JP6976415B2 - Titanium powder and its manufacturing method - Google Patents

Titanium powder and its manufacturing method Download PDF

Info

Publication number
JP6976415B2
JP6976415B2 JP2020506443A JP2020506443A JP6976415B2 JP 6976415 B2 JP6976415 B2 JP 6976415B2 JP 2020506443 A JP2020506443 A JP 2020506443A JP 2020506443 A JP2020506443 A JP 2020506443A JP 6976415 B2 JP6976415 B2 JP 6976415B2
Authority
JP
Japan
Prior art keywords
titanium
powder
mgcl
raw material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506443A
Other languages
Japanese (ja)
Other versions
JPWO2019176700A1 (en
Inventor
茂久 竹中
謙治 平嶋
千博 滝
和也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Technical Service Co Ltd
Hitachi Metals Ltd
Original Assignee
Toho Technical Service Co Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Technical Service Co Ltd, Hitachi Metals Ltd filed Critical Toho Technical Service Co Ltd
Publication of JPWO2019176700A1 publication Critical patent/JPWO2019176700A1/en
Application granted granted Critical
Publication of JP6976415B2 publication Critical patent/JP6976415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon

Description

本発明は、チタン系粉に関し、詳細には、水素化脱水素法(以下、HDH法と称する)により製造する、従来にない、全く新規なチタン系粉およびその製造方法に関する。 The present invention relates to a titanium-based powder, and more particularly to a completely novel titanium-based powder produced by a hydrogenation dehydrogenation method (hereinafter referred to as an HDH method) and a method for producing the same.

従来、チタン系粉中のポアについては、ほとんど工業的に注目されておらず、詳細にポア発生機構を研究する文献等は殆どない状態であった。近年、チタン系粉を用いた焼結体の密度向上要求や、チタン系粉から製造されるチタン製品への品質要求の高度化に伴い、チタン系粉中のポア低減要求が高まってきている。 Conventionally, the pores in titanium-based powder have received little industrial attention, and there has been almost no literature to study the pore generation mechanism in detail. In recent years, with the demand for increasing the density of sintered bodies using titanium-based powder and the sophistication of quality requirements for titanium products manufactured from titanium-based powder, the demand for reducing pores in titanium-based powder has been increasing.

チタン系粉のポアを低減させる技術を開示した先行技術文献について調査を行ったものの、発見には至らなかった。チタン系粉の製造に関する先行技術文献としては、特許文献1及び特許文献2がある。なお、本明細書においては、チタン粉およびチタン合金粉を、チタン系粉という。 A search was conducted on prior art documents that disclosed techniques for reducing the pores of titanium-based powders, but no findings were found. Prior art documents relating to the production of titanium-based powder include Patent Document 1 and Patent Document 2. In this specification, titanium powder and titanium alloy powder are referred to as titanium-based powder.

特開平5−247503号公報Japanese Unexamined Patent Publication No. 5-247503 特開平7−278601号公報Japanese Unexamined Patent Publication No. 7-278601

本発明は上記の問題を解決することを目的とするものであり、すなわち、チタン系粉中のポアを低減させたチタン系粉を提供することにある。 An object of the present invention is to solve the above-mentioned problems, that is, to provide a titanium-based powder having reduced pores in the titanium-based powder.

上記のポアの少ないチタン系粉の製造を達成するため、本発明では、ポアの構造や発生メカニズムを詳細に解析した。その結果、チタン系粉の原料および製造方法を調整することで、ポアの発生個数が大幅に変化することを見出すとともに、ポアの発生はチタン系粉中にガスが存在する(またはしていた)ことにより、断面形状が略円形(球形)のポアが残存するとの解析結果に着目した。 In order to achieve the above-mentioned production of titanium-based powder having few pores, in the present invention, the structure and generation mechanism of pores were analyzed in detail. As a result, it was found that the number of pores generated changed significantly by adjusting the raw material and manufacturing method of the titanium powder, and the pores were generated (or had) in the titanium powder. As a result, we focused on the analysis result that pores with a substantially circular (spherical) cross-sectional shape remain.

本発明の一実施形態によると、チタン系粉であって、チタン系粉の断面に占めるポアの断面積を前記チタン系粉の断面の面積で除したポア面積比が0.3パーセント以下であることを特徴とするチタン系粉が提供される。 According to one embodiment of the present invention, the pore area ratio of the titanium powder obtained by dividing the cross-sectional area of the pores in the cross section of the titanium powder by the area of the cross section of the titanium powder is 0.3% or less. Titanium-based powders characterized by this are provided.

チタン系粉がHDH粉であってもよい。 The titanium-based powder may be HDH powder.

本発明の一実施形態によると、チタン系原料を用いた、水素化工程、粉砕工程、脱水素工程を含む水素化脱水素法によるチタン系粉の製造方法であって、前記チタン系原料に含有される全MgCl2の濃度が1.0mass%以下であり、内部MgCl2濃度が0.1mass%以下であることを特徴とするチタン系粉の製造方法が提供される。According to one embodiment of the present invention, a method for producing titanium-based powder by a hydrogenation dehydrogenation method including a hydrogenation step, a crushing step, and a dehydrogenation step using a titanium-based raw material, which is contained in the titanium-based raw material. the concentration of total MgCl 2 which is not more than 1.0 mass%, the production method of the titanium-based powder, wherein the internal MgCl 2 concentration is not more than 0.1mass% is provided.

チタン系原料の最大厚みが20mm以下であってもよい。 The maximum thickness of the titanium-based raw material may be 20 mm or less.

粉砕工程において、水素化チタン系粉末はD95粒径が300μm以下に粉砕されてもよい。 In the pulverization step, the titanium hydride powder may be pulverized to a D95 particle size of 300 μm or less.

水素化工程において、チタン系原料の温度を716℃以上1050℃以下の範囲内で90分以上の時間をかけて水素化してもよい。 In the hydrogenation step, the temperature of the titanium-based raw material may be hydrogenated within the range of 716 ° C. or higher and 1050 ° C. or lower over a period of 90 minutes or longer.

チタン系粉中のポア発生は、ガスと密接な関係がある。チタン系粉中にガスを巻き込ませないことや、チタン系粉内部でガスを発生させないこと、もしくは、発生したガスをチタン系粉内部から速やかに取り除くことで、ポアが存在するチタン系粉の個数の大幅な低減が可能である。 Pore generation in titanium powder is closely related to gas. The number of titanium-based powders with pores by not entraining gas in the titanium-based powder, not generating gas inside the titanium-based powder, or by quickly removing the generated gas from the inside of the titanium-based powder. Can be significantly reduced.

画像処理の方法を示すための図で、特に内包されたポアを示す図である。It is a figure for showing the image processing method, and is the figure which shows the included pore in particular. 画像処理の方法を示すための図で、特にオープンになっているポアを示す図である。It is a figure for showing the image processing method, and is the figure which shows the pore which is particularly open. 実施例1に係るチタン粉の光学顕微鏡写真である。It is an optical micrograph of the titanium powder which concerns on Example 1. FIG. 実施例3に係るチタン粉の光学顕微鏡写真である。It is an optical micrograph of the titanium powder which concerns on Example 3. FIG. 比較例2に係るチタン粉の光学顕微鏡写真において画像処理を行った際の写真である。It is a photograph when image processing was performed in the optical micrograph of the titanium powder which concerns on Comparative Example 2.

チタン粉は、現在、ほとんどがクロール法にて製造されるスポンジチタンを原料としている。また、経済性、資源保護の観点から、スクラップを原料として活用する場合もある。 Currently, most of the titanium powder is made from sponge titanium produced by the Kroll process. In addition, scrap may be used as a raw material from the viewpoint of economic efficiency and resource protection.

