JP4627835B2 - Sputtering apparatus and thin film forming method - Google Patents

Sputtering apparatus and thin film forming method Download PDF

Info

Publication number
JP4627835B2
JP4627835B2 JP2000082914A JP2000082914A JP4627835B2 JP 4627835 B2 JP4627835 B2 JP 4627835B2 JP 2000082914 A JP2000082914 A JP 2000082914A JP 2000082914 A JP2000082914 A JP 2000082914A JP 4627835 B2 JP4627835 B2 JP 4627835B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
substrate holder
film
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000082914A
Other languages
Japanese (ja)
Other versions
JP2001262336A (en
Inventor
行樹 栗田
信二 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2000082914A priority Critical patent/JP4627835B2/en
Publication of JP2001262336A publication Critical patent/JP2001262336A/en
Application granted granted Critical
Publication of JP4627835B2 publication Critical patent/JP4627835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタリング装置及び薄膜形成方法に係り、特に磁気ディスク装置(HDD)、半導体集積回路、液晶表示装置等に用いられる種々の絶縁物薄膜を高い膜厚均一性をもって形成するのに好適なスパッタリング装置及び薄膜形成方法に関する。
【0002】
【従来の技術】
磁気ディスク装置(HDD)、半導体集積回路、液晶表示装置等の分野においては、各素子が高特性化するに伴い、構成薄膜の高性能化と共にかかる薄膜の膜厚均化の要求が強くなっている。さらに、生産性を高めるため、基板が大型化しつつあることから、膜厚分布に優れた薄膜を形成する技術に対する要求は一層高まり、その研究開発が盛んに行われている。
【0003】
例えば、近年、磁気ディスクの面記録密度は著しい上昇を続けていて、現在、30Gbit/平方インチが達成されようとしている。これに伴い、磁気ディスク用ヘッド(以後、「磁気ヘッド」という。)の開発も進み、MR(Magnet Resistance)ヘッドからGMR(Giant Magnet Resistance)ヘッドヘの移行が急速に進み、将来的には50〜100Gbit/平方インチの面記録密度に対応する新世代の磁気ディスク用ヘッドの研究開発が行われている。
【0004】
代表的な再生用磁気のヘッド構造は、例えば、基板(アルチック基板)、基板保護膜(Al)、下部シールド(メッキCu:)、再生下部ギャップ(Al)、再生素子(GMR膜)、ハードバイアス(CoFe系強磁性膜)、再生電極(Cu)、再生上部ギャップ(Al)、下部磁極兼上部シールド(メッキCu)、記録ギャップ(Al)、中間膜(Al)、上部磁極(メッキCu)、保護膜(Al)から構成されている。このように、多層構造の磁気ヘッドにおいては、各機能膜を隔離あるいは保護するために、何層ものアルミナ絶縁膜が形成されていて、最終デバイスとしての磁気ヘッド特性を得るためには、高い耐電圧特性を有するアルミナ絶縁膜が要求される。特に、ギャップ用アルミナ絶縁膜は、20〜30nm程度と薄いため、膜厚分布があるとその耐電圧特性に影響し、歩留まりが大幅に低下する。また、その一方、現在は4〜5インチ径の基板が用いられているが、生産性を高めるため、8インチ基板への移行の検討がされている。8インチの大型基板においては、数万個の磁気ヘッドを作製することになるので、デバイス特性の均一化さらには歩留まりの向上の観点から、アルミナ絶縁膜の膜厚均一性を達成するスパッタリング法の確立は極めて重要な課題となっている。
かかる事情は、磁気ヘッドの絶縁膜に限らず、半導体集積回路や液晶表示装置の薄膜トランジスタ基板についても同様である。
【0005】
【発明が解決しようとする課題】
そこで、本発明者らは、大型基板に絶縁物薄膜の膜厚均一性を向上を目的に、スパッタリング装置の構造並びに成膜方式・条件の検討を行った。具体的には、基板とターゲットの配置、基板回転方法、ターゲットエロージョンの均一化等について詳細な検討を行った。
この中で、自公転成膜方式(特願平11−072653号)や斜め入射成膜方式(特願平11−008000号)とマグネットをターゲット中心軸から偏心させて回転させる方式のRMC(Rotary Magnet Cathode)カソードを採用することにより、膜厚均一性を大幅に向上させることに成功した。しかしながらアルミナ等の絶縁膜の場合、導線性膜に比べて膜厚均一性の改善の程度は低く、特に膜厚が薄くなると、その傾向が顕著となることが分かった。すなわち、これらの方式を用いても、絶縁膜の膜厚分布の改善には限界があった。
【0006】
本発明者らは、この原因を検討をする中で、例えば、基板ホルダー電位を電気的に浮遊状態にする場合と接地する場合とで、膜厚均一性が異なることを見い出し、基板ホルダーの電位と膜厚分布との関係を調べたところ、基板ホルダー電位の直流成分を調整することにより膜厚均一性が改善されるという事実を発見した。従来、基板バイアスにより膜質が改善するという報告は数多くなされているが(例えば、IBM J. Res. Develop, 172-175, 1970. 等)、プラズマを介して基板ホルダーに加わる電位により形成される絶縁膜の膜厚分布が変動するという事実は、本発明者が初めて発見したものであり、かかる知見を基にさらに検討を加え、本願発明を完成するに至ったものである。
すなわち、本発明の目的は、大型基板の広範囲にわたって膜厚均一性に優れた絶縁物薄膜を形成可能なスパッタリング装置および薄膜形成方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、従来のスパッタリング装置にかかる問題点を解決し、上記目的を達成するために、タ一ゲットに高周波電力供給時に、基板に電力を供給していないにもかかわらず、プラズマを介して基板に加わる電位の直流成分を低減して、形成される絶縁物薄膜の膜厚分布を改善したものである。
【0008】
本発明の絶縁物薄膜のスパッタリング装置は、真空室内に配置されたターゲット及び基板を保持する基板ホルダーと、前記基板ホルダーの回転機構と、前記ターゲットに第1の整合回路を介して接続された高周波電源と、前記基板ホルダーに接続され、少なくとも2つの可変コンデンサーを含む第2の整合回路と、前記基板ホルダーの電位検出手段とを有し、前記電位検出手段から出力される電位の直流成分を、前記2つの可変コンデンサにより調節可能な構成としたことを特徴とする。
かかる構成にすることで、高い膜厚均一性を有する絶縁膜を形成可能なスパッタリング装置を実現することができる。しかも、装置自体複雑な構成を必要とせずに、従来の装置構成に電位検出手段及び第2の整合回路を接続するだけで、膜厚分布を改善することが可能となるため、装置が大型化することなく、安価にスパッタリング装置を製造することができる。
