JPH05163508A - Production of titanium-base powder - Google Patents

Production of titanium-base powder

Info

Publication number
JPH05163508A
JPH05163508A JP35245891A JP35245891A JPH05163508A JP H05163508 A JPH05163508 A JP H05163508A JP 35245891 A JP35245891 A JP 35245891A JP 35245891 A JP35245891 A JP 35245891A JP H05163508 A JPH05163508 A JP H05163508A
Authority
JP
Japan
Prior art keywords
titanium
powder
apparent density
crushing
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35245891A
Other languages
Japanese (ja)
Other versions
JP2987603B2 (en
Inventor
Ryoji Murayama
良治 村山
Hidekazu Fukazawa
英一 深澤
Wataru Kagohashi
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP3352458A priority Critical patent/JP2987603B2/en
Publication of JPH05163508A publication Critical patent/JPH05163508A/en
Application granted granted Critical
Publication of JP2987603B2 publication Critical patent/JP2987603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce titanium-base powder appropriate as the powder metallurgy material and having an excellent apparent density and flowability by applying the hydrogenation dehydration process. CONSTITUTION:A titanium-base powder (titanium or titanium alloy) is produced by the hydrogenation dehydration process. In this case, the sintered block of dehydrogenated titanium powder is crushed by a mechanical means such as an impacting, striking and crushing mechanism into a titanium-base powder enhanced in apparent density and flowability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素化脱水素法(HD
H法)により粉末冶金に適する高位の見掛密度と優れた
流動性を有するチタン系粉末を製造する方法に関する。
The present invention relates to a hydrodehydrogenation method (HD
H method) for producing a titanium-based powder having a high apparent density suitable for powder metallurgy and excellent fluidity.

【0002】[0002]

【従来の技術】チタンまたはチタン合金は比強度が高
く、耐熱性、耐食性にも優れているため航空機や自動車
部品の材料として有用されているが、加工性の面に難点
があって製品歩留りが低くなる関係で製造コストが高く
なる問題がある。このため、可及的に最終製品に近似す
る形状に成形して加工段階を少なくする部材の製造方法
として粉末冶金法が注目されている。
2. Description of the Related Art Titanium or titanium alloys are useful as materials for aircraft and automobile parts because of their high specific strength and excellent heat resistance and corrosion resistance. However, they are difficult to process because of their workability. There is a problem that the manufacturing cost becomes high due to the decrease. Therefore, the powder metallurgy method has been attracting attention as a method of manufacturing a member that is formed into a shape that is as close to the final product as possible to reduce the number of processing steps.

【0003】従来、チタン合金の粉末冶金法には、原料
にチタン粉末とチタン母合金粉末の混合粉を用いる方法
(素粉末法)とチタン合金粉末を用いる方法(合金粉末
法)とがあるが、前者の素粉末法は各原料粉末の混合割
合を変えることで所望の合金組成を形成することができ
るため、技術的、経済的に有利な方法とされている。チ
タン粉の製造技術としては、スポンジチタンなどにより
形成した電極を高速回転させながらプラズマアークによ
って溶解し、遠心力を利用して粉末化するプラズマ回転
電極法が知られている。この方法によれば比較的純度の
高いチタン粉が製造できるが、100 μm 以下の微粉を得
ることが難しく、また電極の成形と溶解工程を含むため
に製造コストが高くなる難点がある。
Conventionally, the powder metallurgy method of titanium alloy includes a method of using a mixed powder of titanium powder and titanium mother alloy powder as a raw material (elementary powder method) and a method of using titanium alloy powder (alloy powder method). The former powder method is a technically and economically advantageous method because a desired alloy composition can be formed by changing the mixing ratio of each raw material powder. As a technique for producing titanium powder, there is known a plasma rotating electrode method in which an electrode formed of sponge titanium or the like is melted by a plasma arc while being rotated at a high speed, and is pulverized by using centrifugal force. According to this method, titanium powder having a relatively high purity can be produced, but it is difficult to obtain fine powder having a particle size of 100 μm or less, and the manufacturing cost is high because the step of forming and melting the electrode is included.