[クロール法の説明]
クロール法とは、チタン鉱石を塩素化して得られる四塩化チタン(TiCl4)をマグネシウム(Mg)で還元して金属チタンを得る方法である。
[Explanation of the Kroll process]
The Kroll process is a method for obtaining metallic titanium by reducing titanium tetrachloride (TiCl 4 ) obtained by chlorinating titanium ore with magnesium (Mg).

クロール法においては、還元工程(TiCl4+2Mg→Ti+2MgCl2)で生じるMgCl2がスポンジチタンと共存するため、そのMgCl2を分離工程で除去した後のスポンジチタンが使用される。ところが、そのスポンジチタンをよく調べると、完全にMgCl2が除去できているわけではなく、スポンジチタンの表面に付着しているMgCl2(表面MgCl2)と、スポンジチタンの内部に閉じ込められ外部と遮断されたMgCl2(内部MgCl2)の2種類が残存していることが分かった。In the Kroll process, since MgCl 2 generated in the reduction step (TiCl 4 + 2Mg → Ti + 2MgCl 2 ) coexists with the sponge titanium, the sponge titanium after removing the MgCl 2 in the separation step is used. However, upon closer examination of the titanium sponge, MgCl 2 was not completely removed, and MgCl 2 (surface MgCl 2 ) adhering to the surface of the titanium sponge and the outside were trapped inside the titanium sponge. It was found that two types of blocked MgCl 2 (internal MgCl 2) remained.

分離工程で十分取りきれずスポンジチタンの表面に残存するMgCl2(表面MgCl2)は、再度、減圧下で熱を加えることにより、除去することができる。一方、減圧下で熱を加えた後のスポンジチタンを切断して内部を調べたところ、スポンジチタンの内部に閉じ込められたMgCl2(内部MgCl2)は、この方法では取り除くことができないことがわかった。 MgCl 2 (surface MgCl 2 ) remaining on the surface of titanium sponge that could not be sufficiently removed in the separation step can be removed by applying heat again under reduced pressure. On the other hand, when the sponge titanium after applying heat under reduced pressure was cut and the inside was examined, it was found that MgCl 2 (internal MgCl 2 ) trapped inside the sponge titanium could not be removed by this method. rice field.

[アトマイズ法チタン粉製造方法の説明]
チタン粉の製造方法は、アトマイズ法とHDH法に大別される。アトマイズ法では、チタン原料を溶融させた後、Arガス中で液状化したチタンを細かい液状の粒にすると同時に、急冷し、固化させることでチタン粉を製造する。
[Explanation of atomization method titanium powder production method]
The method for producing titanium powder is roughly classified into an atomizing method and an HDH method. In the atomizing method, titanium powder is produced by melting a titanium raw material and then converting titanium liquefied in Ar gas into fine liquid particles, and at the same time, quenching and solidifying the titanium powder.

本発明者の研究調査では、アトマイズ法においては、チタン粉中にポアが発生する2つの機構があると結論づけた。1つ目は、チタン原料の内部に存在するMgCl2(内部MgCl2)が一気にガス化し、直ちに急冷されることにより、ガス化したMgCl2が液状化したチタンの粒内部に閉じ込められチタン粉中にポアが発生する機構である。2つ目は、液状化したチタンの粒がArガスもしくは気化したMgCl2ガスを巻き込んで凝固することにより、チタン粉中にポアが発生する機構である。このため、本発明の目的を達成するにはHDH法が適するとの結論に至った。In the research and investigation of the present inventor, it was concluded that in the atomization method, there are two mechanisms of pore generation in the titanium powder. The first is that MgCl 2 (internal MgCl 2 ) existing inside the titanium raw material is gasified at once and immediately rapidly cooled, so that the gasified MgCl 2 is trapped inside the liquefied titanium particles and contained in the titanium powder. It is a mechanism that causes pores in the titanium. The second is a mechanism in which pores are generated in the titanium powder by the liquefied titanium particles entraining Ar gas or vaporized MgCl 2 gas and solidifying. Therefore, it was concluded that the HDH method is suitable for achieving the object of the present invention.

[HDH法チタン粉製造方法の説明]
HDH法とは、チタン原料を一旦水素化し、脆いTiH2を形成した後、粉砕し、脱水素することでチタン粉を得る方法である。すなわち、水素化〜粉砕〜脱水素〜解砕の工程によりチタン粉(HDH粉)を製造する方法である。上記解砕工程は任意であるがチタン粉(HDH粉)の製造では解砕工程を行うことが好ましい。
[Explanation of HDH method titanium powder production method]
The HDH method is a method in which a titanium raw material is once hydrogenated to form brittle TiH 2 , then pulverized and dehydrogenated to obtain titanium powder. That is, it is a method for producing titanium powder (HDH powder) by the steps of hydrogenation-crushing-dehydrogenation-crushing. Although the crushing step is optional, it is preferable to perform the crushing step in the production of titanium powder (HDH powder).

この際、水素化の工程ではチタン原料を真空置換可能な水素化炉に装入し、400℃以上の温度で、水素ガス雰囲気中で水素化処理を行い、水素ガス雰囲気からArガス雰囲気に置換することにより水素化チタンの塊状体を得る。チタン原料は、水素化の工程によって水素脆化される。 At this time, in the hydrogenation process, the titanium raw material is charged into a hydrogenation furnace capable of vacuum replacement, hydrogenation treatment is performed in a hydrogen gas atmosphere at a temperature of 400 ° C. or higher, and the hydrogen gas atmosphere is replaced with an Ar gas atmosphere. By doing so, a mass of titanium hydride is obtained. The titanium raw material is hydrogen embrittled by the hydrogenation process.

次は粉砕の工程である。粉砕の工程では、水素化チタンの塊状体を機械粉砕して、機械的な破面すなわち粉砕面を有する水素化チタン粉末にする。得られた水素化チタン粉末は、分級および/または篩別して水素化チタンの微粉を除去する。水素化チタンの機械的粉砕には、ボールミル、振動ミルなどの粉砕装置が使用でき、水素化チタン粉末の粒度調整には円形振動篩、気流分級機などの篩別分級装置を用いてもよい。 Next is the crushing process. In the crushing step, a mass of titanium hydride is mechanically crushed into a titanium hydride powder having a mechanical fracture surface, that is, a crushed surface. The obtained titanium hydride powder is classified and / or sieved to remove fine powder of titanium hydride. A crushing device such as a ball mill or a vibration mill can be used for mechanical crushing of hydrogenated titanium, and a sieve classification device such as a circular vibration sieve or an air flow classifier may be used for adjusting the particle size of the hydrogenated titanium powder.

脱水素化工程では、上記の水素化チタン粉末を容器に充填して、真空加熱型の脱水素炉に装入し、例えば10-3Torr(0.13Pa)以下の真空中で、450℃以上の温度に加熱して脱水素することで脱水素チタン粉末にする。また、必要に応じてArガスを挿入する。In the dehydrogenation step, the above titanium hydride powder is filled in a container and charged into a vacuum heating type dehydrogenation furnace, for example, in a vacuum of 10 -3 Torr (0.13 Pa) or less, at 450 ° C. or higher. Dehydrogenated titanium powder by heating to the temperature of. In addition, Ar gas is inserted as needed.

解砕工程では、脱水素工程で仮焼結した脱水素チタンの塊状体の仮焼結部分を解きほぐし、粉砕後の粉砕面または解砕面を有するチタン粉形状に戻す。 In the crushing step, the temporarily sintered portion of the lump of dehydrogenated titanium temporarily sintered in the dehydrogenation step is unraveled and returned to a titanium powder shape having a crushed surface or a crushed surface after crushing.