【0009】
一方、本発明の薄膜形成方法は、真空室内に配置されたターゲット及び基板を保持する基板ホルダーと、前記基板ホルダーの回転機構と、前記ターゲットに第1の整合回路を介して接続された高周波電源と、前記基板ホルダーに接続された第2の整合回路とを有するスパッタリング装置を用いて前記基板上に絶縁物の薄膜を形成する薄膜形成方法であって、前記基板ホルダーの電位の直流成分をプラズマ電位に近づける方向に、前記第2の整合回路のインピーダンスを調節して、絶縁物の薄膜形成を行うことを特徴とする。
さらには、前記第2の整合回路を少なくとも2つの可変コンデンサーを含む構成とし、前記インピーダンスの調整を、前記2つの可変コンデンサにより行うことを特徴とする。
基板ホルダーの直流電位をプラズマ電位に近づけた状態で薄膜形成することにより、絶縁膜の膜厚分布は大幅に改善する。これは、基板に入射するArイオン等の荷電粒子のエネルギーが減少するため、薄膜の再スパッタ率が減少し、プラズマ密度の不均一に起因する再スパッタ率の不均一が抑えられた結果と考えられる。また、2つの可変コンデンサを用いることにより、基板ホルダー電位の広範囲の調節が容易かつ速やかに行うことが可能となる。
【0010】
また、本発明において、前記第2の整合回路と前記基板ホルダーとの間に、電圧電流比検出手段と電圧電流位相差検出手段とを配置し、前記電圧電流比検出手段と前記位相差検出手段の出力を前記2つの可変コンデンサーのそれぞれの容量を変化させる手段に連結し、前記電圧電流比検出手段と前記位相差検出手段の出力信号の時間的ずれを所定範囲内に保つのが好ましい。
このように、薄膜形成中の基板ホルダー電位の変動を抑えるフィードバック機構を設けることにより、膜厚均一性をより一層高めることが可能となる。スパッタリングを継続するうちに、ターゲットのエロージョン形状、漏洩磁場形状が変化し、それに伴い基板ホルダー電位の直流成分が変化しても、その変化を修正する調整を自動的に行なうことが可能となり、膜厚均一性を一層高めることが可能となる。
【0011】
また、前記ターゲットと前記基板ホルダーとの表面を所定の角度をもたせ、それぞれの中心をずらせて配置し、前記基板ホルダーの回転手段を設け、基板を自転又は公転させながら絶縁膜の薄膜形成を行う構成とするのが好ましい。かかる構成とすることにより、膜厚分布改善効果は顕著になり、極めて膜厚均一性の高いスパッタリング装置を実現することが可能となる。
【0012】
【発明の実施の形態】
以下に、本発明の実施形態を図面に基づいて説明する。
本発明のスパッタリング装置の一構成例を図1に示す。図のスパッタリング装置は、斜め入射成膜方式を採用し、カソードにRMCを用いたものである。図に示すように、ガス導入口2及び排気口3を有する真空室1の内部にカソード8と基板ホルダー10が配置され、カソード8は、第1の整合回路5を介してRF電源4に接続されている。カソード8の内部にはターゲット9の中心軸と偏心して回転するマグネットが設けられている。一方、基板ホルダー10には、不図示の回転機構が取り付けられ、基板11をその配置位置により、所望の回転数で自転又は公転させることができる。また、基板ホルダー10には、基板ホルダーの電位を測定するための電圧センサ7と該電位を調整する第2の整合回路6とが取り付けられている。
【0013】
まず、斜め入射成膜方式におけるカソードと基板(基板ホルダー)との位置関係を図2を用いて説明する。図に示すように、斜め入射成膜方式では、基板面とターゲット面とが平行ではなく、所定の角度θをもって配置されている。基板は所定の回転数で公転する。図では、基板を1枚載置した場合を示しているが、複数枚同一円周上に載置しても良い。また、基板ホルダーと同程度の大きさの基板を基板ホルダー中心に置き、自転させても良い。なお、カソードは、基板ホルダーに対し対称な位置に複数個配置してもよく、これにより成膜速度を向上させることができる。
【0014】
このような斜め入射成膜方式を採用することにより、たとえ基板より小さなターゲットを用いた場合でも、基板上により均一な膜厚の絶縁膜を形成することが可能となる。この成膜方式は、本発明のスパッタリング装置及び薄膜形成方法に好適に適合する成膜方式である。ここで、角度θは15〜45゜とするのが好ましく、この範囲で膜厚均一性は一層向上する。さらに、図に示すターゲット中心と基板ホルダーの中心との水平方向の距離を距離(オフセット距離)F、ターゲット基板間距離Lは、基板の大きさ等により適正な値が選択されるが、通常、Fは50〜400mm、Lは50〜800mmが用いられる。また、回転数は、60rpm以上とするのが好ましい。これらの範囲で、絶縁薄膜の膜厚均一性はより向上する。さらに、図1の装置には、RMCのカソードが用いられ、ターゲットのエロージョンが均一に起こるため、より高い膜厚均一性が得られる構成となっている。
【0015】
基板ホルダーの電位を調節するには、基板ホルダーに接続した整合回路のインピーダンスを調節すればよいが、図3に示すように少なくとも2つの可変コンデンサを含むものが好適に用いられる。これにより膜厚均一性向上のための基板ホルダー電位の調節範囲が広がるとともに、操作が容易かつ速やかに行えることになる。
【0016】
次に、図1の装置を用いた薄膜形成方法の一例を説明する。
スパッタリング装置の真空室1内に、Ar等のスパッタガスをガス導入口2から導入し、排気口3部に設けられたメインバルブを調節して、真空室1内部を所定の圧力に設定する。
続いて、RF電源4から、RF電力をカソードに供給してプラズマを発生させ、第1の整合回路5によりマッチングをとった後、電圧センサをモニターしながら、基板ホルダー電位の直流成分がプラズマ電位に最も近づくように第2の整合回路6のインピーダンスを調節する。すなわち、できるだけ高い電位として、プラズマ電位と基板ホルダー電位との差を小さくするように設定する。このような操作により、形成される絶縁膜の膜厚均一性は大きく改善される。なお、第2の整合回路に2つの可変コンデンサを設けることにより、この操作は容易かつ速やかにに行うことが可能となる。
【0017】
以上の本発明の構成により、膜厚分布が改善される理由の詳細は現在のところ明らかではないが、種々の実験結果から 本発明者は、膜厚分布の原因の一つに,Arイオン等の荷電粒子による再スパッタの不均一性があり、膜厚均一性が高くなるほど、この現象は顕著になるものと考えている。すなわち、基板表面近傍のプラズマ密度は基板面内で均一ではないため、プラズマ電位と基板表面電位の差は、基板面内でばらつくことになる。基板に入射するAr等の荷電粒子のエネルギーもプラズマ密度の不均一に対応して異なり、その結果、形成された薄膜が再スパッタされる程度も基板内でばらつくものと考えられる。そこで、基板ホルダー電位を高くし、イオンのエネルギーを全体的に低くすることにより、再スパッタが基板全面で抑えられ、不均一な再スパッタによる膜厚分布の低下がなくなり、膜厚均一性が向上するものと考えている。
【0018】
本発明においては、絶縁膜の成膜中、ターゲットのエロージョン形状の変化、膜形成に伴うプラズマ状態の変化等に伴う基板ホルダー電位の変動を抑えるため、フィードバック機構を設けるのが好ましい。このフィードバック機構を設けた整合回路の構成例を図4に示す。