【0004】一方、金属チタンが水素を吸蔵して脆化す
る性質を利用した水素化脱水素法(HDH法)もチタン
粉を製造する手段として良く知られており、この方法に
よる場合には高性能な粉末冶金原料に必要な極低塩素チ
タン粉の製造が可能で、任意粒度のチタン粉を比較的低
コストで得ることができるため工業的規模において広く
利用されている。
On the other hand, the hydrodehydrogenation method (HDH method), which utilizes the property that metallic titanium absorbs hydrogen and embrittles, is also well known as a means for producing titanium powder. It is widely used on an industrial scale because it is possible to produce a very low chlorine titanium powder required for a high-performance powder metallurgy raw material and to obtain titanium powder of any particle size at a relatively low cost.

【0005】しかしながら、水素化脱水素法で製造され
るチタン系粉末は、角ばった粒子形状を呈しているた
め、例えば、粒度 150μm 以下のチタン粉では粉体の充
填特性の指標となる見掛密度が 1.7〜1.9g/cm3程度と低
位にあり、また流動性の指標となる流動度もせいぜい40
〜60秒/50g 程度である。
However, since the titanium-based powder produced by the hydrodehydrogenation method has a square particle shape, for example, in the case of titanium powder having a particle size of 150 μm or less, the apparent density which is an index of the packing characteristics of the powder is obtained. Is as low as 1.7 to 1.9 g / cm 3 , and the liquidity, which is an indicator of liquidity, is at most 40.
It is about 60 seconds / 50g.

【0006】見掛密度は、工業的な粉末成形において金
型やゴム型に粉末を充填する際に型の設計に関係する重
要な特性であり、高性能な高強度材料を目的とする場合
にはプレス成形体(グリーン)の密度が高いほど焼成後
の緻密度も増大するため、高い見掛密度値の粉末が良好
な充填特性を与える。流動度についても、工業的な自動
プレス作業での生産性を向上させる目的から流動性に優
れる粉末が要求される。
The apparent density is an important characteristic related to the design of a mold when filling powders into a mold or a rubber mold in industrial powder molding, and is used when a high-performance and high-strength material is intended. Since the higher the density of the press-molded body (green), the higher the density after firing, the powder having a high apparent density value gives good filling characteristics. Regarding the fluidity, a powder having excellent fluidity is required for the purpose of improving productivity in industrial automatic press work.

【0007】水素化脱水素法のプロセスでは、水素脆化
した水素化チタンを粉砕し、加熱真空引きをおこなって
水素を除去したのち加熱焼結により焼結したチタン塊を
解砕して目的粒度のチタン粉末を得る。この製造過程で
中間的に生成する水素化チタンは極めて脆いため、目的
とする粒度、例えば 150μm 以下の粒度に粉砕すること
は容易であるものの、粉砕後の水素化チタンの粒子形状
は外形が鋭角になり易い。このため、該一次粒子が焼結
した脱水素化後のチタン塊もカッター式粉砕機などを用
いて容易にチタン系粉末まで解砕できるが、粒形はやは
り角ばった形状を呈していて見掛密度が低く、流動性の
良くない粉末となる。
In the process of the hydrodehydrogenation method, the hydrogen embrittled titanium hydride is crushed, heated to vacuum to remove hydrogen, and then the sintered titanium mass is crushed by heat sintering to crush the target grain size. To obtain titanium powder. Titanium hydride intermediately generated during this manufacturing process is extremely brittle, so it is easy to grind it to the target particle size, for example, 150 μm or less, but the particle shape of titanium hydride after grinding is sharp in external shape. It is easy to become. Therefore, the titanium lump after dehydrogenation, in which the primary particles are sintered, can be easily crushed into titanium-based powder by using a cutter type crusher or the like, but the grain shape is still angular and apparent. The powder has low density and poor flowability.

【0008】[0008]

【発明が解決しようとする課題】一般に、見掛密度は流
動度と高い相関性があって、見掛密度が大きくなるに従
って流動性も向上すると言われている。また、この両特
性は粉末の形状や粒度にも関係し、真球に近い粉末ほど
見掛密度が高くなるとともに流動性も増し、粉末が微細
なほど見掛密度は小さくなり流動性は減退する傾向があ
る。このため、通常のセラミックス粉末では造粒などの
処理を施すことによって流動性を向上させる工夫がなさ
れているが、チタン系粉末の場合には非常に活性である
ため、造粒過程で添加剤による汚染現象が生じる等の問
題から適用することができない。
Generally, it is said that the apparent density has a high correlation with the fluidity, and that the fluidity improves as the apparent density increases. Both of these characteristics are also related to the shape and particle size of the powder. The closer the powder is to a true sphere, the higher the apparent density and the higher the fluidity. The finer the powder, the smaller the apparent density and the lower the fluidity. Tend. For this reason, conventional ceramic powders have been devised to improve fluidity by treatment such as granulation, but in the case of titanium-based powders, it is very active, so it is It cannot be applied due to problems such as pollution phenomenon.

