造は、ステンレス製板46の内周と導体薄膜44の外
周とが隙間なく線接触できるようにすればどの様な構造
でも、直流グロ―放電時のア―ク発生を防止する効果が
あった。次に、陽極板41に直流電源53により電圧を
印加し、直流グロ―放電を発生させた。この時印加する
電圧は、放電電流密度が0.1〜3mA/cm2となる
ように設定した。また、グロ―放電中のガラス製磁気デ
ィスク基体43は特に外部からの加熱を行わず、硬質非
晶質炭素膜45の厚さは1000オングストロ―ム以下
とした。
Further, the outer circumference of the conductor thin film 44 was covered with an annular stainless steel plate 46 having an inclined surface on the inner circumference. The angle θ of the slope of the inner circumference of the stainless steel plate 46 is 50 to 70 degrees, and the length d that the stainless steel plate 46 covers the outer circumference of the conductor thin film 44 is set to 1 mm or less, so that the outer circumference is fully covered on the conductor thin film 44. It is possible to form the hard amorphous carbon film 45 without any gap. Also, similar results were obtained when a plate made of a conductive material other than stainless steel was used instead of the stainless steel plate 46. The stainless steel plate 46 and the conductor thin film 44 are kept at the same potential by the line contact between the inner peripheral surface of the stainless steel plate 46 and the outer peripheral upper part of the conductor thin film 44, thereby preventing the occurrence of arc during DC glow discharge. As a result, the hard amorphous carbon film 45 without damage or unevenness can be formed. Here, the structure of the inner circumference of the stainless steel plate 46 may be any structure as long as the inner circumference of the stainless steel plate 46 and the outer circumference of the conductor thin film 44 can be in line contact with each other without a gap. It was effective in preventing arcing. Next, a voltage was applied to the anode plate 41 by a DC power supply 53 to generate a DC glow discharge. The voltage applied at this time was set so that the discharge current density was 0.1 to 3 mA / cm 2 . Further, the glass magnetic disk substrate 43 during the glow discharge was not particularly heated from the outside, and the thickness of the hard amorphous carbon film 45 was set to 1000 angstroms or less.

【0011】このようにして形成した硬質非晶質炭素膜
は、目視による検査において、外周いっぱいまで全面に
わたってむらなく形成されており、ア―ク放電による損
傷等も見られなかった。また、エリプソメトリ―を用い
た膜厚測定により、面内の膜厚むらが硬質非晶質炭素膜
膜厚の10%以内、さらに、3次元粗さ測定により表面
の平均粗さが1nm以下、最大突起高さも8nm以下
と、大面積で、優れた平坦性を持つことが分かった。次
に、同様の硬質非晶質炭素膜で厚さが100オングスト
ロ―ムのものについて、磁気ヘッドを磁気ディスクに押
しつけた後、磁気ディスクを磁気ヘッドが浮上するまで
高速回転させ、浮上後再び停止し、再度磁気ヘッドをデ
ィスク面に接触させるという動作を繰り返すいわゆるコ
ンタクト・スタ―ト・ストップ(CSS)試験と摩擦係
数測定が同時に実施可能なCSS−μ試験により耐摩耗
性および潤滑性を評価した結果、潤滑剤を用いることな
く2万回のCSS試験後も、磁気ディスク表面には摩耗
による損傷や膜のはがれ等は認められず、また、摩擦係
数も0.6以下と、本発明により形成した硬質非晶質炭
素膜は優れた耐摩耗性、密着性と潤滑性を持ち、磁気デ
ィスクの保護膜として十分実用に耐えることが分かっ
た。
In the visual inspection, the hard amorphous carbon film thus formed was formed evenly over the entire circumference and no damage due to arc discharge was observed. Further, the in-plane film thickness unevenness is 10% or less of the hard amorphous carbon film film thickness measured by ellipsometry, and the average surface roughness is 1 nm or less by three-dimensional roughness measurement. It was found that the maximum protrusion height was 8 nm or less, and that the large area and excellent flatness were obtained. Next, with respect to the same hard amorphous carbon film having a thickness of 100 angstrom, after the magnetic head was pressed against the magnetic disk, the magnetic disk was rotated at high speed until the magnetic head floated, and then stopped again after the floating. Then, wear resistance and lubricity were evaluated by the so-called contact start stop (CSS) test in which the operation of bringing the magnetic head into contact with the disk surface again is repeated and the CSS-μ test in which the friction coefficient can be simultaneously measured. As a result, no damage due to abrasion or peeling of the film was observed on the surface of the magnetic disk even after 20,000 CSS tests without using a lubricant, and the friction coefficient was 0.6 or less. It was found that the hard amorphous carbon film thus prepared has excellent wear resistance, adhesiveness and lubricity, and can be practically used as a protective film for a magnetic disk.