このフィードバック機構は、第2の整合回路6と基板ホルダー10の間に電圧電流位相差検出センサ12及び電圧電流比検出センサ13を配置し、成膜中にそれぞれの検出値が初期値とずれた場合に、そのずれをなくすように可変コンデンサ18,19の容量C1,C2をモータ15,17により調節するものである。具体的には、まず、基板ホルダーの直流電位ができるだけ高くなるようにC1,C2を設定する。このとき、電圧電流比センサ及び電圧電流位相差センサの出力電圧を、例えば0Vとなるように設定する。成膜中に、各センサの出力が0Vからずれた場合は、その電圧を0Vにするようにフィードバックがかかる。すなわち、出力電圧に応じて、モータ制御回路14,16はモータ15,17を駆動し、出力電圧を0Vにする方向に可変コンデンサC2,C1を変化させることになる。
このようにして、基板ホルダーの電位を常に所定範囲に抑えることができ、より均一な膜厚の絶縁膜を得ることが可能となる。
【0019】
次に、実施例をあげて、本発明のスパッタリング装置及び薄膜形成方法をより詳細に説明する。
(実施例)
本実施例では、図1に示す斜め入射成膜方式を用いたスパッタリング装置に図3(a)に示す第2の整合回路を取り付けた装置を用い、基板上にAl薄膜を形成した。ここで、ターゲット9には、12.5インチ径アルミナターゲットを用い、ターゲット基板間距離Lは178mm、オフセット距離Fは200mm、角度θは15゜とした。基板11は200mm径のシリコンウエハを用い、300mm径のSUS製基板ホルダー10上に偏心して取り付け、不図示の回転機構により60rpmで回転させた。
【0020】
まず、膜厚均一性を向上させるために、可変コンデンサC1,C2の調節を行った。
真空室1内部を高真空に排気した後、ガス導入口2から、Arガスを導入し、排気口3部に設けられたメインバルブを調節して、真空室1内部を0.036Paとした。RF電源4からカソード8に電力を供給し、プラズマを発生させた。第1の整合回路5によりマッチングをとった後、電圧センサ7の出力をモニタしながら、基板ホルダー電位の直流成分が最大となるように、第2の整合回路6の可変コンデンサ19,18の容量C1及びC2を調節した。このときのC1、C2はそれぞれ98pF、74pFであった。
【0021】
この後、一旦放電を停止し、基板ホルダー10上に基板11を載置した後、同様にして再びプラズマを発生させ、13分間この状態を保って基板上にAl薄膜を形成した。成膜終了後、基板を取り出し、エリプソメータで基板に形成された膜厚を測定した。なお、成膜中の基板ホルダー温度は100℃とした。
【0022】
同じC1,C2の設定値で繰り返し3回のスパッタリングを行った。それぞれの膜厚分布の測定結果を図5(a)〜(c)に示す。なお、膜厚測定は、190mm径の範囲内の49点で行い、最大膜厚を1として規格化した分布を図に示した。また、膜厚分布の数値は、[(最大膜厚−最小膜厚)/(最大膜厚+最小膜厚)]x100により計算したものである。
図5が示すように、No.1〜3の基板で多少のバラツキはあるものの、最大でも膜厚分布は±0.8%以下となり、本実施例の装置構成及び薄膜形成方法により、極めて高い膜厚均一性が得られることが分かった。
【0023】
次に、C1,C2の設定値を変えた以外は、No.1〜No.3と同様にしてアルミナ膜を形成し、その膜厚分布を図6(a)、(b)に示した。なお、比較のために、基板ホルダーに整合回路を接続せず、それぞれ基板ホルダーを浮遊状態(c)及び接地状態(d)として成膜したときの膜厚分布も合わせて図6に示した。
また、図7はC1を一定とし、C2を変化させたときの、基板ホルダーの電位の変化を示すグラフである。ここで、基板ホルダーの電位は電圧センサ7により測定したものであり、例えば、図8に示すように、直流電位に高周波電位が重畳した波形となっている。例えば、No.1(図5(a))に対応するものは平均値が−2.5Vで0〜−5Vで振動し、またNo.4(図6(a))に対応するものは平均値が−24.5Vで−21V〜−28Vで振動するものとなる。
【0024】
さらに、基板ホルダー電位と膜厚分布の関係を図9に示した。基板ホルダーの電位が低いと膜厚均一性は低く、基板ホルダーの電位が高い方が膜厚均一性が向上する傾向にあることが分かる。これは、基板ホルダーの電位が高いほど基板に入射するイオンのエネルギーが小さくなり、再スパッタが抑制されること裏付けるものと考えられる。
【0025】
図7及び9が示すように、2つの可変コンデンサC1,C2を調整することにより基板ホルダー電位を高電位側にシフトさせることができ、基板ホルダー電位を高くすることによりアルミナ膜の膜厚均一性を改善できることが分かる。
基板を浮遊状態又は接地状態とした場合には、膜厚分布はそれぞれ、1.6%、2.55%であったのが、本発明の第2の整合回路を調節して基板ホルダー電位を最適化することにより、8インチの大型基板であっても、膜厚分布を±0.8%以下とすることが可能となる。この事実は本発明が絶縁膜の膜厚均一性の向上に極めて効果的であることを示すものである。
なお、本実施例では、基板ホルダーを冷却せず100℃で成膜したが、Al膜の場合、基板ホルダーに冷却機構を設け低温で成膜した方が好ましく、より良質の薄膜が得られことが分かっている。
【0026】
以上、主に、図1の構成のスパッタリング装置を用いて説明したが、本発明は斜め入射成膜方式及びRMCカソードを用いた構成に限定されることはなく、どのような構成の装置にでも適用できる。しかしながら、例えば、平行平板型装置で基板を静止して成膜する方式のように本来膜厚均一性の低い成膜方式では、本発明の第2の整合回路を取り付け、基板ホルダー電位を適正化しても、その効果は明確に現れにくいため、膜厚分布として±3%以下が得られる成膜方式を用いるのが好ましい。すなわち、上記斜め入射成膜方式の他、真空室内に、基板を搭載した基板ホルダーを複数個設置したパレットに対し、ターゲットを取り付けたカソードを各基板の中心軸と同軸の位置に複数個対向して配置して、パレット及び各基板を回転させながら成膜を行う自公転成膜方式等に本発明の基板ホルダーの直流電位制御機構を配置した構成とするのが好ましい。
【0027】
また、本発明のスパッタリング装置及び薄膜形成方法において、電源の周波数は一般に使われる13.56MHzに限定されるものではない。ターゲットも絶縁物である必要は必ずしもなく、反応性ガスとの反応により絶縁物薄膜を基板上に形成する反応性スパッタにも適用することができる。また、基板は,Al−Ti基板等の金属基板、シリコン基板、シリコン上に絶縁膜と導電性膜が積層した基板及び絶縁性基板等、種々の基板を用いることができる。
さらに、本発明は、アルミナに限らず、例えばシリコン酸化膜やシリコン窒化膜等のあらゆる種類の絶縁物の薄膜形成に有効であることは言うまでもない。
【0028】
【発明の効果】
以上の説明で明らかなように、本発明によれば、磁気ディスク装置(HDD)、半導体集積回路、液晶表示装置等に用いられるアルミナやシリコン酸化物、シリコン窒化物等の絶縁物について、膜厚均一性に優れた薄膜を形成することが可能となる。しかも、簡単な構成で優れた膜厚均一性が達成できるため、装置の大型化を抑え、安価なスパッタリング装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のスパッタ装置の一構成例を示す概念図である。
【図2】斜め入射成膜方式を説明する概念図である。
【図3】本発明の第2の整合回路の一例を示す概念図である。
【図4】フィードバック機構を設けた第2の整合回路の回路図である。
【図5】アルミナ膜の膜厚分布を示すグラフである。
【図6】アルミナ膜の膜厚分布を示すグラフである。
【図7】可変コンデンサの容量と基板ホルダー電位との関係を示すグラフである。
【図8】電圧センサにより測定された基板ホルダー電位の波形を示すグラフである。
【図9】基板ホルダー電位と膜厚分布との関係を示すグラフである。
【符号の説明】
1 真空室、
2 ガス導入口、
3 排気口、
4 RF電源、
5 第1の整合回路、
6 第2の整合回路、
7 電圧センサ、