【0009】本発明は、水素化脱水素法を適用してチタ
ン系粉末を製造する場合に脱水素後のチタン粉焼結塊に
特定の粉砕処理を施すと円滑に角の取れた粒子形状の粉
末に転化させることができることを実証して開発に至っ
たもので、その目的は水素化脱水素法を用いて粉末冶金
に好適な優れた見掛密度ならびに流動性を有するチタン
系粉末の製造方法を提供することにある。
According to the present invention, when a titanium-based powder is produced by applying the hydrodehydrogenation method, if the titanium powder sintered mass after dehydrogenation is subjected to a specific pulverization treatment, the particles having a smoothly rounded corner are formed. It was developed by demonstrating that it can be converted into powder, and its purpose is a method for producing a titanium-based powder having excellent apparent density and fluidity suitable for powder metallurgy using a hydrodehydrogenation method. To provide.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるチタン系粉末の製造方法は、水素化脱
水素法によるチタン系粉末の製造プロセスにおいて、脱
水素後のチタン粉焼結塊を衝撃・打撃の粉砕機構による
機械的手段を介して粉砕し、見掛密度が高く、かつ流動
性に優れたチタン系粉末に転化させることを構成上の特
徴とする。なおこの構成において、チタン系粉末とはチ
タンもしくはチタン基合金を意味する。
In order to achieve the above object, a method for producing titanium-based powder according to the present invention is a method for producing titanium-based powder by hydrodehydrogenation method, wherein titanium powder is sintered after dehydrogenation. The structural feature is that the lumps are crushed through mechanical means by a crushing mechanism of impact and impact to be converted into titanium-based powder having high apparent density and excellent fluidity. In this configuration, the titanium-based powder means titanium or titanium-based alloy.

【0011】本発明の前提となる水素化脱水素法には、
公知のプロセスが適用される。すなわち、スポンジチタ
ン、純チタンまたはチタン基合金のインゴット切削粉な
どの原料チタンを高温下、水素ガス雰囲気中で水素化す
る水素化工程、水素化チタン塊を不活性雰囲気下で粉砕
する粉砕工程、粉砕後の水素化チタン粉を高温の真空中
で脱水素処理する脱水素工程、脱水素時に焼結したチタ
ン塊を破砕および粉砕する解砕工程、およびチタン粉末
を所定の粒度に分級調整する篩別工程の各段階からな
る。このうち、従来方法では解砕工程における脱水素化
チタン粉焼結塊の粉砕処理に例えばカッターミル等の切
断粉砕機構による粉砕手段が採られていたが、本発明で
はこの粉砕処理を衝撃・打撃の粉砕機構による機械的手
段を用いておこなうところに要点がある。
The hydrodehydrogenation method which is the premise of the present invention includes:
Known processes are applied. That is, sponge titanium, a raw material titanium such as ingot cutting powder of pure titanium or titanium-based alloy at high temperature, a hydrogenation step of hydrogenating in a hydrogen gas atmosphere, a grinding step of grinding a titanium hydride mass under an inert atmosphere, Dehydrogenation process of dehydrogenating titanium hydride powder after crushing in a high temperature vacuum, crushing process of crushing and crushing titanium lumps sintered during dehydrogenation, and sieve for classifying titanium powder to a predetermined particle size It consists of each step of another process. Among them, in the conventional method, a crushing means such as a cutter crushing mechanism such as a cutter mill is used for crushing the dehydrogenated titanium powder sinter in the crushing step. The point is that it is carried out by using mechanical means by the crushing mechanism of.