【0012】また、通常磁気ディスクは記録量を増やす
ため上下両面を使用するが、上下両面に同時に硬質非晶
質炭素膜を形成するには、図4のような装置を用いれば
良い。すなわち、陽極板64をガラス製磁気ディスク基
体61の上下に平行に配置し、ガラス製磁気ディスク基
体61を、絶縁性カバ―66で覆われた、陰極を兼ねた
金属製治具65と内周で接触させる。次に、ガラス製磁
気ディスク基体61の外周を、内周に斜面を有する輪環
状の導体板63で上下から隙間なく挟み込む事により、
先ほどと同様の手法で、両面同時に硬質非晶質炭素膜6
2が形成可能である。
[0012] Normally, the upper and lower surfaces are used in order to increase the recording amount of the magnetic disk, but in order to simultaneously form hard amorphous carbon films on the upper and lower surfaces, a device as shown in Fig. 4 may be used. That is, the anode plate 64 is arranged parallel to the upper and lower sides of the glass magnetic disk base 61, and the glass magnetic disk base 61 is covered with an insulating cover 66 and a metal jig 65 also serving as a cathode and an inner circumference. Contact with. Next, by sandwiching the outer circumference of the glass magnetic disk base 61 from above and below with a ring-shaped conductor plate 63 having an inclined surface on the inner circumference,
A hard amorphous carbon film 6 is formed on both surfaces simultaneously by the same method as described above.
2 can be formed.

【0013】[0013]

【発明の効果】以上説明した通り、本発明による薄膜の
形成方法は、ア―ク発生が防止されるので、絶縁性基体
上に大面積の均一な薄膜を隙間なく形成する事ができ、
エレクトロニクスの成膜技術の要求に十分耐え得る実用
性の高いものといえる。
As described above, in the method of forming a thin film according to the present invention, since the occurrence of arc is prevented, it is possible to form a uniform thin film having a large area on the insulating substrate without any gap.
It can be said that it is highly practical enough to withstand the demands of electronics film formation technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の形成方法に用いられる装置の一例の中
心部分の構成図である。
FIG. 1 is a configuration diagram of a central portion of an example of an apparatus used in a forming method of the present invention.

【図2】本発明の形成方法に用いられる装置の一例の構
成図である。
FIG. 2 is a configuration diagram of an example of an apparatus used in the forming method of the present invention.

【図3】実施例に用いた装置の一例の構成図である。FIG. 3 is a configuration diagram of an example of an apparatus used in an example.

【図4】実施例に用いた装置の別の一例の中心部分の構
成図である。
FIG. 4 is a configuration diagram of a central portion of another example of the apparatus used in the embodiment.

【図5】従来の薄膜形成方法の一例の説明図である。FIG. 5 is an explanatory diagram of an example of a conventional thin film forming method.

【符号の説明】[Explanation of symbols]