8 カソード、
9 ターゲット、
10 基板ホルダー、
11 基板、
12 電圧電流位相差検出センサ、
13 電圧電流比検出センサ、
14,16 モータ制御回路、
15,17 モータ、
18,19 可変コンデンサ、
20 コイル、
21 抵抗。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sputtering apparatus and a thin film forming method, and is particularly suitable for forming various insulating thin films used for a magnetic disk device (HDD), a semiconductor integrated circuit, a liquid crystal display device and the like with high film thickness uniformity. The present invention relates to a sputtering apparatus and a thin film forming method.
[0002]
[Prior art]
In the fields of magnetic disk devices (HDDs), semiconductor integrated circuits, liquid crystal display devices, etc., as each element becomes more sophisticated, the demand for equalization of the thickness of such thin films becomes stronger as the performance of the constituent thin films increases. Yes. Furthermore, since the size of the substrate is increasing in order to increase productivity, the demand for a technique for forming a thin film with an excellent film thickness distribution is further increased, and research and development are actively conducted.
[0003]
For example, in recent years, the surface recording density of magnetic disks has continued to rise significantly, and at present, 30 Gbit / in 2 is being achieved. Along with this, the development of magnetic disk heads (hereinafter referred to as “magnetic heads”) has also progressed, and the transition from MR (Magnet Resistance) heads to GMR (Giant Magnet Resistance) heads has progressed rapidly. Research and development of a new generation magnetic disk head corresponding to a surface recording density of 100 Gbit / in 2 has been conducted.
[0004]
A typical reproducing magnetic head structure includes, for example, a substrate (altic substrate), a substrate protective film (Al 2 O 3 ), a lower shield (plated Cu :), a reproducing lower gap (Al 2 O 3 ), a reproducing element ( GMR film), hard bias (CoFe-based ferromagnetic film), reproducing electrode (Cu), reproducing upper gap (Al 2 O 3 ), lower magnetic pole and upper shield (plated Cu), recording gap (Al 2 O 3 ), intermediate A film (Al 2 O 3 ), an upper magnetic pole (plated Cu), and a protective film (Al 2 O 3 ) are included. As described above, in a multi-layered magnetic head, multiple layers of alumina insulating films are formed to isolate or protect each functional film. An alumina insulating film having voltage characteristics is required. In particular, since the gap alumina insulating film is as thin as about 20 to 30 nm, if there is a film thickness distribution, the withstand voltage characteristic is affected, and the yield is significantly reduced. On the other hand, although a substrate having a diameter of 4 to 5 inches is currently used, a shift to an 8-inch substrate is being studied in order to increase productivity. On an 8-inch large substrate, tens of thousands of magnetic heads are manufactured. Therefore, from the viewpoint of uniform device characteristics and improved yield, a sputtering method that achieves uniform film thickness of the alumina insulating film is used. Establishment is an extremely important issue.
This situation is not limited to the insulating film of the magnetic head, but also applies to the semiconductor integrated circuit and the thin film transistor substrate of the liquid crystal display device.