[HDH法でのポア発生機構の説明]
本発明者は、HDH法の各製造工程における条件をポアの観点から詳細に研究調査し、いかに、ポアの発生を防ぐかを調べた。HDH法では、各製造工程中でチタンが溶融され液化されることが無ければ、雰囲気中のArガスが巻き込まれてポアの原因となることはない。HDH法での熱処理は、水素化と脱水素化の2工程であることから、いずれも融点以下で行えばよいことになる。ただし、一般的にチタン材を入れる容器としてはステンレス鋼が使用されることから、ステンレス鋼に含まれる鉄とチタンとが接触して、両者の温度が鉄とチタンとの共晶温度以上になるとチタンが液体となり、上記目的にそぐわなくなる。その為、本発明者は、ポアの発生を防ぐためにはチタンを鉄とチタンとの共晶温度以下で制御し、チタンの液化を防ぐ必要があることを見出した。すなわち、上限温度を制御することが本発明の重要な構成要素になる。
[Explanation of pore generation mechanism in HDH method]
The present inventor investigated the conditions in each manufacturing process of the HDH method in detail from the viewpoint of pores, and investigated how to prevent the occurrence of pores. In the HDH method, if titanium is not melted and liquefied in each manufacturing process, Ar gas in the atmosphere is not involved and causes pores. Since the heat treatment by the HDH method consists of two steps, hydrogenation and dehydrogenation, both of them may be performed at a melting point or lower. However, since stainless steel is generally used as the container for the titanium material, if the iron and titanium contained in the stainless steel come into contact with each other and the temperature of both becomes equal to or higher than the eutectic temperature of iron and titanium. Titanium becomes a liquid and does not meet the above purpose. Therefore, the present inventor has found that in order to prevent the generation of pores, it is necessary to control titanium below the eutectic temperature of iron and titanium to prevent liquefaction of titanium. That is, controlling the upper limit temperature is an important component of the present invention.

例えば、特許文献1及び特許文献2では、「650℃まで真空雰囲気下に昇温した」としか記載がなく、その後の水素ガス導入後のチタン材の温度制御については記載がない。チタンを水素化する水素化反応は発熱反応のため、最初は、例えば真空炉内で、650℃で水素吸収を行わせるが、その後は自発的に温度が上昇する。このため、局所部も含めいずれの場所も共晶温度以下になるようチタン材料の容器への入れ方、水素およびAr投入量、投入時間、および各部位の温度を常時観察しながら温度上昇を抑えるため冷却する等、細かな制御をする必要がある。 For example, in Patent Document 1 and Patent Document 2, there is only a description that "the temperature has been raised to 650 ° C. in a vacuum atmosphere", and there is no description about the temperature control of the titanium material after the subsequent introduction of hydrogen gas. Since the hydrogenation reaction for hydrogenating titanium is an exothermic reaction, hydrogen is initially absorbed at 650 ° C., for example, in a vacuum furnace, but then the temperature rises spontaneously. For this reason, the temperature rise is suppressed while constantly observing how to put the titanium material into the container, the amount of hydrogen and Ar added, the charging time, and the temperature of each part so that the temperature is below the eutectic temperature in any place including the local part. Therefore, it is necessary to perform fine control such as cooling.

常圧下でのMgCl2の沸点は1412℃であり、この温度においては、チタン原料の内部に閉じ込められたMgCl2(内部MgCl2)は気体化する。一方、チタンの融点は1668℃であるため、1412℃では、チタンは固体の状態で存在する。気体化された内部MgCl2は、固体の状態に比べて体積が大きくなり、これが原因でチタンの内部では非常に高圧な状態が形成される。この気体化された内部MgCl2による高圧状態は、水素化によって脆くなった水素化チタンに亀裂を発生させ、そこからMgCl2を水素化チタン外部に排出されることが可能である。 The boiling point of MgCl 2 under normal pressure is 1412 ° C., and at this temperature, MgCl 2 (internal MgCl 2 ) trapped inside the titanium raw material is vaporized. On the other hand, since the melting point of titanium is 1668 ° C., at 1412 ° C., titanium exists in a solid state. The vaporized internal MgCl 2 has a larger volume than the solid state, which causes a very high pressure state to be formed inside the titanium. This high-pressure state due to the gasified internal MgCl 2 causes cracks in the titanium hydride that has become brittle due to hydrogenation, from which it is possible for MgCl 2 to be discharged to the outside of the titanium hydride.

しかし、前記したように、HDH法においては、チタン材を入れる容器はステンレス鋼の場合が多く、鉄とチタンの共晶温度(1085℃)以上にはあげられない。本発明では、この制限された温度を順守し、かつ、ポアの原因となるMgCl2を取り除く従来にない制御方法を見出し、本発明を完成させた。つまり、チタン原料の温度を最低でもMgCl2の融点(714℃)以上の温度にしてMgCl2を液相とし、MgCl2の体積を固体の状態に比べて膨張させる。このとき、チタンは固体の状態で存在するため、内部MgCl2は固体の状態に比べて液体の状態のほうが体積が大きくなり、これが原因でチタンの内部では非常に高圧な状態が形成される。この液相の内部MgCl2による高圧状態は、水素化によって脆くなった水素化チタンに亀裂を発生させる。亀裂によりチタン外部に露出した液相のMgCl2は、徐々に蒸発により気化できるようにする。この場合の炉内の温度及び加熱時間(温度の維持時間)の制御は、水素化するチタン原料の厚みや水素化時間も考慮して決定される。これが、例えば、チタンが脆化する前に、蒸発したMgCl2にてチタン内部の圧力が高まると、高温ではチタンは軟化し容易に変形する為、チタン内部に球状のポアを形成させる結果となってしまい、本発明とは逆方向になる。例えば、本発明においては、716℃以上1050℃以下の範囲で90分以上の時間をかけることによって、チタン原料の内部に存在するMgCl2はチタンの亀裂から蒸発し、併せてチタンの水素化も実現することができる。理論的には、チタン原料の温度をMgCl2の融点(714℃)以上から鉄とチタンの共晶温度(1085℃)未満の範囲で設定することができるが、上記温度範囲とすることでより確実な温度制御を行うことができる。However, as described above, in the HDH method, the container for putting the titanium material is often stainless steel, and the temperature cannot be raised above the eutectic temperature (1085 ° C.) of iron and titanium. In the present invention, we have found an unprecedented control method that adheres to this limited temperature and removes MgCl 2 that causes pores, and completed the present invention. That is, the temperature of the titanium raw material temperature of MgCl 2 melting point (714 ° C.) or higher for a minimum the MgCl 2 liquid phase, is expanded compared to the volume of MgCl 2 in the solid state. At this time, since titanium exists in the solid state, the volume of the internal MgCl 2 is larger in the liquid state than in the solid state, and this causes a very high pressure state to be formed inside the titanium. The high pressure state due to the internal MgCl 2 of this liquid phase causes cracks in the titanium hydride that has become brittle due to hydrogenation. The liquid phase MgCl 2 exposed to the outside of titanium due to cracks is gradually vaporized by evaporation. In this case, the control of the temperature in the furnace and the heating time (temperature maintenance time) is determined in consideration of the thickness of the titanium raw material to be hydrogenated and the hydrogenation time. For example, if the pressure inside the titanium increases due to the evaporated MgCl 2 before the titanium becomes embrittlement, the titanium softens and easily deforms at high temperatures, resulting in the formation of spherical pores inside the titanium. Therefore, the direction is opposite to that of the present invention. For example, in the present invention, by spending 90 minutes or more in the range of 716 ° C. or higher and 1050 ° C. or lower, MgCl 2 existing inside the titanium raw material evaporates from the cracks in titanium, and at the same time, hydrogenation of titanium is also performed. It can be realized. Theoretically, the temperature of the titanium raw material can be set in the range from the melting point of MgCl 2 (714 ° C.) or higher to less than the eutectic temperature of iron and titanium (1085 ° C.). Reliable temperature control can be performed.

なお、本実施形態に係るHDH法においては、温度を制御することで原料のチタンが溶融しないようにする。しかしながら、チタン原料の表面にMgCl2が付着している場合には、HDH法の工程中にMgCl2が気化することから、表面のMgCl2を取り除くために高真空にすることが好ましい。本実施形態に係るHDH法においては、チタン原料と共に持ち込まれる表面に付着したMgCl2量を低減するとともに、温度、時間、真空度、Ar置換等、コストを考え最適化することが重要である。In the HDH method according to the present embodiment, the temperature is controlled so that the raw material titanium is not melted. However, when MgCl 2 is attached to the surface of the titanium raw material , MgCl 2 is vaporized during the process of the HDH method, so it is preferable to create a high vacuum in order to remove MgCl 2 on the surface. In the HDH method according to the present embodiment, it is important to reduce the amount of MgCl 2 adhering to the surface brought in together with the titanium raw material, and to optimize the temperature, time, degree of vacuum, Ar substitution, etc. in consideration of cost.

本実施形態に係る水素化工程では、ポアを発生させないようにし、かつ、チタン内部に存在するMgCl2(内部MgCl2)を除去するため、本発明で見いだされた上記機構を具現化する水素化工程とする。十分な時間をかけて水素化による脆化を行えば、MgCl2を排出させることは可能であるが、工業的には生産性及びコスト的に適切ではない。In the hydrogenation step according to the present embodiment, in order to prevent the generation of pores and to remove MgCl 2 (internal MgCl 2 ) existing inside the titanium, hydrogenation embodying the above mechanism found in the present invention. It is a process. Although it is possible to discharge MgCl 2 if embrittlement is carried out by hydrogenation over a sufficient period of time, it is not industrially appropriate in terms of productivity and cost.

研究調査の結果、チタン原料の表面に付着するMgCl2量を制御すること以上に、チタン原料の内部に存在するMgCl2量を制御することが生産性及びコストに大きく影響することが判明した。種々の実験をしたところ、チタン原料の全MgCl2濃度を1.0mass%以下に抑えることが必要であることが判明した。そして、チタン原料の全MgCl2濃度は、0.05mass%以下に抑えることが好ましく、0.001mass%以下に抑えることがより好ましい。特に、チタン原料の内部に存在するMgCl2濃度(内部MgCl2濃度)を0.5mass%以下にすれば、HDH法においてチタン原料の温度をMgCl2の融点(714℃)以上から鉄とチタンの共晶温度(1085℃)未満の範囲で維持する時間が90分であってもポアの原因となるMgCl2を効率よく取り除くことができることがわかった。チタン原料の内部に存在するMgCl2濃度(内部MgCl2濃度)を0.1mass%以下とすることでさらに明確に効果が表れる。本発明ではチタン原料の内部に閉じ込められたMgCl2濃度(内部MgCl2濃度)を0.1mass%以下とすることが好ましく、0.001mass%以下とすることがより好ましい。As a result of research and investigation, it was found that controlling the amount of MgCl 2 existing inside the titanium raw material has a great influence on productivity and cost, rather than controlling the amount of MgCl 2 adhering to the surface of the titanium raw material. As a result of various experiments, it was found that it is necessary to suppress the total MgCl 2 concentration of the titanium raw material to 1.0 mass% or less. The total MgCl 2 concentration of the titanium raw material is preferably suppressed to 0.05 mass% or less, and more preferably to 0.001 mass% or less. In particular, if the concentration of MgCl 2 existing inside the titanium raw material (internal MgCl 2 concentration) is set to 0.5 mass% or less, the temperature of the titanium raw material can be changed from the melting point of MgCl 2 (714 ° C.) or higher in the HDH method to that of iron and titanium. It was found that MgCl 2, which causes pores, can be efficiently removed even if the maintenance time is 90 minutes in the range below the eutectic temperature (1085 ° C.). The effect is more clearly shown by setting the MgCl 2 concentration (internal MgCl 2 concentration) existing inside the titanium raw material to 0.1 mass% or less. In the present invention, the MgCl 2 concentration (internal MgCl 2 concentration) confined inside the titanium raw material is preferably 0.1 mass% or less, and more preferably 0.001 mass% or less.

〔原料でのポア抑制方法〕
なお、本発明のHDH法では、チタンが溶融しないため、Arガス等の巻き込みによるポアの発生はない。
[Method of suppressing pores with raw materials]
In the HDH method of the present invention, since titanium is not melted, pores are not generated due to entrainment of Ar gas or the like.

チタン原料の全MgCl2濃度を1.0mass%以下に抑え、さらにはチタン原料内部に閉じ込められたMgCl2濃度(内部MgCl2濃度)を0.1mass%以下に抑える方法としては、コストはかかるものの事前にスポンジチタンをさらに細かくし、再度、真空中で熱処理する方法も有効である。Although the method of suppressing the total MgCl 2 concentration of the titanium raw material to 1.0 mass% or less and the MgCl 2 concentration (internal MgCl 2 concentration) confined inside the titanium raw material to 0.1 mass% or less is costly. It is also effective to make the titanium sponge finer in advance and heat it again in vacuum.

また、チタン原料は、その最大厚みが20mm以下、より好ましくは10mm以下であるとよい。チタン原料の最大厚みが20mm以下であることにより、水素化時に水素が充分に原料内部に行き渡り、チタンを脆化させ亀裂を速やかに生じさせるためである。 The maximum thickness of the titanium raw material is preferably 20 mm or less, more preferably 10 mm or less. This is because when the maximum thickness of the titanium raw material is 20 mm or less, hydrogen is sufficiently distributed inside the raw material during hydrogenation, embrittlement of titanium and rapid generation of cracks.

[全MgCl2濃度の定義]
全MgCl2の濃度の測定方法を説明する。対象とするチタン原料の塩素濃度を硝酸銀滴定法(JIS H 1615)により測定し、その塩素濃度の値よりMgCl2濃度に換算し、これをチタン原料に含まれるMgCl2濃度(全MgCl2濃度)とする。
[Definition of total MgCl 2 concentration]
A method for measuring the concentration of total MgCl 2 will be described. The chlorine concentration of the target titanium raw material is measured by the silver nitrate titration method (JIS H 1615) , converted into MgCl 2 concentration from the value of the chlorine concentration, and this is converted to the MgCl 2 concentration contained in the titanium raw material (total MgCl 2 concentration). And.

[内部MgCl2濃度の定義]
内部MgCl2の濃度の測定方法を説明する。まず、対象とするチタン原料を減圧下(50pa以下)にて、約750℃×1時間の熱処理をすることにより表面のMgCl2を飛ばす。その後、本材料の塩素濃度を硝酸銀滴定法(JIS H 1615)により測定し、その塩素濃度の値よりMgCl2濃度に換算し、これをチタン原料の内部に閉じ込められ存在するMgCl2濃度(内部MgCl2濃度)とする。
[Definition of internal MgCl 2 concentration]
A method for measuring the concentration of internal MgCl 2 will be described. First, MgCl 2 on the surface is removed by heat-treating the target titanium raw material under reduced pressure (50 pa or less) at about 750 ° C. for 1 hour. After that, the chlorine concentration of this material is measured by the silver nitrate titration method (JIS H 1615) , converted into MgCl 2 concentration from the value of the chlorine concentration, and this is converted into MgCl 2 concentration that exists inside the titanium raw material (internal MgCl). 2 concentration).

[チタン粉の大きさの説明]
粉砕工程にて、水素化された水素化チタンを粉砕し細かくした、粉砕面を有する水素化チタン粉とすることで、水素化チタンに残存しているポアが起点となり割れて、開放される確率をさらに高めることができる。ポアが開放される確率は、水素化チタン粉の粒径をより細かくすればより高くなる。しかしながら、工業的にはコストおよび時間の制限があることから、水素化チタン粉の粒径は300μm以下、好ましくは150μm以下であればよい。ここで、HDH法で製造され粉砕された水素化チタン粉の粒径は分布を持っており、全水素化チタン粉の粒径の95%以上が上記値以下であればよい。すなわち、水素化チタン粉末のD95粒径は300μm以下であり、好ましくは150μm以下にまで抑えるとより一層効果がある。D95粒径の下限側は特に限定されないがあえて一例を挙げると70μm以上としてもよく、80μm以上としてもよい。本発明においてD95は、レーザー回折・散乱法により求められる粒度分布測定において、体積基準の積算分布が、それぞれ、95%となる粒径を指す。詳細には、JIS Z8825:2013に基づき測定する。
[Explanation of the size of titanium powder]
By crushing hydrogenated titanium hydride into finely divided titanium hydride powder having a crushed surface in the crushing process, the probability that the pores remaining in the hydrogenated titanium will be the starting point and crack and be released. Can be further enhanced. The probability that the pores will be opened will be higher if the particle size of the titanium hydride powder is made finer. However, due to industrial cost and time limitations, the particle size of the titanium hydride powder may be 300 μm or less, preferably 150 μm or less. Here, the particle size of the pulverized titanium hydride powder produced by the HDH method has a distribution, and 95% or more of the particle size of the total hydrided titanium powder may be the above value or less. That is, the D95 particle size of the titanium hydride powder is 300 μm or less, preferably 150 μm or less, which is more effective. The lower limit side of the D95 particle size is not particularly limited, but for example, it may be 70 μm or more, or 80 μm or more. In the present invention, D95 refers to a particle size in which the volume-based integrated distribution is 95% in the particle size distribution measurement obtained by the laser diffraction / scattering method. In detail, it is measured based on JIS Z8825: 2013.

また、HDH法で製造され解砕されたチタン粉の全チタン粒径の95%以上が150μm以下であればよい。 Further, 95% or more of the total titanium particle size of the titanium powder produced and crushed by the HDH method may be 150 μm or less.

〔球状化工程への適用〕
上記したHDH法で製造されたチタン粉では、MgCl2の残留が少ない。このため、本発明のHDH法で製造されたチタン粉は、チタン粉の表面を溶融させ(例えばプラズマ溶融)、粉砕面または解砕面である角ばった表面を球状化させて、球状粉を得るための原料粉末として好適である。HDH法で製造され解砕されたチタン粉は、凹凸構造を有する粉砕面または解砕面を有しているため、その広い表面積により、プラズマに導入した際の溶融を促進させることができる。なお、球状化する為にチタン粉表面を溶融させてもAr等のプラズマガスの巻き込みはなく、新たなポアは抑制できる。
[Application to spheroidization process]
In the titanium powder produced by the above-mentioned HDH method, the residue of MgCl 2 is small. Therefore, the titanium powder produced by the HDH method of the present invention melts the surface of the titanium powder (for example, plasma melting) and spheroidizes the angular surface which is the crushed surface or the crushed surface to obtain a spherical powder. Suitable as a raw material powder for. Since the titanium powder produced and crushed by the HDH method has a crushed surface or a crushed surface having an uneven structure, its wide surface area can promote melting when introduced into plasma. Even if the surface of the titanium powder is melted for spheroidization, plasma gas such as Ar is not involved, and new pores can be suppressed.

以上、HDH法におけるポア発生を抑えるためには、上記したように温度、時間、水素吹込み量、材料形状、MgCl2持ち込み量(全体の量と封じ込められたMgCl2の量)を適切に制御することにより達成できることを見出し、本発明を完成するに至った。As described above, in order to suppress the generation of pores in the HDH method, the temperature, time, hydrogen blowing amount, material shape, and MgCl 2 carry-in amount (total amount and contained MgCl 2 amount) are appropriately controlled as described above. We have found that this can be achieved by doing so, and have completed the present invention.

本実施形態においては、チタン粉に基づいて説明した。しかしながら、チタンに50質量%以下のAlやV等の元素を含有するチタン合金粉においても、HDH法で温度を制御することで原料のチタン合金が溶融しないようにし、チタン粉と同様の効果を得ることができる。チタンに含有させる元素は20質量%以下が好ましく、15質量%以下がさらに好ましい。チタン合金粉は複数種類の元素を含んでもよい。例えば、チタン合金粉はTi−Al−V合金粉としてもよい。この場合、該Ti−Al−V合金粉は、Al含有量を5.5〜7.5質量%、V含有量を3.5〜4.5質量%とすることができる。 In this embodiment, the description is based on titanium powder. However, even in titanium alloy powder containing 50% by mass or less of elements such as Al and V in titanium, the temperature is controlled by the HDH method to prevent the raw titanium alloy from melting, and the same effect as titanium powder can be obtained. Obtainable. The element contained in titanium is preferably 20% by mass or less, more preferably 15% by mass or less. The titanium alloy powder may contain a plurality of types of elements. For example, the titanium alloy powder may be a Ti—Al—V alloy powder. In this case, the Ti—Al—V alloy powder can have an Al content of 5.5 to 7.5% by mass and a V content of 3.5 to 4.5% by mass.

[断面のポア面積比の説明]
本実施形態に係るチタン系粉の製造方法によって、チタン系粉の任意の断面を観察し現れた内包されたポア(以下、内部ポア)の断面積を、チタン系粉の断面の面積で割った値(断面のポア面積比)が0.3パーセント以下であることを実現することができる。また、本発明において製造されたチタン系粉は、チタン系粉の任意の断面を観察し現れた内部ポアの数が単位面積当たり20個/mm2以下であることが好ましい。ここでチタン系粉断面のポア面積比が0.3パーセント以下とは、チタン系粉末を樹脂に埋め込み研磨した後、断面を光学顕微鏡で、倍率500倍で、700μm×500μmサイズの任意の箇所を16箇所観察した際に、画像処理により輝度90〜250の範囲の像として観察された内部ポアの断面積を、粉の総断面積で除した値が0.3パーセント以下であることを意味する。内部ポアの数とは、上記観察した際に、画像処理により輝度90〜250の範囲の像として観察された、内部ポアの数を意味する。なお、いずれの観察の際にも、画像処理により長径10μm以下の粉は除外する。また、画像処理では、内部ポアに見えても元画像から明らかにオープンになっているポアは除外した(図1は画像処理前の写真であり、図2は画像処理後の写真である)。また、明らかに2つのポアが接している場合であっても、画像処理で接続した1個の内部ポアである限り1個として計算した。本発明においては、上記断面のポア面積比が0.3パーセント以下となるから、本発明に係る製造方法で製造されたチタン粉はポアが少なければならない技術分野(たとえば、航空機材料等)において使用することに好適である。他方、断面のポア面積比が0.3パーセントを超えると、該技術分野で使用することが難しいということが判明した。
[Explanation of pore area ratio of cross section]
By the method for producing titanium powder according to the present embodiment, the cross-sectional area of the contained pores (hereinafter referred to as internal pores) that appeared by observing an arbitrary cross section of the titanium powder was divided by the cross-sectional area of the titanium powder. It can be realized that the value (pore area ratio of the cross section) is 0.3% or less. Further, in the titanium-based powder produced in the present invention, it is preferable that the number of internal pores appearing by observing an arbitrary cross section of the titanium-based powder is 20 pieces / mm 2 or less per unit area. Here, the pore area ratio of the cross section of the titanium-based powder is 0.3% or less. It means that the cross-sectional area of the internal pores observed as an image in the range of brightness 90 to 250 by image processing when observing 16 points is divided by the total cross-sectional area of the powder to be 0.3% or less. .. The number of internal pores means the number of internal pores observed as an image in the range of brightness 90 to 250 by image processing at the time of the above observation. In any of the observations, powder having a major axis of 10 μm or less is excluded by image processing. Further, in the image processing, pores that appear to be internal pores but are clearly open from the original image are excluded (FIG. 1 is a photograph before image processing, and FIG. 2 is a photograph after image processing). Further, even when two pores are clearly in contact with each other, it is calculated as one as long as it is one internal pore connected by image processing. In the present invention, since the pore area ratio of the above cross section is 0.3% or less, the titanium powder produced by the production method according to the present invention is used in technical fields where the pores must be small (for example, aircraft materials). It is suitable for On the other hand, when the pore area ratio of the cross section exceeds 0.3%, it has been found that it is difficult to use in the technical field.

[実施例1]
チタン原料としてスポンジチタンを使用した。使用したチタン原料は、全MgCl2濃度および内部MgCl2濃度とも0.05mass%以下で、直径は1/2インチ以下のものを使用した。
[Example 1]
Sponge titanium was used as the titanium raw material. The titanium raw material used had a total MgCl 2 concentration and an internal MgCl 2 concentration of 0.05 mass% or less and a diameter of 1/2 inch or less.

原料300kgを5Pa以下に真空引きした後、ヒーターで雰囲気を650℃に加熱し、120分間保持した。その後、水素を供給して水素吸蔵発熱の反応を起こさせるとともにヒーターの制御やArガス挿入および冷却装置を稼働させ、チタン原料が1000℃以下になるように温度制御しながら120分間水素化した。このときの温度範囲は716℃以上1000℃以下であった。 After vacuuming 300 kg of the raw material to 5 Pa or less, the atmosphere was heated to 650 ° C. with a heater and held for 120 minutes. After that, hydrogen was supplied to cause a reaction of hydrogen storage heat generation, and a heater was controlled, an Ar gas insertion and a cooling device were operated, and the titanium raw material was hydrogenated for 120 minutes while controlling the temperature so as to be 1000 ° C. or lower. The temperature range at this time was 716 ° C. or higher and 1000 ° C. or lower.

水素化時におけるチタン原料の嵩密度は1.2g/cm3であった。The bulk density of the titanium raw material at the time of hydrogenation was 1.2 g / cm 3 .

その後、水素化チタンの塊状体は粉砕/分級機で粉砕して粒径が10μm〜150μmの水素化チタン粉末を得た。 Then, the agglomerates of titanium hydride were crushed with a crusher / classifier to obtain titanium hydride powder having a particle size of 10 μm to 150 μm.

真空熱処理炉条件で脱水素処理を行った後、脱水素チタンの塊状体は解砕処理をした。得られたチタン粉のD95粒径は100μmであった。 After dehydrogenation treatment under vacuum heat treatment furnace conditions, the agglomerates of dehydrogenated titanium were crushed. The D95 particle size of the obtained titanium powder was 100 μm.

得られたチタン粉の光学顕微鏡写真を図3に示す。チタン粉は樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍で、700μm×500μmサイズの任意の箇所を16箇所観察した。ポアの数と面積比を解析した結果、検出したポアは単位面積当たり20個/mm2であった。またポア面積比は0.11%であった。An optical micrograph of the obtained titanium powder is shown in FIG. Titanium powder was embedded in a resin, the cross section of the sample was polished, and then 16 arbitrary parts having a size of 700 μm × 500 μm were observed with an optical microscope at a magnification of 500 times. As a result of analyzing the number of pores and the area ratio, the number of detected pores was 20 per unit area / mm 2 . The pore area ratio was 0.11%.

[実施例2]
全MgCl2濃度が0.1mass%以下であるスポンジチタン原料を用いて製造した全MgCl2濃度0.0002mass%以下で、その最大厚みが7mmの切粉をチタン原料として用いた。すなわち、該チタン原料の内部MgCl2濃度も0.0002mass%以下であった。原料300kgを5Pa以下に真空引きした後、ヒーターで雰囲気を650℃に加熱し、120分間保持した。その後、水素を供給して水素吸蔵発熱の反応を起こさせるとともにヒーター制御やArガス挿入および冷却装置を稼働させ、チタン原料が1000℃以下になるように温度制御しながら120分間水素化した。このときの温度範囲は716℃以上1000℃以下であった。
[Example 2]
Total MgCl 2 concentration is less than the total MgCl 2 concentration 0.0002Mass% produced using a titanium sponge material is less than 0.1mass%, the maximum thickness was used chips of 7mm as titanium raw material. That is, the internal MgCl 2 concentration of the titanium raw material was also 0.0002 mass% or less. After vacuuming 300 kg of the raw material to 5 Pa or less, the atmosphere was heated to 650 ° C. with a heater and held for 120 minutes. After that, hydrogen was supplied to cause a reaction of hydrogen storage heat generation, and a heater control, an Ar gas insertion and a cooling device were operated, and the titanium raw material was hydrogenated for 120 minutes while controlling the temperature so as to be 1000 ° C. or lower. The temperature range at this time was 716 ° C. or higher and 1000 ° C. or lower.

水素化時の嵩密度は1.2g/cm3であった。その後、水素化チタンの塊状体は粉砕/分級機で粉砕して粒径が10μm〜150μmの水素化チタン粉末を得た。その後、真空熱処理炉条件で脱水素処理を行った後、脱水素チタンの塊状体は解砕処理した。得られたチタン粉のD95粒径は100μmであった。The bulk density at the time of hydrogenation was 1.2 g / cm 3 . Then, the agglomerates of titanium hydride were crushed with a crusher / classifier to obtain titanium hydride powder having a particle size of 10 μm to 150 μm. Then, after dehydrogenation treatment under the conditions of a vacuum heat treatment furnace, the agglomerates of dehydrogenated titanium were crushed. The D95 particle size of the obtained titanium powder was 100 μm.

得られたチタン粉を樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍で、700μm×500μmサイズの任意の箇所を16箇所観察した結果、検出したポアは単位面積当たり8個/mm2であった。またポア面積比は0.02%であった。After embedding the obtained titanium powder in a resin and polishing the cross section of the sample, 16 pores of 700 μm × 500 μm size were observed with an optical microscope at a magnification of 500 times, and as a result, 8 pores were detected per unit area. It was / mm 2. The pore area ratio was 0.02%.

なお、上記実施例2では、チタン原料における不純物である鉄濃度が200質量ppm以下、および200質量ppm超500質量ppm以下の2通りでチタン粉を製造した。いずれの場合も検出したポアは単位面積当たり8〜10個/mm2であった。いずれの場合もポア面積比は0.02%であった。このため、不純物である鉄量の多少、言い換えればチタン純度は、ポアの挙動と相関はないと考える。In Example 2, the titanium powder was produced in two ways: the iron concentration, which is an impurity in the titanium raw material, was 200 mass ppm or less, and the iron concentration was more than 200 mass ppm and 500 mass ppm or less. In each case, the detected pores were 8 to 10 pieces / mm 2 per unit area. In each case, the pore area ratio was 0.02%. Therefore, it is considered that the amount of iron as an impurity, in other words, the purity of titanium, does not correlate with the behavior of pores.

[実施例3]
全MgCl2濃度が0.1mass%以下であるスポンジチタン原料と60%Al−40%Vの合金を用いて製造した90%Ti−6%Al−4%V(質量%)切粉を原料として用いた。原料として用いたチタン合金切粉の全MgCl2濃度は0.0002mass%以下で、その最大厚みは7mmであった。すなわち、該チタン合金切粉の内部MgCl2濃度も0.0002mass%以下であった。原料300kgを5Pa以下に真空引きした後、ヒーターで雰囲気を650℃に加熱し120分間保持した。その後、水素を供給して水素吸蔵発熱の反応を起こさせるとともにヒーター制御やArガス挿入および冷却装置を稼働させ、チタン合金切粉が1000℃以下になるように温度制御しながら120分間水素化した。このときの温度範囲は716℃以上1000℃以下であった。
[Example 3]
Using 90% Ti-6% Al-4% V (mass%) chips manufactured using a sponge titanium raw material with a total MgCl 2 concentration of 0.1 mass% or less and an alloy of 60% Al-40% V as a raw material. Using. The total MgCl 2 concentration of the titanium alloy chips used as the raw material was 0.0002 mass% or less, and the maximum thickness was 7 mm. That is, the internal MgCl 2 concentration of the titanium alloy chips was 0.0002 mass% or less. After vacuuming 300 kg of the raw material to 5 Pa or less, the atmosphere was heated to 650 ° C. with a heater and held for 120 minutes. After that, hydrogen was supplied to cause a reaction of hydrogen storage heat generation, and a heater control, Ar gas insertion and cooling device were operated, and hydrogenation was performed for 120 minutes while controlling the temperature so that the titanium alloy chips were 1000 ° C or lower. .. The temperature range at this time was 716 ° C. or higher and 1000 ° C. or lower.

水素化時の嵩密度は1.2g/cm3であった。その後、水素化チタンの塊状体は粉砕/分級機で粉砕して10μm〜150μmの粉末を得た。その後、真空熱処理炉条件で脱水素処理を行い、脱水素チタンの塊状体は解砕処理した。得られたチタン粉のD95粒径は100μmであった。The bulk density at the time of hydrogenation was 1.2 g / cm 3 . Then, the agglomerates of titanium hydride were pulverized with a pulverizing / classifying machine to obtain a powder having a size of 10 μm to 150 μm. Then, dehydrogenation treatment was performed under the conditions of a vacuum heat treatment furnace, and the lumps of dehydrogenated titanium were crushed. The D95 particle size of the obtained titanium powder was 100 μm.

得られたチタン合金粉を樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍で、700μm×500μmサイズの任意の箇所を16箇所観察した結果、検出したポアは単位面積当たり9個/mm2であった。またポア面積比は0.03%であった。The obtained titanium alloy powder was embedded in a resin, the cross section of the sample was polished, and then 16 arbitrary parts having a size of 700 μm × 500 μm were observed with an optical microscope at a magnification of 500 times. As a result, the detected pores were 9 per unit area. It was 2 pieces / mm 2. The pore area ratio was 0.03%.

上記で得たチタン合金粉を、高周波熱誘導プラズマ装置にてArガスをプラズマガスとして表面を融解し球状化した。なお、球状化の条件は表1のとおりである。得られたチタン合金粉の光学顕微鏡写真を図4に示す。チタン合金粉は樹脂に埋め込み、サンプルの断面を光学顕微鏡で倍率500倍として、700μm×500μmサイズの任意の箇所を16箇所観察した。ポアの数と面積比を解析した結果、検出したポアは単位面積当たり3個/mm2であった。またポア面積比は0.01%であった。HDH法で製造され解砕されたチタン合金粉は、球状粉の原料粉末として有用であることが確認できた。The surface of the titanium alloy powder obtained above was melted and spheroidized by using Ar gas as plasma gas in a high-frequency heat inductive plasma apparatus. The conditions for spheroidization are as shown in Table 1. An optical micrograph of the obtained titanium alloy powder is shown in FIG. The titanium alloy powder was embedded in the resin, and the cross section of the sample was magnified by an optical microscope at a magnification of 500 times, and 16 arbitrary parts having a size of 700 μm × 500 μm were observed. As a result of analyzing the number of pores and the area ratio, the number of detected pores was 3 / mm 2 per unit area. The pore area ratio was 0.01%. It was confirmed that the titanium alloy powder produced and crushed by the HDH method is useful as a raw material powder for spherical powder.

Figure 0006976415
Figure 0006976415

[実施例4]
全MgCl2濃度が0.1mass%以下であるスポンジチタン原料と70%Al−40%Vの合金を用いて製造した89%Ti−7%Al−4%V(質量%)切粉を原料として用いた。原料として用いたチタン合金切粉の全MgCl2濃度は0.0002mass%以下で、その最大厚みは2mmであった。すなわち、該チタン合金切粉の内部MgCl2濃度も0.0002mass%以下であった。原料300kgを5Pa以下に真空引きした後、ヒーターで雰囲気を650℃に加熱し120分間保持した。その後、水素を供給して水素吸蔵発熱の反応を起こさせるとともにヒーター制御やArガス挿入および冷却装置を稼働させ、チタン合金切粉が1000℃以下になるように温度制御しながら120分間水素化した。このときの温度範囲は716℃以上1000℃以下であった。
[Example 4]
Using 89% Ti-7% Al-4% V (mass%) chips manufactured using a sponge titanium raw material having a total MgCl 2 concentration of 0.1 mass% or less and an alloy of 70% Al-40% V as a raw material. Using. The total MgCl 2 concentration of the titanium alloy chips used as the raw material was 0.0002 mass% or less, and the maximum thickness was 2 mm. That is, the internal MgCl 2 concentration of the titanium alloy chips was 0.0002 mass% or less. After vacuuming 300 kg of the raw material to 5 Pa or less, the atmosphere was heated to 650 ° C. with a heater and held for 120 minutes. After that, hydrogen was supplied to cause a reaction of hydrogen storage heat generation, and a heater control, Ar gas insertion and cooling device were operated, and hydrogenation was performed for 120 minutes while controlling the temperature so that the titanium alloy chips were 1000 ° C or lower. .. The temperature range at this time was 716 ° C. or higher and 1000 ° C. or lower.

水素化時の嵩密度は1.2g/cm3であった。その後、水素化チタンの塊状体は粉砕/分級機で粉砕して10μm〜150μmの粉末を得た。その後、真空熱処理炉条件で脱水素処理を行い、脱水素チタンの塊状体は解砕処理した。得られたチタン粉のD95粒径は100μmであった。The bulk density at the time of hydrogenation was 1.2 g / cm 3 . Then, the agglomerates of titanium hydride were pulverized with a pulverizing / classifying machine to obtain a powder having a size of 10 μm to 150 μm. Then, dehydrogenation treatment was performed under the conditions of a vacuum heat treatment furnace, and the lumps of dehydrogenated titanium were crushed. The D95 particle size of the obtained titanium powder was 100 μm.

得られたチタン合金粉を樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍で、700μm×500μmサイズの任意の箇所を16箇所観察した結果、検出したポアは単位面積当たり9個/mm2であった。またポア面積比は0.03%であった。The obtained titanium alloy powder was embedded in a resin, the cross section of the sample was polished, and then 16 arbitrary parts having a size of 700 μm × 500 μm were observed with an optical microscope at a magnification of 500 times. As a result, the detected pores were 9 per unit area. It was 2 pieces / mm 2. The pore area ratio was 0.03%.

実施例2のチタン切粉を用いた結果と比較して、実施例3および実施例4のTi−Al−V合金、切粉を用いた結果は同等であった。このため、本実施形態に係るチタン粉の製造方法は、チタン合金粉の製造にも好適であると考える。 Compared with the result using the titanium chip of Example 2, the result using the Ti—Al—V alloy and the chip of Example 3 and Example 4 was equivalent. Therefore, it is considered that the method for producing titanium powder according to the present embodiment is also suitable for producing titanium alloy powder.

[比較例1]
チタン原料として内部MgCl2濃度が0.2mass%のスポンジチタンを用い、その他は、実施例1と同様の条件でチタン粉を製造した。なお、該スポンジチタンの全MgCl2濃度は0.3mass%であった。得られたチタン粉末を樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍として、700μm×500μmサイズの任意の箇所を16箇所観察した。ポアの数と面積比を解析した結果、検出したポアは単位面積当たり85個/mm2であった。ポア面積比は、0.7%であった。
[Comparative Example 1]
As a titanium raw material , sponge titanium having an internal MgCl 2 concentration of 0.2 mass% was used, and titanium powder was produced under the same conditions as in Example 1 except for the above. The total MgCl 2 concentration of the sponge titanium was 0.3 mass%. After embedding the obtained titanium powder in a resin and polishing the cross section of the sample, 16 arbitrary parts having a size of 700 μm × 500 μm were observed at a magnification of 500 times with an optical microscope. As a result of analyzing the number of pores and the area ratio, the detected pores were 85 pieces / mm 2 per unit area. The pore area ratio was 0.7%.

[比較例2]
実施例1と同粒径のガスアトマイズ法で製造されたチタン粉末を購入し、樹脂に埋め込み、サンプルの断面を研磨した後、光学顕微鏡で倍率500倍として、700μm×500μmサイズの任意の箇所を16箇所観察した。ポアの数と面積比を解析した結果、検出したポアは単位面積当たり130個/mm2となった。またポア面積比は、1.0%であった(図5)。
[Comparative Example 2]
Titanium powder produced by the gas atomizing method having the same particle size as in Example 1 was purchased, embedded in a resin, and the cross section of the sample was polished. I observed the location. As a result of analyzing the number of pores and the area ratio, the detected pores were 130 pieces / mm 2 per unit area. The pore area ratio was 1.0% (FIG. 5).

Claims (3)

チタン系原料に対して、水素化工程、粉砕工程、脱水素工程を含む水素化脱水素法を用いたチタン系粉の製造方法であって、
前記チタン系原料に含有される全MgCl2の濃度が1.0mass%以下であり、内部MgCl2濃度が0.1mass%以下であり、
前記水素化工程において、前記チタン系原料の温度を716℃以上1050℃以下の範囲内で90分以上の時間をかけて水素化させことを特徴とするチタン系粉の製造方法。
A method for producing titanium-based powder using a hydrogenation-dehydrogenation method including a hydrogenation step, a crushing step, and a dehydrogenation step for a titanium-based raw material.
The concentration of total MgCl 2 contained in the titanium-based material is not more than 1.0 mass%, Ri der internal MgCl 2 concentration less 0.1mass%,
In the hydrogenation step, the temperature of the titanium-based material in the range of 716 ° C. or higher 1050 ° C. or less Ru was hydrogenated over a 90-minute period, producing a titanium-based powder, characterized in that.
前記チタン系原料の最大厚みが20mm以下であることを特徴とする請求項に記載のチタン系粉の製造方法。 The method for producing a titanium-based powder according to claim 1 , wherein the maximum thickness of the titanium-based raw material is 20 mm or less. 前記粉砕工程において、水素化チタン系粉末はD95粒径が300μm以下に粉砕されることを特徴とする請求項または請求項に記載のチタン系粉の製造方法。 The method for producing a titanium-based powder according to claim 1 or 2 , wherein in the pulverization step, the hydrogenated titanium-based powder is pulverized to a D95 particle size of 300 μm or less.
JP2020506443A 2018-03-16 2019-03-06 Titanium powder and its manufacturing method Active JP6976415B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018049468 2018-03-16
JP2018049468 2018-03-16
PCT/JP2019/008968 WO2019176700A1 (en) 2018-03-16 2019-03-06 Titanium powder and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019176700A1 JPWO2019176700A1 (en) 2021-03-11
JP6976415B2 true JP6976415B2 (en) 2021-12-08

Family

ID=67908262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506443A Active JP6976415B2 (en) 2018-03-16 2019-03-06 Titanium powder and its manufacturing method

Country Status (5)

Country Link
EP (1) EP3766601A4 (en)
JP (1) JP6976415B2 (en)
CN (1) CN112055628A (en)
TW (1) TW201938810A (en)
WO (1) WO2019176700A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139706A (en) * 1987-11-25 1989-06-01 Nippon Steel Corp Manufacture of low chlorine titanium powder
JPH0593213A (en) * 1991-06-04 1993-04-16 Sumitomo Shichitsukusu Kk Production of titanium and titanium alloy powder
JP2782665B2 (en) 1992-03-06 1998-08-06 東邦チタニウム株式会社 Method for producing titanium or titanium alloy powder
JP2821662B2 (en) 1994-04-04 1998-11-05 東邦チタニウム株式会社 Titanium-based powder and method for producing the same
WO1998004375A1 (en) * 1996-07-30 1998-02-05 Toho Titanium Co., Ltd. Titanium-base powder and process for the production of the same
JP2001262246A (en) * 2000-03-17 2001-09-26 Toho Titanium Co Ltd Method for producing sponge titanium
JP2013112878A (en) * 2011-11-30 2013-06-10 Toho Titanium Co Ltd Titanium composition
CN102554242B (en) * 2012-02-09 2013-12-11 西安宝德粉末冶金有限责任公司 Method for manufacturing micro-fine spherical titanium powder
CN103215461B (en) * 2013-05-22 2014-11-26 朝阳金达钛业股份有限公司 15-ton inverted-U-shaped combination device and production process for producing sponge titanium
CN103433500A (en) * 2013-09-06 2013-12-11 北京科技大学 Preparation method of high-purity micro-fine low-oxygen titanium powder
CN104493185B (en) * 2014-12-26 2017-06-30 岐山迈特钛业有限公司 The preparation method of 3D printing titanium and the special hypoxemia powder of titanium alloy spheroidization
CN104511595B (en) * 2014-12-30 2016-08-24 中南大学 A kind of preparation method of high-purity titanium valve
CN107760897A (en) * 2017-10-30 2018-03-06 东北大学 To hydrogenate method of the titanium sponge as raw material manufacture titanium and titanium alloy and its parts

Also Published As

Publication number Publication date
EP3766601A1 (en) 2021-01-20
EP3766601A4 (en) 2021-12-01
JPWO2019176700A1 (en) 2021-03-11
WO2019176700A1 (en) 2019-09-19
TW201938810A (en) 2019-10-01
CN112055628A (en) 2020-12-08

Similar Documents

Publication Publication Date Title
US11465201B2 (en) Process for producing spheroidized powder from feedstock materials
Robertson et al. Review of densification of titanium based powder systems in press and sinter processing
McCracken et al. REVIEW OF TITANIUM-POWDER-PRODUCTION METHODS.
Shu et al. Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB2 and nano-Ti5Si3 particles
Barbis et al. Titanium powders from the hydride–dehydride process
JP4382812B2 (en) Manufacture of high purity niobium monoxide (NbO) and capacitor products made from it
JP2009221603A (en) Method for producing spherical titanium alloy powder
TW202106893A (en) Spherical tantalum-titanium alloy powder, products containing the same, and methods of making the same
Park et al. Preparation of spherical WTaMoNbV refractory high entropy alloy powder by inductively-coupled thermal plasma
Xia et al. Synthesis of WTaMoNbZr refractory high-entropy alloy powder by plasma spheroidization process for additive manufacturing
JP2782665B2 (en) Method for producing titanium or titanium alloy powder
JP6976415B2 (en) Titanium powder and its manufacturing method
US4595413A (en) Group IVb transition metal based metal and processes for the production thereof
JP2013112878A (en) Titanium composition
JP2821662B2 (en) Titanium-based powder and method for producing the same
JP7026543B2 (en) Low chlorine concentration titanium powder, titanium alloy powder, and their manufacturing method
JP2009287105A (en) Method for producing spherical titanium based powder
WO2021243175A1 (en) Hdh (hydride-dehydride) process for fabrication of braze alloy powders
JP2987603B2 (en) Method for producing titanium-based powder
Nersisyan et al. Shape-controlled synthesis of titanium microparticles using calciothermic reduction concept
WO2019124325A1 (en) Titanium powder and method for producing same
Falcão et al. Obtention of Nb47Ti and Ti13Nb13Zr alloys powders by hydride-dehydride process for additive manufacturing applications
JPH07278612A (en) Method for crushing sponge titanium
Bozic et al. The influence of microstructural characteristics and contaminants on the mechanical properties and fracture topography of low cost Ti6Al4V alloy
Tong et al. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211109

R150 Certificate of patent or registration of utility model

Ref document number: 6976415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350