11 対向電極 12 電極板 13 絶縁性基体 14 導体薄膜 15 所望の薄膜 16 導体板 17 基板 21 真空槽 22 排気装置 23 排気バルブ 24 基体導入バルブ 25 マスフロ―コントロ―ラ(MFC) 26 原料 27 直流電源 28 電流導入端子 30 陽極板 31 陰極板 32 絶縁性基体 33 導体薄膜 34 所望の薄膜 35 導体板 36 基板 41 陽極板 42 陰極板 43 ガラス製磁気ディスク基体 44 導体薄膜(磁気記録媒体およびシリコン被膜) 45 硬質非晶質炭素膜 46 ステンレス製
板 47 金属製治具 48 絶縁性カバ― 51 真空槽 52 排気装置 53 直流電源 61 ガラス製磁気
ディスク基体 62 硬質非晶質炭素膜 63 導体板 64 陽極板 65 陰極を兼ねた
金属製治具 66 絶縁性カバ― 71 磁気ディスク
基板 72 外周押さえ 74 硬質非晶質炭素保護膜 75 隙間
11 Counter Electrode 12 Electrode Plate 13 Insulating Substrate 14 Conductor Thin Film 15 Desired Thin Film 16 Conductor Plate 17 Substrate 21 Vacuum Tank 22 Exhaust Device 23 Exhaust Valve 24 Substrate Introduction Valve 25 Mass Flow Controller (MFC) 26 Raw Material 27 DC Power Supply 28 Current introducing terminal 30 Anode plate 31 Cathode plate 32 Insulating substrate 33 Conductor thin film 34 Desired thin film 35 Conductor plate 36 Substrate 41 Anode plate 42 Cathode plate 43 Glass magnetic disk substrate 44 Conductor thin film (magnetic recording medium and silicon coating) 45 Hard Amorphous carbon film 46 Stainless steel plate 47 Metal jig 48 Insulating cover 51 Vacuum tank 52 Exhaust device 53 DC power supply 61 Glass magnetic disk substrate 62 Hard amorphous carbon film 63 Conductor plate 64 Anode plate 65 Cathode Combined metal jig 66 Insulating cover 71 Magnetic disk substrate 7 Periphery presser 74 hard amorphous carbon protective film 75 gap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基体上に導体薄膜が形成された基
板の外周を環状の導体板で覆い、前記導体薄膜の全外周
端部で前記導体板と線接触させることにより基板と導体
板を同電位に保持しつつ基板上に直流グロ―放電プラズ
マ気相成長法によって薄膜を堆積させることよりなり、
前記導体板は、前記基板の外周より大径の内周端と、前
記基板の外周より小径の内周端とを有し、その径が連続
的に変化する内周面を有することを特徴とする薄膜の形
成方法。
1. A substrate and a conductor plate are covered by covering the outer periphery of a substrate having a conductor thin film formed on an insulating substrate with an annular conductor plate and making line contact with the conductor plate at the entire outer peripheral end of the conductor thin film. It consists of depositing a thin film on the substrate by DC direct discharge plasma vapor deposition while maintaining the same potential,
The conductor plate has an inner peripheral end having a diameter larger than the outer periphery of the substrate and an inner peripheral end having a smaller diameter than the outer periphery of the substrate, and has an inner peripheral surface whose diameter continuously changes. Method for forming thin film.
JP3350779A 1991-12-12 1991-12-12 Formation of thin film Pending JPH05163575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3350779A JPH05163575A (en) 1991-12-12 1991-12-12 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3350779A JPH05163575A (en) 1991-12-12 1991-12-12 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH05163575A true JPH05163575A (en) 1993-06-29

Family

ID=18412811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3350779A Pending JPH05163575A (en) 1991-12-12 1991-12-12 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH05163575A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304103A (en) * 1991-05-29 1993-11-16 Solems Sa Method and apparatus for treating substrate with low-voltage plasma
JPH07122502A (en) * 1993-10-21 1995-05-12 Nec Corp Plasma machining device
JP2011187722A (en) * 2010-03-09 2011-09-22 Fujitsu Ltd Method of manufacturing electronic device
JP2019061771A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Plasma processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304103A (en) * 1991-05-29 1993-11-16 Solems Sa Method and apparatus for treating substrate with low-voltage plasma
JPH07122502A (en) * 1993-10-21 1995-05-12 Nec Corp Plasma machining device
JP2011187722A (en) * 2010-03-09 2011-09-22 Fujitsu Ltd Method of manufacturing electronic device
JP2019061771A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Plasma processing apparatus

Similar Documents

Publication Publication Date Title
EP1157598B1 (en) Method for deposition of diamond-like carbon coatings from a hall-current ion source
EP0717127A2 (en) Plasma processing method and apparatus
EP0523609B1 (en) Method for forming a film with plasma CVD process
US4361595A (en) Method for preparing an abrasive lapping disc
JPH05163575A (en) Formation of thin film
JP4627835B2 (en) Sputtering apparatus and thin film forming method
US3755123A (en) Method for sputtering a film on an irregular surface
US4512284A (en) Glow discharge apparatus for use in coating a disc-shaped substrate
JPH0863840A (en) Vtr head drum in which diamond-like hard carbon film is coated doubly and method and equipment for forming said coating layer
JP2594534B2 (en) Magnetic storage
JPH06248458A (en) Plasma treatment device and production of magnetic disk by using this device
JP2000222724A (en) Film forming method and production of magnetic recording medium
JP3172384B2 (en) Hard carbon film forming apparatus and film forming method using the same
JPH0613335A (en) Method of plasma cvd for fabricating thin film
US5879569A (en) Magnetic disk and method of and apparatus for manufacturing magnetic disk
JP2623785B2 (en) Magnetic disk
JP2970344B2 (en) Plasma equipment
JP2000226670A (en) Cvd device, and manufacture of magnetic recording medium
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JP3008666B2 (en) Manufacturing method of metal thin film type magnetic recording medium
JPH0778871B2 (en) Magnetic disk
JPH01147072A (en) Method and apparatus for forming thin film
JPH05298689A (en) Formation of magnetic disk protective film
JPH04313812A (en) Magnetic disk
JP2003277937A (en) Electrode member