[0005]
[Problems to be solved by the invention]
Therefore, the present inventors have studied the structure of the sputtering apparatus, the film forming method and conditions for the purpose of improving the film thickness uniformity of the insulating thin film on the large substrate. Specifically, detailed investigations were made on the arrangement of the substrate and the target, the method of rotating the substrate, the uniformity of target erosion, and the like.
Among them, the self-revolving film formation method (Japanese Patent Application No. 11-072653) and the oblique incidence film formation method (Japanese Patent Application No. 11-008000) and the RMC (Rotary) which rotates the magnet eccentric from the target central axis. By adopting the Magnet Cathode cathode, we succeeded in greatly improving the film thickness uniformity. However, in the case of an insulating film such as alumina, it has been found that the degree of improvement of the film thickness uniformity is lower than that of the conductive film, and the tendency becomes remarkable when the film thickness is reduced. That is, even if these methods are used, there is a limit in improving the film thickness distribution of the insulating film.
[0006]
In examining the cause, the present inventors have found that, for example, the uniformity of the film thickness differs between when the substrate holder potential is electrically floated and when it is grounded. As a result of investigating the relationship between the film thickness distribution and the film thickness distribution, it was found that the film thickness uniformity can be improved by adjusting the DC component of the substrate holder potential. There have been many reports that the film quality is improved by the substrate bias (for example, IBM J. Res. Develop, 172-175, 1970. etc.), but the insulation formed by the potential applied to the substrate holder via plasma. The fact that the film thickness distribution of the film fluctuates was first discovered by the present inventor, and further studies were made based on such knowledge, leading to the completion of the present invention.
That is, an object of the present invention is to provide a sputtering apparatus and a thin film forming method capable of forming an insulating thin film having excellent film thickness uniformity over a wide range of a large substrate.
[0007]
[Means for Solving the Problems]
In order to solve the problems associated with the conventional sputtering apparatus and achieve the above-mentioned object, the present invention provides a high-frequency power supply to a target through plasma even though no power is supplied to the substrate. The direct current component of the potential applied to the substrate is reduced to improve the film thickness distribution of the formed insulating thin film.
[0008]
The insulating thin film sputtering apparatus according to the present invention includes a target disposed in a vacuum chamber and a substrate holder for holding the substrate, a rotation mechanism of the substrate holder, and a high frequency connected to the target via a first matching circuit. A power source, a second matching circuit connected to the substrate holder and including at least two variable capacitors, and a potential detection unit of the substrate holder, and a DC component of a potential output from the potential detection unit, The configuration is adjustable by the two variable capacitors.
With such a configuration, a sputtering apparatus capable of forming an insulating film having high film thickness uniformity can be realized. In addition, the film thickness distribution can be improved by simply connecting the potential detecting means and the second matching circuit to the conventional apparatus configuration without requiring a complicated structure of the apparatus itself. Therefore, the sputtering apparatus can be manufactured at a low cost.
[0009]
On the other hand, the thin film forming method of the present invention includes a substrate holder for holding a target and a substrate disposed in a vacuum chamber, a rotation mechanism of the substrate holder, and a high-frequency power source connected to the target via a first matching circuit. And a second matching circuit connected to the substrate holder, and forming a thin film of an insulator on the substrate using a sputtering apparatus, wherein a DC component of the potential of the substrate holder is converted into plasma. A thin film of an insulator is formed by adjusting the impedance of the second matching circuit in a direction approaching a potential.
Furthermore, the second matching circuit includes at least two variable capacitors, and the impedance adjustment is performed by the two variable capacitors.
By forming a thin film with the DC potential of the substrate holder close to the plasma potential, the film thickness distribution of the insulating film is greatly improved. This is because the energy of charged particles such as Ar ions incident on the substrate is reduced, so that the resputtering rate of the thin film is reduced and the non-uniformity of the resputtering rate due to the nonuniformity of the plasma density is suppressed. It is done. Further, by using two variable capacitors, it is possible to easily and quickly adjust a wide range of the substrate holder potential.
[0010]
In the present invention, a voltage / current ratio detection means and a voltage / current phase difference detection means are arranged between the second matching circuit and the substrate holder, and the voltage / current ratio detection means and the phase difference detection means are arranged. Is preferably connected to means for changing the respective capacities of the two variable capacitors, and the time lag between the output signals of the voltage / current ratio detecting means and the phase difference detecting means is preferably kept within a predetermined range.
Thus, by providing a feedback mechanism that suppresses fluctuations in the substrate holder potential during thin film formation, the film thickness uniformity can be further enhanced. Even if the erosion shape of the target and the shape of the leakage magnetic field change while sputtering is continued, and the DC component of the substrate holder potential changes accordingly, it is possible to automatically make adjustments to correct the change. It becomes possible to further improve the thickness uniformity.
[0011]
In addition, the surfaces of the target and the substrate holder are arranged at a predetermined angle and are shifted from each other center, and a rotating means for the substrate holder is provided to form a thin film of an insulating film while rotating or revolving the substrate. A configuration is preferable. By adopting such a configuration, the effect of improving the film thickness distribution becomes remarkable, and it becomes possible to realize a sputtering apparatus with extremely high film thickness uniformity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
One structural example of the sputtering apparatus of this invention is shown in FIG. The sputtering apparatus shown in the figure employs an oblique incidence film formation method and uses RMC as a cathode. As shown in the figure, a cathode 8 and a substrate holder 10 are disposed inside a vacuum chamber 1 having a gas inlet 2 and an exhaust port 3, and the cathode 8 is connected to an RF power source 4 via a first matching circuit 5. Has been. A magnet that rotates eccentrically with the central axis of the target 9 is provided inside the cathode 8. On the other hand, a rotation mechanism (not shown) is attached to the substrate holder 10, and the substrate 11 can be rotated or revolved at a desired number of rotations depending on the arrangement position. The substrate holder 10 is also provided with a voltage sensor 7 for measuring the potential of the substrate holder and a second matching circuit 6 for adjusting the potential.
[0013]
First, the positional relationship between the cathode and the substrate (substrate holder) in the oblique incidence film formation method will be described with reference to FIG. As shown in the figure, in the oblique incidence film formation method, the substrate surface and the target surface are not parallel but are arranged with a predetermined angle θ. The substrate revolves at a predetermined rotational speed. Although the figure shows a case where one substrate is placed, a plurality of substrates may be placed on the same circumference. Alternatively, a substrate having the same size as the substrate holder may be placed at the center of the substrate holder and rotated. Note that a plurality of cathodes may be arranged at symmetrical positions with respect to the substrate holder, whereby the film formation rate can be improved.