【0012】本発明の目的に好適な衝撃・打撃の粉砕機
構による機械的手段としては、粗砕機または破砕機に分
類されるハンマブレーカー、ハンマクラッシャー、ハン
マーミル等の粉砕装置を挙げることができる。この種の
粉砕装置は、上部から投入された原料がスイングハンマ
が高速回転している内部で繰り返し粉砕され、粉砕され
て所定粒度以下になったものは落下間隙間調整孔(ロス
トル)を通過し、粗粉は粉砕装置の内部に滞留して再粉
砕される構造となっている。粉砕の機構は衝撃と打撃で
あるが、強い力が加わるロストルは幅が10mm程度の角材
を数mm間隔の落下隙間となるように並べるように設計す
る。この際、落下隙間の総面積は落下隙間の寸法によっ
て決まり、例えば1.6mm の場合にはロストル総面積に対
して僅か6%程度となる。したがって、開口部面積を調
整することにより粉砕機内部での滞留時間を増加し、ロ
ストル上でのスイングハンマーと粉砕装置内部のライナ
ーの機構で原料が衝撃・打撃粉砕される頻度が増加す
る。
As the mechanical means suitable for the purpose of the present invention by the impact / striking crushing mechanism, a crusher such as a hammer breaker, a hammer crusher or a hammer mill classified into a coarse crusher or a crusher can be mentioned. In this type of crushing device, the raw material charged from the top is repeatedly crushed inside the swing hammer rotating at high speed, and if it is crushed and the particle size is less than a predetermined size, it passes through the drop gap adjusting hole (losstor). The coarse powder stays inside the crushing device and is crushed again. The crushing mechanism is impact and impact, but the strong force is designed so that the squares with a width of about 10 mm are arranged so as to form a drop gap of several mm intervals. At this time, the total area of the drop gap is determined by the size of the drop gap, and, for example, in the case of 1.6 mm, it is only about 6% of the total area of the loss. Therefore, by adjusting the area of the opening, the residence time inside the crusher is increased, and the frequency of the impact and impact crushing of the raw material is increased by the mechanism of the swing hammer on the grate and the liner inside the crusher.

【0013】粉末冶金に供するチタン系粉末の粒度は、
通常 150μm 以下であるため、水素化チタン粉の段階で
予め 150μm 以下の粒度に調整しておけば、脱水素化工
程での焼結体は落下隙間が例えば1.6mm であっても前記
粉砕装置により十分 150μm以下の粒度まで粉砕するこ
とが可能となる。このため、数10mm程度に焼結した脱水
素化後のチタン粉塊でも角部が除かれた高見掛密度で流
動性の良好なチタン系微粉末に転化させることができ
る。
The particle size of the titanium-based powder used for powder metallurgy is
Since it is usually 150 μm or less, if the particle size is adjusted to 150 μm or less in advance at the stage of titanium hydride powder, the sintered body in the dehydrogenation process can be processed by the crusher even if the drop gap is 1.6 mm, for example. It is possible to grind to a particle size of 150 μm or less. Therefore, even titanium powder lumps after dehydrogenation that have been sintered to about several tens of millimeters can be converted into titanium-based fine powders with high apparent density and good fluidity with the corners removed.

【0014】このようにして衝撃・打撃の粉砕機構によ
る機械的手段を介して粉砕されたチタン系粉末は、つい
で所定粒度に篩別処理を施して製品とする。
The titanium-based powder thus pulverized through the mechanical means of the impact / striking pulverization mechanism is then subjected to sieving treatment to a predetermined particle size to obtain a product.

【0015】[0015]

【作用】本発明によれば、水素化脱水素法でチタン系粉
末を製造するにあたり、脱水素処理後における焼結チタ
ン塊の粉砕処理を衝撃・打撃による機構の機械的手段を
適用しておこなうことにより、粉砕過程で粒子の角が除
去され、丸みを帯びた粒子形態の微粉末に粉砕すること
ができる。この作用により、粉末冶金に好適な高い見掛
密度と優れた流動性を有する高品位のチタン系粉末を操
作性よく工業的に製造することができる。
According to the present invention, when the titanium-based powder is produced by the hydrodehydrogenation method, the crushing treatment of the sintered titanium lump after the dehydrogenation treatment is performed by applying the mechanical means of the mechanism by impact / striking. As a result, the corners of the particles are removed during the pulverization process, and it is possible to pulverize into fine powder having a rounded particle form. By this action, a high-grade titanium-based powder having a high apparent density suitable for powder metallurgy and excellent fluidity can be industrially produced with good operability.

【0016】[0016]

【実施例】 以下、本発明の実施例を比較例と対比して説明する。EXAMPLES Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0017】実施例1 純チタン(JIS−1種相当)のインゴットを切削した
厚さ約2mm、長さ約30mmの切り粉を原料とし、これをス
テンレス容器に200kg 装入したのち加熱炉に移して真空
雰囲気下で 650℃まで昇温した。ついで、容器に水素ガ
スを供給して約1時間後に内圧が大気圧になるのを確認
し、加熱を停止して引き続き水素ガスの供給を継続し
た。約30時間後に理論量相当の水素が吸収されたので、
そのまま水素ガス雰囲気中で常温まで冷却した。処理後
の原料は若干の焼結は認められたが、容器を傾けて棒で
掻き出すことにより取り出すことができた。
Example 1 A pure titanium (corresponding to JIS-1 type) ingot was used as a raw material, and a cutting powder having a thickness of about 2 mm and a length of about 30 mm was used as a raw material. The temperature was raised to 650 ° C in a vacuum atmosphere. Then, it was confirmed that the internal pressure became the atmospheric pressure about 1 hour after supplying the hydrogen gas to the container, the heating was stopped, and the supply of the hydrogen gas was continued. After about 30 hours, the theoretical amount of hydrogen was absorbed, so
It was cooled to room temperature in a hydrogen gas atmosphere as it was. Although the raw material after the treatment was found to be slightly sintered, it could be taken out by tilting the container and scraping it with a stick.

【0018】水素化処理後の原料を切断粉砕機構のカッ
ターミルで粉砕したのち、目開き150 μm の円型振動篩
によって篩別し、粒度 150μm 以下の水素化チタン粉を
調製した。得られた水素化チタン粉につき、JIS Z
2504(オリフィス口径5mm、試料の乾燥処理を省
略した条件。以下同じ) で測定したところ1.7g/cm3であ
った。また、流動度をJIS Z 2502(試料の乾
燥処理を省略した条件。以下同じ)で測定した結果、46
秒/50g であった。
The raw material after the hydrogenation treatment was pulverized by a cutter mill having a cutting and pulverizing mechanism and then sieved by a circular vibrating sieve having an opening of 150 μm to prepare a titanium hydride powder having a particle size of 150 μm or less. Regarding the obtained titanium hydride powder, JIS Z
It was 1.7 g / cm 3 when measured with 2504 (orifice diameter 5 mm, the condition that the sample drying treatment was omitted. The same applies hereinafter). In addition, the fluidity was measured according to JIS Z 2502 (the condition in which the sample drying treatment was omitted. The same applies hereinafter),
It was second / 50g.

【0019】上記の水素化チタン粉50kgを中間原料とし
てステンレス製の皿状容器(内径350mm 、高さ50mm)に
約40mmの層厚に充填し、これを真空加熱炉にセットして
真空引きしながら 800℃まで昇温して保持した。炉内圧
力が10-2Torr以下になった時点で加熱を停止して炉内に
アルゴンガスを導入し、炉内温度が室温まで冷却された
段階で容器を回収した。
Using 50 kg of the above titanium hydride powder as an intermediate material, a stainless dish-shaped container (inner diameter 350 mm, height 50 mm) was filled to a layer thickness of about 40 mm, which was set in a vacuum heating furnace and evacuated. However, the temperature was raised to 800 ° C and maintained. When the pressure in the furnace became 10 -2 Torr or less, heating was stopped, argon gas was introduced into the furnace, and the container was recovered when the temperature in the furnace was cooled to room temperature.

【0020】このようにして脱水素されたチタンは焼結
しており、これを皿状容器から取り出すためにハンマー
で叩いて30〜100mm 角の塊片に塊砕した。ついでチタン
塊片をハンマブレーカーにかけ、スイングハンマ回転数
2800rpm 、ロストル落下隙間1.6mm (ロストルの落下隙
間の総面積は、ロストル総面積に対して約6%)、供給
速度100kg/H の条件で2回反復して粉砕処理を施した。
ついで、チタン粉末を目開き 150μm の円型振動篩で篩
別した。
The titanium dehydrogenated in this manner was sintered, and it was smashed into pieces of 30 to 100 mm square by hitting it with a hammer in order to remove it from the dish-shaped container. Then, put the titanium block on a hammer breaker, and swing hammer rotation speed
The crushing treatment was repeated twice under the conditions of 2800 rpm, the loss gap of 1.6 mm (the total area of the loss gap of the loss is about 6% of the total area of the loss), and the supply rate of 100 kg / H.
Then, the titanium powder was sieved with a circular vibrating sieve having openings of 150 μm.

【0021】得られたチタン粉末の粒子構造につき走査
型電子顕微鏡で観察した結果、図1に示すような角のと
れた丸味のある粒子形状であった。また、その見掛密度
および流動度を測定し、表1に示した。
As a result of observing the particle structure of the obtained titanium powder with a scanning electron microscope, the particle shape was as shown in FIG. The apparent density and fluidity were also measured and are shown in Table 1.

【0022】比較例1 実施例1の脱水素工程で得られたチタン塊を切断粉砕機
構のカッターミルで粉砕した。粉砕条件は、カッター回
転速度2000rpm 、スクリーンは1.0mm 丸の開孔を開けた
パンチプレート状とし、開孔総面積はスクリーン総面積
に対して約30%とし、供給速度を100kg/H に設定し、2
回反復して粉砕した。得られたチタン粉末の粒子形状
は、図2の走査型顕微鏡写真に示したとおり、外形が角
ばった形状を呈していた。また、見掛密度および流動度
を測定し、結果を表1に併載した。
Comparative Example 1 The titanium ingot obtained in the dehydrogenation step of Example 1 was crushed by a cutter mill having a cutting and crushing mechanism. The crushing conditions were a cutter rotation speed of 2000 rpm, a screen of a punch plate shape with 1.0 mm round holes, a total opening area of about 30% of the total screen area, and a feed rate of 100 kg / H. Two
It was crushed repeatedly. The particle shape of the obtained titanium powder had an angular outer shape as shown in the scanning micrograph of FIG. Further, the apparent density and the fluidity were measured, and the results are also shown in Table 1.

【0023】実施例2 チタン原料としてTi−6Al−4V合金(ASTM G
rade5 相当品) のインゴット切削粉を用い、その他は実
施例1と同一条件の水素化脱水素工程によりチタン基合
金粉末を製造した。得られた粉末の粒子形状は角がとれ
て丸味を帯びていた。見掛密度おとび流動度は表1の併
載したとおりであった。
Example 2 As a titanium raw material, Ti-6Al-4V alloy (ASTM G
A titanium-based alloy powder was produced by the hydrodehydrogenation step under the same conditions as in Example 1 except that the ingot cutting powder (corresponding to rade5) was used. The particle shape of the obtained powder was rounded and rounded. The apparent density and fluidity were as shown in Table 1.

【0024】比較例2 実施例2と同一の原料を用い、比較例1と同一の粉砕条
件によりチタン基合金粉末を製造した。得られた粉末の
粒子形態は、比較例1と同様に外形が角ばったものであ
った。その見掛密度と流動度の測定結果は表1に併載し
たとおりであった。
Comparative Example 2 Using the same raw material as in Example 2, a titanium-based alloy powder was produced under the same grinding conditions as in Comparative Example 1. The particle morphology of the obtained powder had a square outer shape as in Comparative Example 1. The measurement results of the apparent density and the fluidity are shown in Table 1 together.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上のとおり、本発明に従えば水素化脱
水素法によるチタン系粉末の製造プロセスのうち脱水素
処理後の解砕工程を衝撃・打撃機構の粉砕手段を適用し
て粉砕処理を施すことにより、高い見掛密度と優れた流
動性を有する高品位のチタン系粉末を円滑かつ効率的に
製造することができる。したがって、粉末冶金の原料チ
タン粉の工業的な製造技術として極めて有用である。
As described above, according to the present invention, the crushing step after the dehydrogenation treatment in the production process of titanium-based powder by the hydrodehydrogenation method is performed by applying the crushing means of the impact / striking mechanism. By performing the above, it is possible to smoothly and efficiently produce a high-quality titanium-based powder having a high apparent density and excellent fluidity. Therefore, it is extremely useful as an industrial manufacturing technique for the raw material titanium powder of powder metallurgy.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得たチタン粉末の粒子構造を示した
走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing the particle structure of titanium powder obtained in Example 1.

【図2】比較例1で得たチタン粉末の粒子構造を示した
走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph showing the particle structure of titanium powder obtained in Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法によるチタン系粉末の製
造プロセスにおいて、脱水素後のチタン粉焼結塊を衝撃
・打撃の粉砕機構による機械的手段を介して粉砕して、
見掛密度が高く、かつ流動性の優れたチタン系粉末に転
化させることを特徴とするチタン系粉末の製造方法。
1. A process for producing a titanium-based powder by a hydrodehydrogenation method, wherein a titanium powder sintered lump after dehydrogenation is crushed through mechanical means by an impact / striking crushing mechanism,
A method for producing a titanium-based powder, which comprises converting to a titanium-based powder having a high apparent density and excellent fluidity.
【請求項2】 チタン系粉末が、チタンもしくはチタン
基合金である請求項1記載のチタン系粉末の製造方法。
2. The method for producing a titanium-based powder according to claim 1, wherein the titanium-based powder is titanium or a titanium-based alloy.
JP3352458A 1991-12-12 1991-12-12 Method for producing titanium-based powder Expired - Lifetime JP2987603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352458A JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352458A JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Publications (2)

Publication Number Publication Date
JPH05163508A true JPH05163508A (en) 1993-06-29
JP2987603B2 JP2987603B2 (en) 1999-12-06

Family

ID=18424214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352458A Expired - Lifetime JP2987603B2 (en) 1991-12-12 1991-12-12 Method for producing titanium-based powder

Country Status (1)

Country Link
JP (1) JP2987603B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057634A (en) * 2000-11-09 2009-03-19 Nikko Kinzoku Kk Manufacturing method for high-purity zirconium or hafnium powder
CN103418798A (en) * 2012-05-22 2013-12-04 宁波江丰电子材料有限公司 Method for preparing high-purity titanium powder by residual titanium targets
JP2017168337A (en) * 2016-03-17 2017-09-21 日本碍子株式会社 Method for producing positive electrode current collector for sodium-sulfur battery, and method for producing sodium-sulfur battery
RU2631692C1 (en) * 2016-10-27 2017-09-26 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет" Method for production of fine-dispersed spherical titanium-containing powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057634A (en) * 2000-11-09 2009-03-19 Nikko Kinzoku Kk Manufacturing method for high-purity zirconium or hafnium powder
CN103418798A (en) * 2012-05-22 2013-12-04 宁波江丰电子材料有限公司 Method for preparing high-purity titanium powder by residual titanium targets
JP2017168337A (en) * 2016-03-17 2017-09-21 日本碍子株式会社 Method for producing positive electrode current collector for sodium-sulfur battery, and method for producing sodium-sulfur battery
RU2631692C1 (en) * 2016-10-27 2017-09-26 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет" Method for production of fine-dispersed spherical titanium-containing powders

Also Published As

Publication number Publication date
JP2987603B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US20190271068A1 (en) Powder Metallurgy Sputtering Targets And Methods Of Producing Same
JP4382812B2 (en) Manufacture of high purity niobium monoxide (NbO) and capacitor products made from it
CN104674038A (en) Alloy material with high strength as well as ductility and semi-solid state sintering preparation method and application of alloy material
JP2020153017A (en) Method of manufacturing cemented carbide material
CA2233137C (en) Titanium-base powders and process for the production of the same
JP2885098B2 (en) Processing method of titanium sponge powder
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
RU2301723C1 (en) Method for producing finely dispersed titanium powder
JP2987603B2 (en) Method for producing titanium-based powder
JP2821662B2 (en) Titanium-based powder and method for producing the same
CN110860686A (en) Small-particle-size cobalt-chromium-tungsten-molybdenum alloy spherical powder and preparation method thereof
WO2021243175A1 (en) Hdh (hydride-dehydride) process for fabrication of braze alloy powders
JPH1046269A (en) Manufacture of titanium-molybdenum master alloy, and titanium-molybdenum master alloy
JP2002047501A (en) Titanium base powder
JPH07278612A (en) Method for crushing sponge titanium
JP7026543B2 (en) Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method
JP6976415B2 (en) Titanium powder and its manufacturing method
JP3459342B2 (en) Method for producing titanium-based powder
JPH10195504A (en) Titanium hydride powder and its production
JPH02247379A (en) Production of silicide target
JP6586210B2 (en) Method for producing chromium for powder metallurgy
JPH0565629A (en) Production of sputtering target
CN115595461B (en) Microlaminated TiB 2 Reinforced copper-based composite material and preparation method thereof
JPH0776707A (en) Production of titanium powder
JPS6176664A (en) Target for sputtering apparatus and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20121008

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13