[0014]
By adopting such an oblique incidence film formation method, even when a target smaller than the substrate is used, an insulating film having a more uniform film thickness can be formed on the substrate. This film formation method is a film formation method that is suitable for the sputtering apparatus and the thin film formation method of the present invention. Here, the angle θ is preferably 15 to 45 °, and the film thickness uniformity is further improved within this range. Furthermore, the horizontal distance between the target center and the center of the substrate holder shown in the figure is the distance (offset distance) F, and the target substrate distance L is selected appropriately depending on the size of the substrate, etc. F is 50 to 400 mm, and L is 50 to 800 mm. Moreover, it is preferable that a rotation speed shall be 60 rpm or more. Within these ranges, the film thickness uniformity of the insulating thin film is further improved. Further, the apparatus of FIG. 1 uses an RMC cathode, and erosion of the target occurs uniformly, so that a higher film thickness uniformity can be obtained.
[0015]
In order to adjust the potential of the substrate holder, the impedance of the matching circuit connected to the substrate holder may be adjusted. However, a device including at least two variable capacitors is preferably used as shown in FIG. As a result, the adjustment range of the substrate holder potential for improving the film thickness uniformity is expanded and the operation can be performed easily and quickly.
[0016]
Next, an example of a thin film forming method using the apparatus of FIG. 1 will be described.
A sputtering gas such as Ar is introduced from the gas inlet 2 into the vacuum chamber 1 of the sputtering apparatus, and a main valve provided at the exhaust port 3 is adjusted to set the inside of the vacuum chamber 1 to a predetermined pressure.
Subsequently, RF power is supplied from the RF power source 4 to the cathode to generate plasma, and after matching is performed by the first matching circuit 5, the DC component of the substrate holder potential is changed to the plasma potential while monitoring the voltage sensor. The impedance of the second matching circuit 6 is adjusted so as to be closest to. That is, the potential is set as high as possible so as to reduce the difference between the plasma potential and the substrate holder potential. By such an operation, the film thickness uniformity of the formed insulating film is greatly improved. By providing two variable capacitors in the second matching circuit, this operation can be performed easily and quickly.
[0017]
Although the details of the reason why the film thickness distribution is improved by the above-described configuration of the present invention are not clear at present, from various experimental results, the present inventor It is considered that this phenomenon becomes more prominent as the film thickness uniformity becomes higher. That is, since the plasma density in the vicinity of the substrate surface is not uniform within the substrate surface, the difference between the plasma potential and the substrate surface potential varies within the substrate surface. It is considered that the energy of charged particles such as Ar incident on the substrate also varies corresponding to the nonuniformity of the plasma density, and as a result, the degree to which the formed thin film is re-sputtered varies within the substrate. Therefore, by increasing the substrate holder potential and lowering the ion energy as a whole, resputtering can be suppressed over the entire surface of the substrate, and there is no decrease in film thickness distribution due to nonuniform resputtering, improving film thickness uniformity. I believe that.
[0018]
In the present invention, it is preferable to provide a feedback mechanism in order to suppress fluctuations in the substrate holder potential due to changes in the erosion shape of the target, changes in the plasma state accompanying film formation, and the like during the formation of the insulating film. An example of the configuration of a matching circuit provided with this feedback mechanism is shown in FIG.
In this feedback mechanism, a voltage / current phase difference detection sensor 12 and a voltage / current ratio detection sensor 13 are arranged between the second matching circuit 6 and the substrate holder 10, and the respective detection values deviate from the initial values during film formation. In this case, the capacitors C1 and C2 of the variable capacitors 18 and 19 are adjusted by the motors 15 and 17 so as to eliminate the deviation. Specifically, first, C1 and C2 are set so that the DC potential of the substrate holder is as high as possible. At this time, the output voltages of the voltage-current ratio sensor and the voltage-current phase difference sensor are set to 0 V, for example. If the output of each sensor deviates from 0V during film formation, feedback is applied so that the voltage is 0V. That is, according to the output voltage, the motor control circuits 14 and 16 drive the motors 15 and 17 and change the variable capacitors C2 and C1 in a direction to make the output voltage 0V.
In this way, the potential of the substrate holder can always be kept within a predetermined range, and an insulating film having a more uniform film thickness can be obtained.
[0019]
Next, the sputtering apparatus and thin film forming method of the present invention will be described in more detail with reference to examples.
(Example)
In this example, an Al 2 O 3 thin film was formed on a substrate using an apparatus in which the second matching circuit shown in FIG. 3A was attached to the sputtering apparatus using the oblique incidence film formation method shown in FIG. . Here, a 12.5 inch diameter alumina target was used as the target 9, the target substrate distance L was 178 mm, the offset distance F was 200 mm, and the angle θ was 15 °. The substrate 11 was a 200 mm diameter silicon wafer, attached eccentrically on a 300 mm diameter SUS substrate holder 10, and rotated at 60 rpm by a rotation mechanism (not shown).
[0020]
First, in order to improve the film thickness uniformity, the variable capacitors C1 and C2 were adjusted.
After evacuating the inside of the vacuum chamber 1 to a high vacuum, Ar gas was introduced from the gas inlet 2 and the main valve provided at the exhaust port 3 was adjusted to make the inside of the vacuum chamber 1 0.036 Pa. Electric power was supplied from the RF power source 4 to the cathode 8 to generate plasma. After matching is performed by the first matching circuit 5, the capacitances of the variable capacitors 19 and 18 of the second matching circuit 6 are maximized so that the DC component of the substrate holder potential is maximized while monitoring the output of the voltage sensor 7. C1 and C2 were adjusted. C1 and C2 at this time were 98 pF and 74 pF, respectively.
[0021]
Thereafter, the discharge was stopped once, and the substrate 11 was placed on the substrate holder 10, and then plasma was generated in the same manner, and this state was maintained for 13 minutes to form an Al 2 O 3 thin film on the substrate. After completion of film formation, the substrate was taken out, and the film thickness formed on the substrate was measured with an ellipsometer. The substrate holder temperature during film formation was 100 ° C.
[0022]
Sputtering was repeated three times with the same set values of C1 and C2. The measurement results of the respective film thickness distributions are shown in FIGS. The film thickness was measured at 49 points within a 190 mm diameter range, and the distribution normalized with the maximum film thickness as 1 is shown in the figure. The numerical value of the film thickness distribution is calculated by [(maximum film thickness−minimum film thickness) / (maximum film thickness + minimum film thickness)] × 100.
As shown in FIG. Although there is some variation among the substrates 1 to 3, the maximum film thickness distribution is ± 0.8% or less, and extremely high film thickness uniformity can be obtained by the apparatus configuration and thin film forming method of this embodiment. I understood.
[0023]
Next, except that the set values of C1 and C2 were changed, no. 1-No. An alumina film was formed in the same manner as in No. 3, and the film thickness distribution is shown in FIGS. 6 (a) and 6 (b). For comparison, FIG. 6 also shows the film thickness distribution when the matching circuit is not connected to the substrate holder and the substrate holder is deposited in the floating state (c) and the ground state (d).
FIG. 7 is a graph showing changes in the potential of the substrate holder when C1 is constant and C2 is changed. Here, the potential of the substrate holder is measured by the voltage sensor 7, and has a waveform in which a high-frequency potential is superimposed on a DC potential, for example, as shown in FIG. For example, no. No. 1 (FIG. 5A) has an average value of −2.5V and vibrates at 0 to −5V. 4 (FIG. 6A) has an average value of −24.5V and vibrates at −21V to −28V.
[0024]
Furthermore, the relationship between the substrate holder potential and the film thickness distribution is shown in FIG. It can be seen that the film thickness uniformity is low when the potential of the substrate holder is low, and the film thickness uniformity tends to improve when the potential of the substrate holder is high. This is considered to support the fact that the higher the potential of the substrate holder, the smaller the energy of ions incident on the substrate, thereby suppressing resputtering.
[0025]
As shown in FIGS. 7 and 9, the substrate holder potential can be shifted to the high potential side by adjusting the two variable capacitors C1 and C2, and the film thickness uniformity of the alumina film can be increased by increasing the substrate holder potential. It can be seen that can be improved.
When the substrate was in a floating state or grounded state, the film thickness distributions were 1.6% and 2.55%, respectively, but the substrate holder potential was adjusted by adjusting the second matching circuit of the present invention. By optimizing, even with an 8-inch large substrate, the film thickness distribution can be made ± 0.8% or less. This fact indicates that the present invention is extremely effective in improving the film thickness uniformity of the insulating film.
In this example, the film was formed at 100 ° C. without cooling the substrate holder. However, in the case of an Al 2 O 3 film, it is preferable to form a film at a low temperature by providing a cooling mechanism for the substrate holder, and a better quality thin film is formed. I know that I can get it.
[0026]
As described above, the sputtering apparatus having the configuration shown in FIG. 1 has been mainly described. However, the present invention is not limited to the configuration using the oblique incidence film formation method and the RMC cathode, and the apparatus having any configuration can be used. Applicable. However, for example, in a film formation method that inherently has low film thickness uniformity, such as a method in which a substrate is stationary with a parallel plate type apparatus, the second matching circuit of the present invention is attached to optimize the substrate holder potential. However, since the effect is hardly apparent, it is preferable to use a film formation method that can obtain ± 3% or less of the film thickness distribution. That is, in addition to the oblique incidence film formation method described above, a plurality of cathodes with targets attached to a pallet in which a plurality of substrate holders on which a substrate is mounted are placed in a vacuum chamber, are opposed to the central axis of each substrate. It is preferable that the DC potential control mechanism of the substrate holder of the present invention is arranged in a self-revolving film forming system that performs film formation while rotating the pallet and each substrate.
[0027]
Further, in the sputtering apparatus and thin film forming method of the present invention, the frequency of the power source is not limited to 13.56 MHz which is generally used. The target is not necessarily an insulator, and can also be applied to reactive sputtering in which an insulating thin film is formed on a substrate by reaction with a reactive gas. As the substrate, various substrates such as a metal substrate such as an Al—Ti substrate, a silicon substrate, a substrate in which an insulating film and a conductive film are stacked over silicon, and an insulating substrate can be used.
Furthermore, it goes without saying that the present invention is not limited to alumina but is effective for forming thin films of all kinds of insulators such as a silicon oxide film and a silicon nitride film.
[0028]
【The invention's effect】
As is apparent from the above description, according to the present invention, the film thickness of an insulator such as alumina, silicon oxide, or silicon nitride used in a magnetic disk device (HDD), a semiconductor integrated circuit, a liquid crystal display device, or the like. A thin film having excellent uniformity can be formed. Moreover, since excellent film thickness uniformity can be achieved with a simple configuration, an increase in the size of the apparatus can be suppressed and an inexpensive sputtering apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a configuration example of a sputtering apparatus of the present invention.
FIG. 2 is a conceptual diagram illustrating an oblique incidence film formation method.
FIG. 3 is a conceptual diagram showing an example of a second matching circuit of the present invention.
FIG. 4 is a circuit diagram of a second matching circuit provided with a feedback mechanism.
FIG. 5 is a graph showing a film thickness distribution of an alumina film.
FIG. 6 is a graph showing the film thickness distribution of an alumina film.
FIG. 7 is a graph showing the relationship between the capacitance of a variable capacitor and the substrate holder potential.
FIG. 8 is a graph showing a waveform of a substrate holder potential measured by a voltage sensor.
FIG. 9 is a graph showing the relationship between the substrate holder potential and the film thickness distribution.
[Explanation of symbols]
1 vacuum chamber,
2 gas inlet,
3 Exhaust port,
4 RF power supply,
5 first matching circuit,
6 second matching circuit,
7 Voltage sensor,
8 cathode,
9 Target,
10 Substrate holder,
11 substrate,
12 voltage current phase difference detection sensor,
13 Voltage-current ratio detection sensor,
14, 16 Motor control circuit,
15, 17 motor,
18, 19 Variable capacitors,
20 coils,
21 Resistance.

Claims (3)

真空室内で基板を保持可能で、少なくとも2つの可変コンデンサを介して接地され、かつ、電源に非接続状態の基板ホルダーと、前記基板ホルダーの回転機構と、前記基板ホルダーの表面に対して傾けて、かつ、互いの中心をずらせて配置したカソードと、前記カソードに第1の整合回路を介して接続された高周波電源と、を有するスパッタリング装置を用いて前記基板上に絶縁物の薄膜を形成する薄膜形成方法であって、前記基板ホルダーの電位の直流成分を−10V以上とするように、前記可変コンデンサのインピーダンスを調節して、絶縁物の薄膜形成を行うことを特徴とする薄膜形成方法。The substrate can be held in a vacuum chamber, is grounded via at least two variable capacitors , and is not connected to a power source, the rotation mechanism of the substrate holder, and the surface of the substrate holder. And forming a thin film of an insulator on the substrate using a sputtering apparatus having a cathode arranged with their centers shifted from each other and a high-frequency power source connected to the cathode via a first matching circuit. A thin film forming method, comprising: forming an insulating thin film by adjusting an impedance of the variable capacitor so that a direct current component of the potential of the substrate holder is set to -10 V or more. 薄膜形成中の前記基板ホルダーの電圧電流比及び電圧電流位相差の変動を所定の範囲内に維持しながら薄膜形成を行うことを特徴とする請求項1に記載の薄膜形成方法。  2. The method of forming a thin film according to claim 1, wherein the thin film is formed while maintaining fluctuations of the voltage / current ratio and the voltage / current phase difference of the substrate holder during the formation of the thin film within a predetermined range. 前記基板を自転又は公転させながら薄膜形成することを特徴とする請求項1又は2に記載の薄膜形成方法。  The thin film forming method according to claim 1, wherein the thin film is formed while rotating or revolving the substrate.
JP2000082914A 2000-03-23 2000-03-23 Sputtering apparatus and thin film forming method Expired - Fee Related JP4627835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082914A JP4627835B2 (en) 2000-03-23 2000-03-23 Sputtering apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082914A JP4627835B2 (en) 2000-03-23 2000-03-23 Sputtering apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2001262336A JP2001262336A (en) 2001-09-26
JP4627835B2 true JP4627835B2 (en) 2011-02-09

Family

ID=18599652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082914A Expired - Fee Related JP4627835B2 (en) 2000-03-23 2000-03-23 Sputtering apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP4627835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230117247A (en) * 2021-07-16 2023-08-07 가부시키가이샤 아루박 Film formation method and film formation apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044473A1 (en) 2007-10-04 2009-04-09 Canon Anelva Corporation High frequency sputtering device
JP5576135B2 (en) * 2010-02-05 2014-08-20 株式会社日立ハイテクノロジーズ Pattern inspection method and apparatus
JP6192060B2 (en) * 2011-09-09 2017-09-06 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Multifrequency sputtering to enhance the deposition rate and growth kinetics of dielectric materials
JP2013143475A (en) * 2012-01-11 2013-07-22 Ulvac Japan Ltd Manufacturing method of light-emitting device and vacuum processing apparatus
US20130284589A1 (en) * 2012-04-30 2013-10-31 Youming Li Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
JP6007070B2 (en) * 2012-11-06 2016-10-12 株式会社アルバック Sputtering method and sputtering apparatus
JP2016111105A (en) * 2014-12-03 2016-06-20 株式会社Joled Thin film transistor, manufacturing method thereof, and display device
JP6519073B2 (en) * 2014-12-03 2019-05-29 株式会社Joled THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING THE SAME, AND DISPLAY DEVICE
JP7101536B2 (en) 2018-05-16 2022-07-15 東京エレクトロン株式会社 Film forming equipment and film forming method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224674A (en) * 1990-12-26 1992-08-13 Hitachi Metals Ltd Device for metallizing ceramic
JPH0497335U (en) * 1991-12-11 1992-08-24
JPH05125537A (en) * 1991-10-31 1993-05-21 Canon Inc Vacuum film forming device
JPH05345972A (en) * 1992-06-12 1993-12-27 Jeol Ltd High frequency device
JPH06227015A (en) * 1992-11-12 1994-08-16 Tdk Corp Wear-resistant protective film for thermal head and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224674A (en) * 1990-12-26 1992-08-13 Hitachi Metals Ltd Device for metallizing ceramic
JPH05125537A (en) * 1991-10-31 1993-05-21 Canon Inc Vacuum film forming device
JPH0497335U (en) * 1991-12-11 1992-08-24
JPH05345972A (en) * 1992-06-12 1993-12-27 Jeol Ltd High frequency device
JPH06227015A (en) * 1992-11-12 1994-08-16 Tdk Corp Wear-resistant protective film for thermal head and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230117247A (en) * 2021-07-16 2023-08-07 가부시키가이샤 아루박 Film formation method and film formation apparatus
KR102655337B1 (en) 2021-07-16 2024-04-05 가부시키가이샤 아루박 Film formation method and film formation equipment

Also Published As

Publication number Publication date
JP2001262336A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP5587822B2 (en) Sputtering apparatus, sputtering method, and electronic device manufacturing method
JP4727764B2 (en) Plasma processing apparatus, magnetoresistive element manufacturing apparatus, magnetic thin film forming method and film forming control program
JP4627835B2 (en) Sputtering apparatus and thin film forming method
US20030121609A1 (en) Plasma etching device
JP4066044B2 (en) Film forming method and sputtering apparatus
WO1998039500A1 (en) Plasma etching device
JP4066214B2 (en) Plasma process equipment
WO2007066511A1 (en) Film forming apparatus and method of forming film
JP2000144399A (en) Sputtering device
TWI755387B (en) Dc magnetron sputtering apparatus
KR20100063781A (en) High-frequency sputtering device
WO2011002058A1 (en) Method for depositing thin film
CN109554672B (en) Dielectric deposition apparatus for physical vapor deposition
WO2013121766A1 (en) Sputter device
JPH1192968A (en) Dry etching device and plasma chemical vapor phase deposition apparatus
US20080006522A1 (en) Method of producing metal-oxide film
JP2000319780A (en) Sputtering cathode and magnetron type sputtering device equipped with the same
JP2009235581A (en) High-frequency sputtering apparatus
JP4541014B2 (en) Plasma assisted sputter deposition system
JP3343818B2 (en) Ion etching method and apparatus
JP3564313B2 (en) Method of forming insulating film for thin film magnetic head
JP5616806B2 (en) Sputter deposition method
JPH11158616A (en) Sputtering device and sputtering method
JP3545050B2 (en) Sputtering apparatus and sputtering thin film production method
JP4444387B2 (en) High frequency sputtering equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4627835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees