JPH05163010A - Production of specific high density carbonaceous material - Google Patents

Production of specific high density carbonaceous material

Info

Publication number
JPH05163010A
JPH05163010A JP3326169A JP32616991A JPH05163010A JP H05163010 A JPH05163010 A JP H05163010A JP 3326169 A JP3326169 A JP 3326169A JP 32616991 A JP32616991 A JP 32616991A JP H05163010 A JPH05163010 A JP H05163010A
Authority
JP
Japan
Prior art keywords
heat
ratio
product
infrared absorption
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3326169A
Other languages
Japanese (ja)
Inventor
Shoichi Hashiguchi
正一 橋口
Noritoshi Takao
憲利 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3326169A priority Critical patent/JPH05163010A/en
Publication of JPH05163010A publication Critical patent/JPH05163010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a special carbonaceous material having a high density and processing characteristics by calcining the molded product of a mixture obtained by adding a carbonaceous powder satisfied with a specific condition originated from C-H when coke is kneaded with a binder. CONSTITUTION:A carbonaceous raw material is thermally treated to produce carbonaceous material powder having a volatile content of 3-30wt.%, an average particle size of 15-20mum and a toluene soluble content of 1-30wt.%. The product satisfied with one or more of eight conditions originated from the C-H in IR absorbance spectrum is selected from the thermal products. As the conditions, a ratio between the peak of an IR absorption spectrum originated from C-H at a place near to 2913cm<-1> based on 2935cm<-1> and 2860cm<-1> and the peak of an IR absorption spectrum originated from C=C at a place near to 1600cm- based on 1665cm<-1> and 1540cm<-1> is set to <=0.05. The changing rate from the carbonaceous raw material to a thermal treatment product in the peak ratio is set to <=0.07 as the other condition. The carbonaceous material powder is added when coke and a binder are kneaded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度特殊炭素材の製造
方法に関するものである。さらに詳しくは高密度でかつ
放電加工特性が良い特殊炭素材の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high density special carbon material. More specifically, it relates to a method for producing a special carbon material having a high density and good electric discharge machining characteristics.

【0002】[0002]

【従来の技術】従来特殊炭素材はピッチコークス、又は
石油コークスを所定の割合に粒度配合した粒と粉を加
熱、混合しながらバインダーピッチを適当量添加ねつ合
後、粉砕、成形して製造される。されにこの生成形体を
焼成、黒鉛化後、加工して製品である特殊炭素材を製造
している。また最近ピッチを熱処理後、溶剤で処理して
得たメソカーボンマイクロビーズを成形して特殊炭素材
を製造する方法も報告されている。
2. Description of the Related Art Conventionally, a special carbon material is manufactured by pulverizing and molding a pitch coke or petroleum coke, adding a proper amount of binder pitch while heating and mixing granules and powders mixed with each other at a predetermined ratio. To be done. In addition, this green body is fired, graphitized, and then processed to produce a special carbon material as a product. In addition, recently, a method for producing a special carbon material by molding mesocarbon microbeads obtained by treating a pitch with a solvent after heat treatment has been reported.

【0003】[0003]

【発明が解決しようとする課題】これらの方法は製品の
嵩密度が低い、強度が低い等製品の特性が不十分であ
り、また工程が複雑で製造コストが高い等の問題点があ
り、低コストで特性の良い特殊炭素材の出現が望まれて
いた。特に半導体産業の発展に伴い、操業度のアップ、
装置の大型化が要求され、炭素材の機械的特性もさらに
高いものが要求されるようになってきた。
However, these methods have problems that the product characteristics are insufficient such as low bulk density and low strength of the product, and that the process is complicated and the manufacturing cost is high. The advent of a special carbon material with good cost characteristics has been desired. Especially with the development of the semiconductor industry, the increase in operating rate,
There has been a demand for larger devices, and carbon materials having higher mechanical properties have come to be required.

【0004】またさらには高温材料としてセラミックス
が見直されており、それを成形する技術もホットプレス
の利用、さらにはその大型化、成形圧力のアップ等益々
向上しており、その金型として使用されている炭素材へ
の要求特性も厳しいものとなっている。
Further, ceramics have been reviewed as a high temperature material, and the technology for molding it has been improved more and more by utilizing hot press, further increasing its size, increasing molding pressure, etc. The required characteristics of existing carbon materials are becoming severe.

【0005】また近年炭素材は放電加工用電極としての
利用が注目され、需要が急増の傾向にあるが従来の炭素
材では放電加工特性が不十分であり、もっと放電加工特
性の良い炭素材、特に放電加工時の消耗が低い炭素材が
要求されている。またメソカーボンマイクロビーズから
製造した炭素材では工程が複雑なためにコストが高く製
造コストがもっと低くて高特性のものが求められてい
る。
In recent years, the use of carbon materials as an electrode for electric discharge machining has been attracting attention, and there is a tendency for demand to increase rapidly. In particular, there is a demand for a carbon material that consumes less during electric discharge machining. In addition, a carbon material produced from mesocarbon microbeads is required to have a high cost due to a complicated process and a lower production cost.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らはか
かる状況に鑑み、高強度でかつ放電特性の良い特殊炭素
材を製造すべく鋭意検討した結果、特殊炭素材を製造す
るに際してある特性を持つ炭素質粉末をピッチコーク
ス、および石油コークスとバインダーピッチをねつ合、
粉砕、成形時に添加し、焼成、黒鉛化後、製品とすると
高特性となることを見出し、本発明に到達した。
In view of the above situation, the inventors of the present invention have made earnest studies to produce a special carbon material having high strength and good discharge characteristics. Carbonaceous powder with pitch coke, and petroleum coke and binder pitch are combined,
The present invention has been completed by finding that the product has high characteristics when it is added at the time of crushing and molding, and after firing and graphitization, it becomes a product.

【0007】すなわち本発明の要旨は、炭素質原料を熱
処理して得られる熱処理生成物であって、揮発分(V
M)が30%以下でかつ3%以上であり、平均粒度が1
5〜20μmにおけるトルエン可溶分(TS)が30%
以下でかつ1%以上である炭素質粉末のうち、赤外吸収
スペクトルによる炭素と水素との結合(C−H)に由来
するピークが下記に示す条件の少なくとも一つを満足す
るものを、特殊炭素材を製造するに際して、ねつ合時、
粉砕時に添加することを特徴とする特殊炭素材の製造法
にある。
That is, the gist of the present invention is a heat-treated product obtained by heat-treating a carbonaceous raw material, which has a volatile content (V
M) is 30% or less and 3% or more, and the average particle size is 1
Toluene soluble content (TS) at 5-20 μm is 30%
Among the carbonaceous powders below and not less than 1%, those having a peak derived from a bond between carbon and hydrogen (C-H) in the infrared absorption spectrum satisfying at least one of the following conditions are special When manufacturing carbon material,
It is a method for producing a special carbon material, which is characterized in that it is added during pulverization.

【0008】すなわち赤外吸収スペクトルの脂肪族系炭
素と水素との結合(C−H)の振動に由来するピークに
ついては、 (1)2935cm−1と2860cm−1をベースと
した2913cm−1付近の脂肪族系C−H結合の伸縮
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.05以上である熱処理生成物。 (2)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.70以上である熱
処理生成物。 記;2935cm−1と2860cm−1をベースとし
た2913cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比 (3)1540cm−1と1280cm−1をベースと
した1440cm−1付近の脂肪族系C−H結合の変角
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.65以上である熱処理生成物。 (4)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.55以上である熱
処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1440cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比
That is, regarding the peak derived from the vibration of the bond (C—H) between the aliphatic carbon and hydrogen in the infrared absorption spectrum, (1) around 2913 cm −1 based on 2935 cm −1 and 2860 cm −1. 166 peak of infrared absorption spectrum derived from stretching vibration of aliphatic C—H bond of
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product in which the ratio of peaks derived from the C = C double bond near cm-1 is 0.05 or more. (2) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.70 or more. Note; Infrared absorption spectrum peak derived from aliphatic C—H bond near 2913 cm −1 based on 2935 cm −1 and 2860 cm −1, and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1 (3) Aliphatic C-H bond near 1440 cm-1 based on 1540 cm-1 and 1280 cm-1 166 peak of infrared absorption spectrum derived from the bending vibration of
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product having a ratio of peaks derived from a C = C double bond in the vicinity of cm-1 of 0.65 or more. (4) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.55 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1440 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1

【0009】(5)1540cm−1と1280cm−
1をベースとした1375cm−1付近の脂肪族系C−
H結合の変角振動に由来する赤外吸収スペクトルのピー
クと、1665cm−1と1540cm−1をベースと
した1600cm−1付近のC=C二重結合に由来する
ピークの比が0.25以上である熱処理生成物。 (6)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.45以上である熱
処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1375cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比 (7)1540cm−1と1280cm−1をベースと
した1330cm−1付近の脂肪族系C−H結合の変角
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.15以上である熱処理生成物。 (8)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.40以上である熱
処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1330cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比
(5) 1540 cm-1 and 1280 cm-
1-based aliphatic C-in the vicinity of 1375 cm -1
The ratio of the peak of the infrared absorption spectrum derived from the bending vibration of the H bond to the peak derived from the C = C double bond near 1600 cm-1 based on 1665 cm-1 and 1540 cm-1 is 0.25 or more. A heat treated product that is. (6) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 0.45 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1375 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1 (7) Aliphatic C-H bond near 1330 cm-1 based on 1540 cm-1 and 1280 cm-1 166 peak of infrared absorption spectrum derived from the bending vibration of
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product having a ratio of peaks derived from a C = C double bond near cm-1 of 0.15 or more. (8) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the ratio of the infrared absorption spectrum shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 0.40 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1330 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1

【0010】また赤外吸収スペクトルの芳香族系炭素と
水素結合(C−H)の振動に由来するピークについて
は、 (1)990cm−1と640cm−1をベースとした
875cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、990c
m−1と640cm−1をベースとした820cm−1
付近のC−H結合の面外変角振動に由来するピークの比
が1.15以下である熱処理生成物。 (2)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が1.10以下である
熱処理生成物。 記;990cm−1と640cm−1をベースとした8
75cm−1付近の脂肪族系C−H結合に由来する赤外
吸収スペクトルのピークと990cm−1と640cm
−1をベースとした820cm−1付近の芳香族系C−
H結合に由来するピークの比
Regarding the peak derived from the vibration of aromatic carbon and hydrogen bond (CH) in the infrared absorption spectrum, (1) fragrance around 875 cm-1 based on 990 cm-1 and 640 cm-1. A peak of an infrared absorption spectrum derived from an out-of-plane bending vibration of a group C-H bond, and 990c
820 cm-1 based on m-1 and 640 cm-1
A heat-treated product having a ratio of peaks derived from out-of-plane bending vibration of nearby C—H bonds of 1.15 or less. (2) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the ratio of infrared absorption spectra shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 1.10 or less. Note: 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aliphatic C—H bond near 75 cm −1 and 990 cm −1 and 640 cm
-1 based aromatic C- around 820 cm -1
Ratio of peaks derived from H bond

【0011】(3)990cm−1と640cm−1を
ベースとした875cm−1付近の芳香族系C−H結合
の面外変角振動に由来する赤外吸収スペクトルのピーク
と、990cm−1と640cm−1をベースとした7
50cm−1付近のC−H結合の面外変角振動に由来す
るピークの比が2.35以下である炭素材用原料。 (4)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が1.00以下である
熱処理生成物。 記;990cm−1と640cm−1をベースとした8
75cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと990cm−1と640cm
−1をベースとした750cm−1付近のC=C二重結
合に由来するピークの比 (5)990cm−1と640cm−1をベースとした
947cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が0.15以上である熱処理生成物。 (6)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.85以上である熱
処理生成物。 記;990cm−1と640cm−1をベースとした9
47cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比
(3) The peak of the infrared absorption spectrum derived from the out-of-plane bending vibration of the aromatic C—H bond near 875 cm −1 based on 990 cm −1 and 640 cm −1, and 990 cm −1. 7 based on 640 cm-1
A raw material for a carbon material having a ratio of peaks derived from out-of-plane bending vibration of a C—H bond near 50 cm−1 of 2.35 or less. (4) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 1.00 or less. Note: 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 75 cm −1 and 990 cm −1 and 640 cm
Ratio of peaks derived from C = C double bond near 750 cm-1 based on -1 (5) Aromatic C-H bond near 947 cm-1 based on 990 cm-1 and 640 cm-1 The peak of the infrared absorption spectrum derived from the out-of-plane bending vibration,
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 0.15 or more. (6) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.85 or more. Note: 9 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 47 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks due to double bonds

【0012】(7)990cm−1と640cm−1を
ベースとした875cm−1付近の芳香族系C−H結合
の面外変角振動に由来する赤外吸収スペクトルのピーク
と、1665cm−1と1540cm−1をベースとし
た1600cm−1付近のC=C二重結合の伸縮振動に
由来するピークの比が1.10以上である熱処理生成
物。 (8)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.80以上である熱
処理生成物。 記;990cm−1と640cm−1をベースとした8
75cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (9)990cm−1と640cm−1をベースとした
820cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が1.20以上である熱処理生成物。
(7) Infrared absorption spectrum peak derived from out-of-plane bending vibration of aromatic C—H bond near 875 cm −1 based on 990 cm −1 and 640 cm −1, and 1665 cm −1. A heat-treated product in which the ratio of peaks derived from stretching vibration of a C = C double bond near 1600 cm-1 based on 1540 cm-1 is 1.10 or more. (8) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.80 or more. Note: 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 75 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (9) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic CH bond near 820 cm-1 based on 990 cm-1 and 640 cm-1 And 1665
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 1.20 or more.

【0013】(10)下記に示す赤外吸収スペクトルの
比における上記熱処理生成物と該炭素質原料の比が、す
なわち炭素質原料から熱処理生成物への変化率が0.8
0以上である熱処理生成物。 記;990cm−1と640cm−1をベースとした8
20cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (11)990cm−1と640cm−1をベースとし
た750cm−1付近の芳香族系C−H結合の面外変角
振動に由来する赤外吸収スペクトルのピークと1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が2.60以上である熱処理生成物。 (12)下記に示す赤外吸収スペクトルの比における上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.80以上である
熱処理生成物。 記;990cm−1と640cm−1をベースとした7
50cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比
(10) The ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.8.
A heat-treated product that is 0 or more. Note: 8 based on 990 cm-1 and 640 cm-1
Peaks of infrared absorption spectrum derived from aromatic C—H bond near 20 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (11) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic C-H bond near 750 cm-1 based on 990 cm-1 and 640 cm-1 And 1665
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 2.60 or more. (12) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the ratio of the infrared absorption spectrum shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 0.80 or more. Note: 7 based on 990 cm-1 and 640 cm-1
Peaks of infrared absorption spectrum derived from aromatic C—H bond near 50 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks due to double bonds

【0014】(13)3245cm−1と2935cm
−1をベースとした3050cm−1付近の芳香族系C
−H結合に由来する赤外吸収スペクトルのピークと16
65cm−1と1540cm−1をベースとした160
0cm−1付近のC=C二重結合に由来するピークの比
が0.70以上である熱処理生成物。 (14)下記に示す赤外吸収スペクトルの比における上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.65以上である
熱処理生成物。 記:3245cm−1と2935cm−1をベースとし
た3050cm−1付近の芳香族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比
(13) 3245 cm-1 and 2935 cm
-1 based aromatic system C around 3050 cm -1
And 16 in the infrared absorption spectrum derived from the -H bond
160 based on 65 cm-1 and 1540 cm-1
A heat-treated product having a ratio of peaks derived from a C = C double bond near 0 cm-1 of 0.70 or more. (14) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.65 or more. Note: The peak of the infrared absorption spectrum derived from the aromatic C—H bond near 3050 cm −1 based on 3245 cm −1 and 2935 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1

【0015】以下、本発明を詳細に説明する。まず、本
発明における炭素質粉末は通常、揮発分(VM)が50
%以下で、かつそのトルエン可溶分が50%以下である
炭素質原料から製造される。炭素質原料の揮発分(V
M)が50重量%を超えたものも使用できるが、50重
量%を超えると目標の物性に調整する時間が長く、処理
能力が落ち、コストが高くなるので該原料のVMは50
重量%以下が好ましく、さらには45%以下が好まし
く、最も好ましくは40%以下である。
The present invention will be described in detail below. First, the carbonaceous powder in the present invention usually has a volatile content (VM) of 50.
% Or less and the toluene-soluble content thereof is 50% or less, it is produced from a carbonaceous raw material. Volatile components (V
M) of more than 50% by weight can be used, but if it exceeds 50% by weight, it takes a long time to adjust to the target physical properties, the treatment capacity is lowered, and the cost becomes high.
It is preferably at most% by weight, more preferably at most 45%, most preferably at most 40%.

【0016】またトルエン可溶分(γ−レジン量)が高
過ぎると軽沸点留分が多く、原料が融着するために熱処
理効率が悪く、該炭素質原料のγ−レジン量は50%以
下が好ましく、さらには45%以下が好ましく、最も好
ましくは40%以下である。これらの炭素質原料として
は石炭乾留時に副生するコールタール又はこれより得ら
れるコールタールピッチ、およびこれらに仮焼コーク
ス、生コークス等を混合したもの、または該混合物を熱
処理したものが使用できる。またさらには石油系重質油
またはそれらの熱処理生成物、またそれらの水添処理生
成物及びそれらの熱処理生成物、及びナフタリン等の低
分子化合物を重縮合して得たピッチ、またそれらの熱処
理生成物、及び石炭等のれき青物を水添して得られた石
炭液化物、またそれらの熱処理生成物が使用できる。
If the toluene-soluble content (γ-resin amount) is too high, the light boiling point fraction is large and the raw material is fused, resulting in poor heat treatment efficiency. The carbonaceous raw material has a γ-resin amount of 50% or less. Is preferred, 45% or less is more preferred, and 40% or less is most preferred. As these carbonaceous raw materials, coal tar by-produced during coal carbonization or coal tar pitch obtained therefrom, a mixture of these with calcined coke, raw coke, or a mixture obtained by heat treatment can be used. Further, a petroleum heavy oil or a heat treatment product thereof, a hydrogenation treatment product thereof and a heat treatment product thereof, a pitch obtained by polycondensing a low molecular weight compound such as naphthalene, and a heat treatment thereof. A product, a coal liquefaction product obtained by hydrogenating a bituminous product such as coal, and a heat treatment product thereof can be used.

【0017】さらには該熱処理生成物等を混合したも
の、またカーボンブラック、仮焼コークス等の微粉末、
活性炭等を該熱処理生成物等に混合したもの、さらには
それらを熱処理したものでも良く、通常ディレードコー
カー、オートクレープ等により300〜500℃、1〜
72時間程度熱処理することにより得られる。該熱処理
は不活性雰囲気中で行なっても良く、自生雰囲気中でも
良く、さらには酸素存在下で処理しても良い。
Further, a mixture of the heat-treated product and the like, fine powder such as carbon black and calcined coke,
It may be a mixture of activated carbon or the like with the heat-treated product or the like, or may be a product obtained by heat-treating it, usually by a delayed coker, autoclave, etc.
It is obtained by heat treatment for about 72 hours. The heat treatment may be carried out in an inert atmosphere, in a self-generated atmosphere, or may be carried out in the presence of oxygen.

【0018】また静置状態で熱処理しても良いが流動状
態、および撹拌状態で熱処理することもできる。また本
発明における炭素質粉末は該炭素質原料を熱処理するこ
とによって得られるが、通常200〜350℃、10分
〜48時間程度処理することで得られる。該熱処理は不
活性雰囲気中でも良く、自生雰囲気中でも良く、さらに
は酸素存在下で処理しても良い。
The heat treatment may be performed in a stationary state, but may be performed in a fluid state and a stirring state. Further, the carbonaceous powder in the present invention is obtained by heat-treating the carbonaceous raw material, but it is usually obtained by treating at 200 to 350 ° C. for 10 minutes to 48 hours. The heat treatment may be performed in an inert atmosphere, an autogenous atmosphere, or may be performed in the presence of oxygen.

【0019】また静置状態で熱処理しても良いが流動状
態、および撹拌状態で熱処理することもできる。処理を
均一に行なうために流動状態で処理したほうが好まし
い。該炭素質粉末は炭素材を製造時にコークス、バイン
ダーピッチと混合して使用されるものであるが、これら
のコークス、バインダーピッチと十分濡れやすく、コー
クスとも接着しやすいものが望ましく、炭素質粉末のV
Mは高いものが好ましく、さらにはγ−レジン量も高い
ものが好ましい。
The heat treatment may be performed in a stationary state, but may be performed in a fluid state and a stirring state. In order to carry out the treatment uniformly, it is preferable to carry out the treatment in a fluidized state. The carbonaceous powder is used by mixing a carbon material with coke and a binder pitch at the time of production, but it is desirable that the carbonaceous powder is sufficiently wettable with the coke and the binder pitch and easily adheres to the coke. V
It is preferable that M is high and that the amount of γ-resin is also high.

【0020】しかし該炭素質粉末のVMが30%を超え
ると焼成時の重量減少が大き過ぎ特性が低下する恐れが
あるので30%以下が好ましく、また3%未満では焼結
性が低下するので3%以上が好ましい。また該炭素質粉
末はこれを粉砕して平均粒度15〜20μmとした時の
γ−レジン量が30%以下であり、かつ1%以上である
ものが好ましい。γ−レジン量を30%以下とすること
によりコークスとの接着性を保ちながら、成形体焼成時
の発泡割れの傾向が低下し、また1%以上とすることに
より焼結性特性が向上する。
However, if the VM of the carbonaceous powder exceeds 30%, the weight loss during firing may be too large and the characteristics may be deteriorated, so 30% or less is preferable, and if it is less than 3%, the sinterability will decrease. 3% or more is preferable. Further, the carbonaceous powder preferably has a γ-resin content of 30% or less and 1% or more when the average particle size is 15 to 20 μm. When the amount of γ-resin is 30% or less, the tendency of foam cracking during firing of the molded product is reduced while maintaining the adhesiveness to coke, and when it is 1% or more, the sinterability characteristic is improved.

【0021】またさらには赤外吸収スペクトルにおける
炭素と水素との結合(C−H)に由来するピークがある
特定の範囲にあるものが好ましい。すなわち熱処理が進
みすぎると該炭素質粉末中の水素量が減少し、炭素質粉
末の焼結性がなくなり、生成した炭素材の特性が悪化し
てしまうので該炭素質粉末中の水素量はある範囲以上の
ものが好ましい。すなわち芳香族系水素の量が多いほ
ど、さらには脂肪族系水素の量が多いほど焼結性が向上
する。またさらには該炭素質粉末中の芳香族系水素や脂
肪族系水素は焼成時に分解して、水素ガスやメタン、エ
タン等の脂肪族系ガスを発生して、重縮合をおこしてベ
ンゼン環の縮合度が大きくなり、六方網面が発達する。
その焼成時に炭素材は収縮が大きく、高緻密になりやす
く、放電加工特性が向上する。
Further, those having a peak derived from a bond (C—H) of carbon and hydrogen in the infrared absorption spectrum within a specific range are preferable. That is, if the heat treatment proceeds too much, the amount of hydrogen in the carbonaceous powder decreases, the sinterability of the carbonaceous powder is lost, and the characteristics of the carbon material produced deteriorate. Those above the range are preferable. That is, the sinterability improves as the amount of aromatic hydrogen increases, and further as the amount of aliphatic hydrogen increases. Furthermore, the aromatic hydrogen or the aliphatic hydrogen in the carbonaceous powder is decomposed during firing to generate an aliphatic gas such as hydrogen gas or methane or ethane, which causes polycondensation to form a benzene ring. The degree of condensation increases and the hexagonal net surface develops.
During the firing, the carbon material has a large shrinkage, is likely to be highly dense, and improves the electrical discharge machining characteristics.

【0022】しかし炭素質粉末中の水素の量が少な過ぎ
ると、焼成時に焼結性が悪く、特性が悪化するのみでな
く、炭素材成形体の収縮率も低く、嵩密度も向上せず、
特性も悪化するものであり、炭素質粉末中の水素の量は
ある範囲にあるのが好ましい。
However, if the amount of hydrogen in the carbonaceous powder is too small, not only the sinterability during firing will be poor and the characteristics will deteriorate, but also the shrinkage rate of the carbon material compact will be low and the bulk density will not improve.
The characteristics also deteriorate, and the amount of hydrogen in the carbonaceous powder is preferably in a certain range.

【0023】すなわちピッチ等のれき青物の赤外吸収ス
ペクトルにおいては芳香族性C−H結合に由来する伸縮
振動は3050cm−1付近にピークが存在するので、
芳香族性水素の量を3245cm−1と2935cm−
1をベースとした3050cm−1付近のピークの高さ
で示す。ピークの高さはKBrに対するサンプルの濃度
で変わるので1665cm−1と1540cm−1をベ
ースとした1600cm−1付近のC=C二重結合に由
来するピーク高さとの比で芳香族系水素の量を示すと、
3245cm−1と2935cm−1をベースとした3
050cm−1付近の芳香族系C−H結合に由来する赤
外吸収スペクトルのピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のC=
C二重結合に由来するピークの比が0.70以上である
熱処理生成物が好ましい。
That is, in the infrared absorption spectrum of a bituminous substance such as pitch, the stretching vibration derived from the aromatic C--H bond has a peak near 3050 cm -1,
The amount of aromatic hydrogen is 3245 cm-1 and 2935 cm-
The peak height around 3050 cm −1 based on 1 is shown. Since the height of the peak changes depending on the concentration of the sample with respect to KBr, the amount of aromatic hydrogen is determined by the ratio with the peak height derived from the C = C double bond near 1600 cm-1 based on 1665 cm-1 and 1540 cm-1. Is shown,
3 based on 3245 cm-1 and 2935 cm-1
Infrared absorption spectrum peaks derived from aromatic C—H bonds near 050 cm −1 and 1665 cm −1 and 154
C = around 1600 cm-1 based on 0 cm-1
A heat-treated product having a ratio of peaks derived from a C double bond of 0.70 or more is preferable.

【0024】また該炭素質原料はそれのみでは発泡して
割れる等の問題があるので、炭素質粉末中の水素量を適
正な量に調整して焼成時に割れずに特性が出現するよう
にすることができるものであるが、そのために該炭素質
原料を熱処理するが、この炭素質系原料から熱処理生成
物への熱処理の程度を芳香族系水素量の変化率で示すと
3245cm−1と2935−1をベースとした305
0cm−1付近の芳香族系C−H結合に由来する赤外吸
収スペクトルのピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のC=C二
重結合に由来するピークの比において、上記熱処理生成
物と該炭素質原料の比が、すなわち炭素質原料から熱処
理生成物への変化率が0.65以上となる条件で処理す
るのが好ましい。
Further, since the carbonaceous raw material has a problem such as foaming and cracking by itself, the amount of hydrogen in the carbonaceous powder is adjusted to an appropriate amount so that the characteristics are exhibited without cracking during firing. The carbonaceous raw material is heat-treated for that purpose, and the degree of heat treatment from the carbonaceous raw material to the heat-treated product is represented by the rate of change of the amount of aromatic hydrogen of 3245 cm −1 and 2935. -1 based 305
Peak of infrared absorption spectrum derived from aromatic C—H bond near 0 cm −1 and 1665 cm −1 and 1540 c
In the ratio of peaks derived from C = C double bond around 1600 cm-1 based on m-1, the ratio of the heat treatment product to the carbonaceous raw material, that is, change from the carbonaceous raw material to the heat treatment product. It is preferable to perform the treatment under the condition that the rate is 0.65 or more.

【0025】また芳香族系水素は面外変角振動に由来す
るピークが750、820、875、947cm−1付
近に存在するので、990cm−1と640cm−1を
ベースとした750、820、875、947cm−1
付近の芳香族系C−H結合の面外変角振動に由来する赤
外吸収スペクトルのピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のC=
C二重結合に由来するピークの比がそれぞれ2.60以
上、1.20以上、1.10以上、0.15以上のもの
が好ましく、また上記熱処理生成物と該炭素質原料の比
が、すなわち炭素質原料から熱処理生成物への変化率が
0.80以上、0.80以上、0.80以上、0.85
以上となる条件で処理するのが好ましい。
Since the aromatic hydrogen has peaks derived from out-of-plane bending vibration near 750, 820, 875 and 947 cm-1, 750, 820 and 875 based on 990 cm-1 and 640 cm-1. , 947 cm-1
Infrared absorption spectrum peaks derived from out-of-plane bending vibrations of aromatic C—H bonds in the vicinity and 1665 cm −1 and 154
C = around 1600 cm-1 based on 0 cm-1
It is preferable that the ratio of the peaks derived from the C double bond is 2.60 or more, 1.20 or more, 1.10 or more, 0.15 or more, respectively, and the ratio of the heat treatment product to the carbonaceous raw material is That is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.80 or more, 0.80 or more, 0.80 or more, 0.85.
It is preferable to process under the above conditions.

【0026】またさらには面外変角振動には芳香族環に
水素が1つ置換したものに由来するピーク、また水素が
2つ置換したもの(隣接2H)に由来するピーク、さら
には3、4、5つ置換したもの(隣接3H、4H、5
H)に由来するピーク等があるが、置換数の少ない水素
(1H、2H)は主にベンゼン縮合環が発達した大きな
分子に結合しているために、水素が分解して揮発しても
ベンゼン縮合環の発達の割合は大きくなく、成形体の収
縮率も大きくなく、嵩密度等の特性もさほど向上しな
い。それに対して3H、4H,5Hの置換数のものでは
ベンゼン縮合環がそれほど発達していないものに結合し
ているので、水素が分解して揮発した時のベンゼン縮合
環の発達の割合が大きく、成形体の収縮率も大きく、嵩
密度等の特性も向上するので望ましい。一般に1H、2
Hは875−1付近にピークが存在し、2H、3Hは8
20cm−1付近にピークが存在し、また、3H,4
H,5Hは750cm−1付近にピークが存在するとい
われており、875cm−1付近のピークと820cm
−1付近のピークおよび750cm−1付近のピークの
比を990cm−1と640cm−1をベースとしてい
ると875cm−1付近のピークよりも820cm−1
または750cm−1付近のピークの割合が多いほうが
好ましく、その比では1.15以下、2.35以下のも
のが好ましい。
Furthermore, in the out-of-plane bending vibration, a peak derived from one aromatic ring substituted with hydrogen, a peak derived from two aromatic rings substituted (adjacent 2H), and further 3, Four or five substitutions (adjacent 3H, 4H, 5
Although there is a peak derived from H), hydrogen with a small number of substitutions (1H, 2H) is mainly bonded to a large molecule with a developed benzene condensed ring. The rate of development of condensed rings is not large, the shrinkage rate of the molded body is not large, and the properties such as bulk density are not so improved. On the other hand, when the number of substitutions is 3H, 4H, 5H, the benzene condensed ring is bonded to a less developed one, so the rate of development of the benzene condensed ring when hydrogen is decomposed and volatilized is large, It is desirable because the molded product has a large shrinkage ratio and the properties such as bulk density are improved. Generally 1H, 2
H has a peak near 875-1, and 2H and 3H have 8 peaks.
There is a peak near 20 cm-1, and 3H and 4
H and 5H are said to have a peak near 750 cm-1, and a peak near 875 cm-1 and 820 cm-1.
When the ratio of the peak near -1 and the peak near 750 cm-1 is based on 990 cm-1 and 640 cm-1, the ratio is 820 cm-1 more than the peak near 875 cm-1.
Alternatively, it is preferable that the ratio of peaks near 750 cm −1 is high, and the ratio is preferably 1.15 or less and 2.35 or less.

【0027】また炭素質原料から熱処理生成物への熱処
理の程度を芳香族系水素の置換数の異なる面外変角振動
に由来するピークの変化率で示すと1.10以上、1.
00以上のものが好ましい。また脂肪族性C−H結合に
由来する伸縮振動は2913cm−1付近にピークが存
在するので、脂肪族性水素の量を2935cm−1と2
860cm−1をベースとした2913cm−1付近の
ピークの高さで示し、1665cm−1と1540cm
−1をベースとしたC=C二重結合に由来する1600
cm−1付近のピークとの比が0.05以上である熱処
理生成物が好ましい。
Further, the degree of heat treatment from the carbonaceous raw material to the heat treatment product is shown by the rate of change of the peak derived from the out-of-plane bending vibration with different substitution numbers of aromatic hydrogen, 1.10 or more, 1.
Those of 00 or more are preferable. Further, since the stretching vibration due to the aliphatic C—H bond has a peak near 2913 cm −1, the amount of aliphatic hydrogen is 2935 cm −1 and 2
The peak height near 2913 cm-1 based on 860 cm-1 is shown as 1665 cm-1 and 1540 cm.
1600 derived from -1 based C = C double bond
A heat-treated product having a ratio with a peak near cm-1 of 0.05 or more is preferable.

【0028】また炭素質原料から熱処理生成物への熱処
理の程度を脂肪族系水素の伸縮振動に由来するピークの
変化率で示すと0.70以上のものが好ましい。また脂
肪族性3−H結合に由来する変角振動は1440、13
75、1330cm−1付近にピークが存在するので、
脂肪族性水素の量を1540cm−1と1280cm−
1をベースとしたピークの高さで示し、1665cm−
1と1540cm−1をベースとしたC=C二重結合に
由来する1600cm−1付近のピークとの比を示すと
0.65以上、0.25以上、0.15以上である熱処
理生成物が好ましい。また該ピークの比はベースの取り
方によっても異なるが、1540cm−1と990cm
−1をベースとした時はそれぞれ1330cm−1を除
いて0.90以上、0.65以上の生成物が好ましい。
The degree of heat treatment from the carbonaceous raw material to the heat-treated product is preferably 0.70 or more in terms of the rate of change in peak derived from stretching vibration of aliphatic hydrogen. The bending vibrations derived from the aliphatic 3-H bond are 1440 and 13
Since there are peaks near 75 and 1330 cm-1,
The amount of aliphatic hydrogen is 1540 cm-1 and 1280 cm-
The peak height is based on 1 and is 1665 cm-
A heat treatment product having a ratio of 0.65 or more, 0.25 or more, and 0.15 or more is shown when showing the ratio of 1 and the peak near 1600 cm-1 derived from the C = C double bond based on 1540 cm-1. preferable. The ratio of the peaks varies depending on how the base is taken, but is 1540 cm-1 and 990 cm.
When -1 is used as a base, products of 0.90 or more and 0.65 or more are preferable except for 1330 cm-1.

【0029】また炭素質原料から熱処理生成物への熱処
理の程度を脂肪族系水素の変角振動に由来するピークの
変化率で示すとベースを1540cm−1と1280c
m−1としたときは0.55以上、0.45以上、0.
40以上のものが好ましく、ベースを1540cm−1
と990cm−1とした時は0.70以上、0.85以
上の熱処理生成物が好ましい。これらの炭素質粉末は常
法に従い、コークスとバインダーピッチをねつ合後、粉
砕、成形、焼成、黒鉛化して高密度特殊炭素材を製造す
る際に添加して使用されるが、コークスとバインダーピ
ッチをねつ合時に該炭素質粉末を添加しても良いし、コ
ークスとバインダーピッチをねつ合後、粉砕時に該炭素
質粉末を添加することも可能である。またさらにはねつ
合時に添加してさらに粉砕時に添加することも可能であ
る。またこれらの炭素質粉末は一種を単独で使用するこ
ともできるが二種以上の炭素質粉末を混合して該炭素質
粉末の特性を調製して使用することもできる。さらには
カーボンブラック、活性炭等を該炭素質粉末に添加して
該炭素質粉末の特性を調製して使用することもできる
が、これらの炭素質粉末は固定炭素が高く、炭素質粉末
単味の収縮率が大きく、成形体の強度が高くなるもので
あれば十分である。
The degree of heat treatment from the carbonaceous raw material to the heat-treated product is shown by the rate of change of the peak derived from the bending vibration of the aliphatic hydrogen.
m-1 is 0.55 or more, 0.45 or more, 0.
40 or more is preferable, and the base is 1540 cm-1
And 990 cm −1, a heat treatment product of 0.70 or more and 0.85 or more is preferable. These carbonaceous powders are added according to a conventional method when the coke and binder pitch are combined, and then crushed, molded, fired, and graphitized to produce a high-density special carbon material. The carbonaceous powder may be added at the time of kneading the pitch, or the carbonaceous powder may be added at the time of crushing after kneading the coke and the binder pitch. Further, it is also possible to add at the time of kneading and further at the time of crushing. Further, these carbonaceous powders can be used alone, but two or more kinds of carbonaceous powders can be mixed and used to prepare the characteristics of the carbonaceous powder. Further, carbon black, activated carbon and the like can be added to the carbonaceous powder to adjust the characteristics of the carbonaceous powder for use. It is sufficient if the shrinkage rate is large and the strength of the molded product is high.

【0030】また二種以上の炭素質粉末を混合して特性
を調製して使用する時は添加前に混合しても良いし、ね
つ合時に同時に添加しても良いし、別々に添加してもよ
く、該炭素質粉末の固定炭素、収縮率、強度等が目的の
範囲に入るように混合量を決めることができるものであ
る。また二種以上の炭素質粉末を骨材に添加前に混合す
るときは加熱溶融して混合することもできるし、粉の状
態で混合することもできる。粉の状態で混合する時は均
一に混合するために平均粒度は100μm以下が望まし
く、さらには50μm以下が好ましく、最も好ましくは
30μm以下に微粉砕したものが望ましい。
When two or more kinds of carbonaceous powders are mixed and the characteristics are adjusted and used, they may be mixed before the addition, may be added simultaneously at the time of mating, or may be added separately. Alternatively, the mixing amount can be determined so that the fixed carbon, shrinkage ratio, strength, etc. of the carbonaceous powder fall within the target range. Further, when two or more kinds of carbonaceous powders are mixed before being added to the aggregate, they can be heated and melted and mixed, or can be mixed in a powder state. When mixing in a powder state, the average particle size is preferably 100 μm or less, more preferably 50 μm or less, and most preferably finely pulverized to 30 μm or less for uniform mixing.

【0031】また均一に分散するために溶媒に分散後、
混合することもできるし、コークスとバインダーピッチ
とねつ合時に溶媒を添加することもでき、溶媒は該炭素
質粉末と同時に混合しても良いが、該炭素質粉末混合前
または後に別々に混合することもできる。またこれらの
混合は常法に従い、ニーダー、混合機等で室温下、また
は必要に応じて加温下行なわれる。ここで使用する溶媒
としてはトルエン、キシレン等の芳香族系炭化水素、ヘ
キサン、灯油等の脂肪族系炭化水素、シクロヘキサン等
の環状脂肪族炭化水素、エタノール、エチレングリコー
ル、プロパノール等のアルコール類、酢酸エチル等のエ
ステル類、メチルエチルケトン等のケトン類等が使用で
き、一種の溶媒でもよいが数種類の溶媒を混合して使用
してもよい。
In order to disperse uniformly, after dispersing in a solvent,
The solvent can be mixed, or the solvent can be added at the time of coking with the binder pitch, and the solvent may be mixed at the same time as the carbonaceous powder, but separately before or after mixing the carbonaceous powder. You can also do it. In addition, these are mixed according to a conventional method at room temperature with a kneader, a mixer or the like, or under heating if necessary. As the solvent used here, toluene, aromatic hydrocarbons such as xylene, hexane, aliphatic hydrocarbons such as kerosene, cycloaliphatic hydrocarbons such as cyclohexane, alcohols such as ethanol, ethylene glycol, propanol, acetic acid. Esters such as ethyl and ketones such as methyl ethyl ketone can be used, and one solvent may be used, but several solvents may be mixed and used.

【0032】これらのねつ合物は粉砕後成形されるので
粉砕時に溶媒が残存していると粉砕しにくいのでねつ合
時に揮発し、残存しにくいものが好ましい。常法ではね
つ合は300℃以下で行なわれるので、300℃以下で
揮発するものが好ましく、該溶媒の沸点は300℃以下
のものが好ましく、さらには280℃以下のものが好ま
しく、最も好ましくは250℃以下である。また該溶媒
の沸点が低過ぎると引火点が低く、危険であるので該溶
媒の沸点は50℃以上が好ましく、さらには80℃以上
が好ましく、最も好ましくは100℃以上である。
Since these compounds are molded after crushing, if the solvent remains during crushing, it is difficult to crush them. Therefore, it is preferable that the compounds volatilize during the crushing and hardly remain. In the conventional method, since the mating is carried out at 300 ° C. or lower, those which volatilize at 300 ° C. or lower are preferable, the boiling point of the solvent is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and most preferably Is 250 ° C. or lower. If the boiling point of the solvent is too low, the flash point is low, which is dangerous. Therefore, the boiling point of the solvent is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and most preferably 100 ° C. or higher.

【0033】また該炭素質粉末は粉砕時に添加しても良
く、ねつ合後にさらに粉砕時に添加しても良い。添加量
としてはコークスとバインダーピッチの種類、配合割
合、ねつ合条件等によっても異なるが、高密度特殊炭素
材用原料として適正なように配合することができるもの
であり、焼成時に割れることがなく、特性が高くなるよ
うに添加することができるものであり、コークスとバイ
ンダーピッチに対して5%以上であり、90%以下とな
るように配合できる。さらには10%以上が好ましく、
80%以下が好ましい。このようにして製造した高密度
特殊炭素材用原料は常法に従い粉砕され、成形は通常の
モールド成形、冷間等方圧成形等が用いられる。
The carbonaceous powder may be added at the time of crushing, or may be added at the time of crushing after the mating. The addition amount varies depending on the types of coke and binder pitch, the blending ratio, the mating conditions, etc., but it can be blended appropriately as a raw material for high-density special carbon material, and may crack during firing. However, it can be added so as to improve the characteristics, and can be added so as to be 5% or more and 90% or less with respect to the coke and the binder pitch. Furthermore, 10% or more is preferable,
80% or less is preferable. The raw material for a high-density special carbon material produced in this manner is crushed according to a conventional method, and the molding is carried out by ordinary molding, cold isostatic pressing or the like.

【0034】また焼成は不活性ガス中、コークスブリー
ズ中いずれでも可能であり、800〜1000℃の温度
でなされる。さらに黒鉛化はタンマン炉、アチソン炉、
誘導加熱等の常法が使用でき、通常2000〜3000
℃でなされる。このようにして製造した炭素質粉末を添
加した高密度特殊炭素材用原料は従来の方法をかえるこ
となく使用可能であり、高特性となるものである。
The firing can be carried out in an inert gas or in a coke breeze and is carried out at a temperature of 800 to 1000 ° C. Furthermore, graphitization is performed by the Tammann furnace, Atchison furnace,
Conventional methods such as induction heating can be used, and usually 2000 to 3000.
Made in ° C. The raw material for a high-density special carbon material to which the carbonaceous powder produced in this manner is added can be used without changing the conventional method and has high characteristics.

【0035】[0035]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。なお実施例中、「%」は「重量%」を意味す
る。
EXAMPLES The present invention will now be described in more detail with reference to examples. In the examples, “%” means “% by weight”.

【実施例−1】揮発分(VM)が21.4%でかつγレ
ジン量が22.9%の炭素質原料を空気の存在下で熱処
理して、VMが13.8%、γレジン量が5.7%の生
成物を得た。該生成物の赤外吸収スペクトルの2935
cm−1と2860cm−1をベースとした2913c
m−1付近のピークと1665cm−1と1540cm
−1をベースとした1600cm−1付近のピークの比
は0.06であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.76、曲げ強度は585kg/cm2であった。
Example 1 A carbonaceous material having a volatile content (VM) of 21.4% and a γ resin content of 22.9% was heat-treated in the presence of air to obtain a VM of 13.8% and a γ resin content. 5.7% product was obtained. 2935 of the infrared absorption spectrum of the product
2913c based on cm-1 and 2860 cm-1
Peak around m-1 and 1665 cm-1 and 1540 cm
The ratio of the peaks around 1600 cm-1 based on -1 was 0.06. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.76 and a bending strength of 585 kg / cm 2 .

【0036】[0036]

【実施例2】実施例1と同じ炭素質原料を熱処理して、
VMが14.0%、γレジン量が5.9%である熱処理
生成物を得た。該生成物の赤外吸収スペクトルの293
5cm−1と2860cm−1をベースとした2913
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.96であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.76、曲げ強度は580kg/cm2であった。
Example 2 The same carbonaceous raw material as in Example 1 was heat treated,
A heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9% was obtained. 293 of the infrared absorption spectrum of the product
2913 based on 5 cm-1 and 2860 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.96. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.76 and a bending strength of 580 kg / cm 2 .

【0037】[0037]

【実施例3】実施例1と同じ炭素質原料を熱処理して、
VMが13.8%、γレジン量が5.7%である熱処理
生成物を得た。該生成物の赤外吸収スペクトルの293
5cm−1と2860cm−1をベースとした2913
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.05であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に10%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.76、曲げ強度は580kg/cm2であっ
た。
Example 3 The same carbonaceous raw material as in Example 1 was heat treated,
A heat-treated product having a VM content of 13.8% and a γ-resin content of 5.7% was obtained. 293 of the infrared absorption spectrum of the product
2913 based on 5 cm-1 and 2860 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.05. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.76 and a bending strength of 580 kg / cm 2 .

【0038】[0038]

【実施例4】実施例1と同じ炭素質原料を熱処理して、
VMが14.0%、γレジン量が5.9%である熱処理
生成物を得た。またこの生成物の赤外吸収スペクトルの
2935cm−1と2860cm−1をベースとした2
913cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.84であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に10%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、タンマン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.76、曲げ強度は585kg/cm2
あった。
Example 4 The same carbonaceous raw material as in Example 1 was heat treated,
A heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9% was obtained. In addition, the infrared absorption spectrum of this product was based on 2935 cm-1 and 2860 cm-1.
Peak around 913 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.84. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm.
m, and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.76 and a bending strength of 585 kg / cm 2 .

【0039】[0039]

【実施例5】コールタールピッチをディレードコーカー
で熱処理して得たVMが21.4%でかつγレジン量が
22.9%の炭素質原料を空気の存在下で熱処理を行な
い、VMが14.5%、γレジン量が6.2%である熱
処理生成物を得た。また該生成物の赤外吸収スペクトル
の1540cm−1と1280cm−1をベースとした
1440cm−1付近のピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
ピークの比は0.85であった。この生成物を粗粉砕
後、コークスとバインダーピッチをねつ合時に10%添
加して、混合物を得、該混合物を微粉砕して平均粒度2
8μmとし、モールドプレスにて成形し、成形体を得
た。この成形体をブリーズ中1000℃まで焼成後、ア
チソン炉で2800℃まで黒鉛化して製品を得た。黒鉛
成形体の嵩密度は1.89、曲げ強度は830kg/c
2であった。
Example 5 A carbonaceous raw material having a VM of 21.4% and a γ-resin amount of 22.9% obtained by heat treatment of coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM of 14 A heat-treated product having a content of 0.5% and an amount of γ resin of 6.2% was obtained. Further, the infrared absorption spectrum of the product has a peak around 1440 cm −1 based on 1540 cm −1 and 1280 cm −1, and 1665 cm −1 and 1.
The ratio of peaks near 1600 cm-1 based on 540 cm-1 was 0.85. After coarsely pulverizing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was finely pulverized to have an average particle size of 2
It was made to be 8 μm and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.89 and a bending strength of 830 kg / c.
It was m 2 .

【0040】[0040]

【実施例6】実施例5と同じ炭素質原料を熱処理して、
VMが14.4%、γレジン量が5.9%である熱処理
生成物を得た。この生成物の赤外吸収スペクトルの15
40cm−1と1280cm−1をベースとした144
0cm−1付近のピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のピーク
の比において、熱処理生成物と炭素質原料とのピークの
比は0.80であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に10%添加して、混
合物を得、該混合物を微粉砕して平均粒度28μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.89であり、曲げ強度は900kg/cm2
であった。
Example 6 The same carbonaceous raw material as in Example 5 was heat-treated,
A heat-treated product having a VM content of 14.4% and a γ-resin content of 5.9% was obtained. 15 of the infrared absorption spectrum of this product
144 based on 40 cm-1 and 1280 cm-1
Peak around 0 cm-1 and 1665 cm-1 and 1540
In the peak ratio around 1600 cm −1 based on cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.80. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.89 and a bending strength of 900 kg / cm 2.
Met.

【0041】[0041]

【実施例7】実施例5と同じ炭素質原料を熱処理して、
VMが14.2%、γレジン量が5.9%である熱処理
生成物を得た。また生成物の赤外吸収スペクトルの15
40cm−1と990cm−1をベースとした1440
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は1.07であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に10%添加して、混
合物を得、該混合物を微粉砕して平均粒度28μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.89であり、曲げ強度は830kg/cm2
であった。
Example 7 The same carbonaceous raw material as in Example 5 was heat treated,
A heat-treated product having a VM content of 14.2% and a γ-resin content of 5.9% was obtained. The infrared absorption spectrum of the product is 15
1440 based on 40 cm-1 and 990 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 1.07. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.89 and a bending strength of 830 kg / cm 2.
Met.

【0042】[0042]

【実施例8】実施例5と同じ炭素質原料を熱処理を行な
い、VMが14.2%、γレジン量が6.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした14
40cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比において、熱処理生成物と炭素質原料とのピーク
の比は0.85であった。この生成物を粗粉砕後、コー
クスとバインダーピッチをねつ合時に10%添加して、
混合物を得、該混合物を微粉砕して平均粒度28μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.85であり、曲げ強度は760kg/cm2
であった。
Example 8 The same carbonaceous raw material as in Example 5 was heat-treated to obtain a heat-treated product having a VM of 14.2% and a γ-resin amount of 6.1%. 14 based on 1540 cm -1 and 990 cm -1 of the infrared absorption spectrum of this product
Peak around 40 cm-1 and 1665 cm-1 and 154
In the peak ratio around 1600 cm −1 based on 0 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.85. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating,
A mixture was obtained, and the mixture was finely pulverized to have an average particle size of 28 μm and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.85 and a bending strength of 760 kg / cm 2.
Met.

【0043】[0043]

【実施例9】コールタールピッチをディレードコーカー
で熱処理して得たVMが20.6%で、かつγレジン量
が21.1%の炭素質原料を空気の存在下で熱処理を行
ない、VMが13.9%、γレジン量が6.5%の熱処
理生成物を得た。また該生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
440cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比は0.82であった。この生成物を粗粉砕後、
コークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.89であり、曲げ強度は890kg/c
2であった。
Example 9 A carbonaceous raw material having a VM of 20.6% and a γ-resin amount of 21.1% obtained by heat treatment of coal tar pitch in a delayed coker was heat-treated in the presence of air. A heat-treated product having a content of 13.9% and a γ resin content of 6.5% was obtained. In addition, 1 based on the infrared absorption spectra of the product at 1540 cm -1 and 1280 cm -1
Peak around 440 cm-1 and 1665 cm-1 and 15
The ratio of peaks near 1600 cm-1 based on 40 cm-1 was 0.82. After coarsely crushing this product,
20% of coke and binder pitch were added at the time of joining to obtain a mixture, and the mixture was finely pulverized to have an average particle size of 17 μm.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.89 and a bending strength of 890 kg / c.
It was m 2 .

【0044】[0044]

【実施例10】実施例9と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量が6.4%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
440cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.77であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.87であり、曲げ強度は750kg/c
2であった。
Example 10 The same carbonaceous raw material as in Example 9 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ resin amount of 6.4%. 1 based on 1540 cm -1 and 1280 cm -1 of the infrared absorption spectrum of this product
Peak around 440 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.77. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.87 and a bending strength of 750 kg / c.
It was m 2 .

【0045】[0045]

【実施例11】実施例9と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は6.0%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした14
40cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は1.05であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000まで焼成後、タンマン炉
で2800℃まで黒鉛化して製品を得た。黒鉛成形体の
嵩密度は1.79であり、曲げ強度は640kg/cm
2であった。
Example 11 The same carbonaceous raw material as in Example 9 was heat treated to obtain a heat treated product having a VM of 13.9% and a γ resin content of 6.0%. In addition, the infrared absorption spectrum of the product is based on 1540 cm -1 and 990 cm -1 14
Peak around 40 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 1.05. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded body was fired to 1000 in a breeze and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite compact has a bulk density of 1.79 and a bending strength of 640 kg / cm.
Was 2 .

【0046】[0046]

【実施例12】実施例9と同じ炭素質原料を熱処理し
て、VMが14.3%、γレジン量は6.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした14
40cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比において、熱処理生成物と炭素質原料とのピーク
の比は0.84であった。この生成物を粗粉砕後、コー
クスとバインダーピッチをねつ合時に20%添加して、
混合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.82であり、曲げ強度は650kg/cm2
であった。
Example 12 The same carbonaceous raw material as in Example 9 was heat-treated to obtain a heat-treated product having a VM of 14.3% and a γ resin amount of 6.1%. 14 based on 1540 cm -1 and 990 cm -1 of the infrared absorption spectrum of this product
Peak around 40 cm-1 and 1665 cm-1 and 154
In the peak ratio around 1600 cm −1 based on 0 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.84. After coarsely crushing this product, add 20% of coke and binder pitch at the time of mating,
A mixture was obtained, and the mixture was finely pulverized to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite compact has a bulk density of 1.82 and a bending strength of 650 kg / cm 2.
Met.

【0047】[0047]

【実施例13】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが21.4%で、かつγレジン
量が22.9%の炭素質原料を空気の存在下で熱処理を
行い、VMが14.1%、γレジン量は6.7%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの1
540cm−1と1280cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.36であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加後、
微粉砕して平均粒度25μmとし、モールドプレスにて
成形し、成形体を得た。この成形体をブリーズ中100
0℃まで焼成後、アチソン炉で2800℃まで黒鉛化し
て製品を得た。黒鉛成形体の嵩密度は1.91であり、
曲げ強度は820kg/cm2であった。
Example 13 A carbonaceous raw material having a VM of 21.4% and a γ-resin amount of 22.9% obtained by heat treating coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM A heat-treated product having a content of 14.1% and a γ resin content of 6.7% was obtained. 1 of the infrared absorption spectrum of the product
13 based on 540 cm-1 and 1280 cm-1
Peak around 75 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.36. After roughly crushing this product, after adding 20% of coke and binder pitch at the time of welding,
It was finely pulverized to have an average particle size of 25 μm and molded by a mold press to obtain a molded body. This molded body is 100
After firing to 0 ° C, the product was obtained by graphitizing to 2800 ° C in an Acheson furnace. The bulk density of the graphite molded body is 1.91,
The bending strength was 820 kg / cm 2 .

【0048】[0048]

【実施例14】実施例13と同じ炭素質原料を熱処理し
て、VMが14.1%、γレジン量が6.7%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
375cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.76であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合物を粉砕時に10%
添加後、微粉砕して平均粒度25μmとし、モールドプ
レスにて成形し、成形体を得た。この成形体をブリーズ
中1000℃まで焼成後、アチソン炉で2800℃まで
黒鉛化して製品を得た。黒鉛成形体の嵩密度は1.8
6、曲げ強度は750kg/cm2であった。
Example 14 The same carbonaceous raw material as in Example 13 was heat treated to obtain a heat treated product having a VM of 14.1% and a γ resin content of 6.7%. 1 based on 1540 cm -1 and 1280 cm -1 of the infrared absorption spectrum of this product
Peak around 375 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm −1 based on 40 cm −1, the peak ratio of the heat treatment product and the carbonaceous raw material was 0.76. After coarsely crushing this product, the coke and binder pitch are mixed together at a rate of 10%
After the addition, the mixture was finely pulverized to have an average particle size of 25 μm and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The bulk density of the graphite compact is 1.8.
6, the bending strength was 750 kg / cm 2 .

【0049】[0049]

【実施例15】実施例13と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量が6.3%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.72であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加後、
微粉砕して平均粒度25μmとし、モールドプレスにて
成形体を得た。この成形体をブリーズ中1000℃まで
焼成後、ピッチを含浸し、焼成後アチソン炉で2800
℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度は
1.86、曲げ強度は780kg/cm2であった。
Example 15 The same carbonaceous raw material as in Example 13 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 6.3%. In addition, the infrared absorption spectrum of the product is based on 1540 cm -1 and 990 cm -1 13
Peak around 75 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.72. After roughly crushing this product, after adding 20% of coke and binder pitch at the time of welding,
Finely pulverized to an average particle size of 25 μm, and a molded body was obtained by a mold press. After firing this molded body in a breeze to 1000 ° C., impregnating it with pitch, and firing it at 2800 in an Acheson furnace.
The product was obtained by graphitizing to ℃. The graphite compact had a bulk density of 1.86 and a bending strength of 780 kg / cm 2 .

【0050】[0050]

【実施例16】実施例13と同じ炭素質原料を熱処理し
て、VMが14.1%、γレジン量が6.2%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比において、熱処理生成物と炭素質原料とのピーク
の比は0.91であった。この生成物を粗粉砕後、コー
クスとバインダーピッチをねつ合物を粉砕時に20%添
加後、微粉砕して平均粒度25μmとし、モールドプレ
スにて成形し、成形体を得た。この成形体をブリーズ中
1000℃まで焼成後、アチソン炉で2800℃まで黒
鉛化して製品を得た。黒鉛成形体の嵩密度は1.86、
曲げ強度は690kg/cm2であった。
Example 16 The same carbonaceous raw material as in Example 13 was heat-treated to obtain a heat-treated product having a VM of 14.1% and a γ resin amount of 6.2%. 13 based on 1540 cm -1 and 990 cm -1 of the infrared absorption spectrum of this product
Peak around 75 cm-1 and 1665 cm-1 and 154
In the peak ratio around 1600 cm −1 based on 0 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.91. After roughly crushing this product, 20% of a mixture of coke and binder pitch was added at the time of crushing, and then finely crushed to have an average particle size of 25 μm and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The bulk density of the graphite compact is 1.86,
The bending strength was 690 kg / cm 2 .

【0051】[0051]

【実施例17】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.6%で、かつγレジン
量が21.1%の炭素質原料を空気の存在下で熱処理を
行い、VMが13.5%、γレジン量は4.5%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの1
540cm−1と1280cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.33であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、タンマン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.82であり、曲げ強度は710kg/c
2であった。
Example 17 A carbonaceous raw material having a VM of 20.6% and a γ-resin amount of 21.1% obtained by heat-treating coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM A heat-treated product having a content of 13.5% and a γ resin content of 4.5% was obtained. 1 of the infrared absorption spectrum of the product
13 based on 540 cm-1 and 1280 cm-1
Peak around 75 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.33. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite compact has a bulk density of 1.82 and a bending strength of 710 kg / c.
It was m 2 .

【0052】[0052]

【実施例18】実施例17と同じ炭素質原料を熱処理し
て、VMが13.5%、γレジン量が4.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
375cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.71であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ時に20%添加して、
混合物を得、該混合物を微粉砕して平均粒度15μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.82、曲げ強度は720kg/cm2であっ
た。
Example 18 The same carbonaceous raw material as in Example 17 was heat-treated to obtain a heat-treated product having a VM of 13.5% and a γ-resin amount of 4.5%. 1 based on 1540 cm -1 and 1280 cm -1 of the infrared absorption spectrum of this product
Peak around 375 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm-1 based on 40 cm-1, the peak ratio of the heat treatment product and the carbonaceous raw material was 0.71. After coarsely crushing this product, add 20% of coke and binder pitch at the time of beating,
A mixture was obtained, and the mixture was finely pulverized to have an average particle size of 15 μm and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.82 and a bending strength of 720 kg / cm 2 .

【0053】[0053]

【実施例19】実施例17と同じ炭素質原料を熱処理し
て、VMが13.8%、γレジン量が4.9%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.71であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.84、曲げ強度は715kg/cm2であった。
Example 19 The same carbonaceous raw material as in Example 17 was heat-treated to obtain a heat-treated product having a VM of 13.8% and a γ-resin amount of 4.9%. In addition, the infrared absorption spectrum of the product is based on 1540 cm -1 and 990 cm -1 13
Peak around 75 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.71. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and a molded body was obtained by a mold press. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.84 and a bending strength of 715 kg / cm 2 .

【0054】[0054]

【実施例20】実施例17と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量が5.0%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と990cm−1をベースとした13
75cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比において、熱処理生成物と炭素質原料とのピーク
の比は0.90であった。この生成物を粗粉砕後、コー
クスとバインダーピッチをねつ合時に20%添加して、
混合物を得、該混合物を微粉砕して平均粒度18μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.82、曲げ強度は700kg/cm2であっ
た。
Example 20 The same carbonaceous raw material as in Example 17 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ resin amount of 5.0%. 13 based on 1540 cm -1 and 990 cm -1 of the infrared absorption spectrum of this product
Peak around 75 cm-1 and 1665 cm-1 and 154
In the peak ratio near 1600 cm −1 based on 0 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.90. After coarsely crushing this product, add 20% of coke and binder pitch at the time of mating,
A mixture was obtained, and the mixture was finely pulverized to have an average particle size of 18 μm and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.82 and a bending strength of 700 kg / cm 2 .

【0055】[0055]

【実施例21】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.5%で、かつγレジン
量が24.4%の炭素質原料を空気の存在下で熱処理を
行い、VMが13.9%、γレジン量は6.5%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの1
540cm−1と1280cm−1をベースとした13
30cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.24であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に10%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、タンマン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.87であり、曲げ強度は590kg/c
2であった。
Example 21 A carbonaceous raw material having a VM of 20.5% and a γ-resin amount of 24.4% obtained by heat treating coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM A heat-treated product having a content of 13.9% and a γ resin content of 6.5% was obtained. 1 of the infrared absorption spectrum of the product
13 based on 540 cm-1 and 1280 cm-1
Peak around 30 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.24. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm.
m, and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite compact has a bulk density of 1.87 and a bending strength of 590 kg / c.
It was m 2 .

【0056】[0056]

【実施例22】実施例21と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量が6.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
330cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.81であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、タンマン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.76、曲げ強度は590kg/cm2
あった。
Example 22 The same carbonaceous raw material as in Example 21 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 6.5%. 1 based on 1540 cm -1 and 1280 cm -1 of the infrared absorption spectrum of this product
Peak around 330 cm-1 and 1665 cm-1 and 15
In the peak ratio around 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.81. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.76 and a bending strength of 590 kg / cm 2 .

【0057】[0057]

【実施例23】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.6%で、かつγレジン
量が21.1%の炭素質原料を空気の存在下で熱処理を
行ない、VMが13.9%、γレジン量は7.0%の熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
330cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比は0.23であった。この生成物を粗粉砕後、
コークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.91であり、曲げ強度は820kg/c
2であった。
Example 23 A carbonaceous raw material having a VM of 20.6% and a γ-resin amount of 21.1% obtained by heat treatment of coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM A heat-treated product having a content of 13.9% and a γ-resin content of 7.0% was obtained. Also, based on the infrared absorption spectra of the product at 1540 cm -1 and 1280 cm -1
Peak around 330 cm-1 and 1665 cm-1 and 15
The ratio of peaks near 1600 cm-1 based on 40 cm-1 was 0.23. After coarsely crushing this product,
20% of coke and binder pitch were added at the time of joining to obtain a mixture, and the mixture was finely pulverized to have an average particle size of 17 μm.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.91 and a bending strength of 820 kg / c.
It was m 2 .

【0058】[0058]

【実施例24】実施例23と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量が7.0%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
1540cm−1と1280cm−1をベースとした1
330cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.79であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.91、曲げ強度は820kg/cm2
あった。
Example 24 The same carbonaceous raw material as in Example 23 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 7.0%. 1 based on 1540 cm -1 and 1280 cm -1 of the infrared absorption spectrum of this product
Peak around 330 cm-1 and 1665 cm-1 and 15
In the peak ratio around 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.79. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.91 and a bending strength of 820 kg / cm 2 .

【0059】[0059]

【実施例25】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.5%で、かつγレジン
量が24.4%の炭素質原料を空気の存在下で熱処理を
行い、VMが13.5%、γレジン量は4.5%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの3
245cm−1と2935cm−1をベースとした30
50cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.74であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.87であり、曲げ強度は750kg/c
2であった。
Example 25 A carbonaceous raw material having a VM of 20.5% and a γ-resin amount of 24.4% obtained by heat treating coal tar pitch in a delayed coker was heat-treated in the presence of air to obtain a VM A heat-treated product having a content of 13.5% and a γ resin content of 4.5% was obtained. In addition, 3 of the infrared absorption spectrum of the product
30 based on 245 cm-1 and 2935 cm-1
Peak around 50 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.74. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.87 and a bending strength of 750 kg / c.
It was m 2 .

【0060】[0060]

【実施例26】実施例25と同じ炭素質原料を熱処理し
て、VMが13.5%、γレジン量が4.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
3245cm−1と2935cm−1をベースとした3
050cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.73であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.87、曲げ強度は750kg/cm2
あった。
Example 26 The same carbonaceous raw material as in Example 25 was heat-treated to obtain a heat-treated product having a VM of 13.5% and a γ-resin amount of 4.5%. 3 based on 3245 cm -1 and 2935 cm -1 of the infrared absorption spectrum of this product
Peak around 050 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.73. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.87 and a bending strength of 750 kg / cm 2 .

【0061】[0061]

【実施例27】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが21.4%で、かつγレジン
量が22.9%の炭素質原料を空気の存在下で熱処理を
行い、VMが13.9%、γレジン量は6.5%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの3
245cm−1と2935cm−1をベースとした30
50cm−1付近のピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のピー
クの比は0.87であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.88、曲げ強度は830kg/cm2
あった。
Example 27 A carbonaceous raw material having a VM of 21.4% and a γ-resin amount of 22.9% obtained by heat treating coal tar pitch in a delayed coker was heat treated in the presence of air to give a VM A heat-treated product having a content of 13.9% and a γ resin content of 6.5% was obtained. In addition, 3 of the infrared absorption spectrum of the product
30 based on 245 cm-1 and 2935 cm-1
Peak around 50 cm-1 and 1665 cm-1 and 154
The ratio of peaks near 1600 cm-1 based on 0 cm-1 was 0.87. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.88 and a bending strength of 830 kg / cm 2 .

【0062】[0062]

【実施例28】実施例27と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は6.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
3245cm−1と2935cm−1をベースとした3
050cm−1付近のピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のピ
ークの比において、熱処理生成物と炭素質原料とのピー
クの比は0.86であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度17μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.88であり、曲げ強度は830kg/c
2であった。
Example 28 The same carbonaceous raw material as in Example 27 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 6.5%. 3 based on 3245 cm -1 and 2935 cm -1 of the infrared absorption spectrum of this product
Peak around 050 cm-1 and 1665 cm-1 and 15
In the peak ratio near 1600 cm −1 based on 40 cm −1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.86. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite compact has a bulk density of 1.88 and a bending strength of 830 kg / c.
It was m 2 .

【0063】[0063]

【実施例29】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.5%で、かつγレジン
量が24.4%の炭素質原料を空気の存在下で熱処理を
行い、VMが13.6%、γレジン量は5.1%の熱処
理生成物を得た。また生成物の赤外吸収スペクトルの9
90cm−1と640cm−1をベースとした875c
m−1付近のピークと1665cm−1と1540cm
−1をベースとした1600cm−1付近のピークの比
は1.37であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.85であり、曲げ強度は750kg/cm2であ
った。
Example 29 A carbonaceous raw material having a VM of 20.5% and a γ-resin amount of 24.4% obtained by heat-treating coal tar pitch in a delayed coker was heat-treated in the presence of air to give a VM A heat-treated product having a content of 13.6% and a γ-resin content of 5.1% was obtained. In addition, 9 of the infrared absorption spectrum of the product
875c based on 90 cm-1 and 640 cm-1
Peak around m-1 and 1665 cm-1 and 1540 cm
The ratio of the peaks around 1600 cm-1 based on -1 was 1.37. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.85 and a bending strength of 750 kg / cm 2 .

【0064】[0064]

【実施例30】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.89であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に20%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.85、曲げ強度は750kg/cm2であった。
Example 30 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 13.6% and a γ-resin amount of 5.1%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.89. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite compact had a bulk density of 1.85 and a bending strength of 750 kg / cm 2 .

【0065】[0065]

【実施例31】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は1.47であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.87、曲げ強度は820kg/cm2であっ
た。
Example 31 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. In addition, the infrared absorption spectrum of the product is 875 based on 990 cm −1 and 640 cm −1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 1.47. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.87 and a bending strength of 820 kg / cm 2 .

【0066】[0066]

【実施例32】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.89であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、アチソン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.84、曲げ強度は750kg/cm2であった。
Example 32 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.89. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze to 1000 ° C, it is heated in an Acheson furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.84 and a bending strength of 750 kg / cm 2 .

【0067】[0067]

【実施例33】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした820
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は1.42であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.85、曲げ強度は800kg/cm2であっ
た。
Example 33 The same carbonaceous raw material as in Example 29 was heat treated to obtain a heat treated product having a VM of 13.6% and a γ resin content of 5.1%. In addition, the infrared absorption spectrum of the product is 820 based on 990 cm-1 and 640 cm-1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 1.42. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.85 and a bending strength of 800 kg / cm 2 .

【0068】[0068]

【実施例34】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした820
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.89であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.83、曲げ強度は690kg/cm2であった。
Example 34 The same carbonaceous raw material as in Example 29 was heat treated to obtain a heat treated product having a VM of 13.6% and a γ resin content of 5.1%. 820 based on 990 cm −1 and 640 cm −1 of infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.89. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.83 and a bending strength of 690 kg / cm 2 .

【0069】[0069]

【実施例35】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした820
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は1.57であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度16μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000まで焼成後、タンマン炉で2
800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密
度は1.86であり、曲げ強度は760kg/cm2
あった。
Example 35 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. In addition, the infrared absorption spectrum of the product is 820 based on 990 cm-1 and 640 cm-1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 1.57. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture. The mixture was finely crushed to have an average particle size of 16 μm and molded by a mold press to obtain a molded body. It was After firing this molded body up to 1000 in a breeze, 2 in a Tammann furnace
A product was obtained by graphitizing to 800 ° C. The graphite molded body had a bulk density of 1.86 and a bending strength of 760 kg / cm 2 .

【0070】[0070]

【実施例36】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした820
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.89であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に20%添加して、混合
物を得、該混合物を微粉砕して平均粒度18μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.88、曲げ強度は760kg/cm2であった。
Example 36 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. 820 based on 990 cm −1 and 640 cm −1 of infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.89. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 18 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.88 and a bending strength of 760 kg / cm 2 .

【0071】[0071]

【実施例37】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした750
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は2.88であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に10%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.90、曲げ強度は820kg/cm2であっ
た。
Example 37 The same carbonaceous raw material as in Example 29 was heat treated to obtain a heat treated product having a VM of 13.6% and a γ resin content of 5.1%. In addition, the infrared absorption spectrum of the product is 750 cm based on 990 cm −1 and 640 cm −1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 2.88. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.90 and a bending strength of 820 kg / cm 2 .

【0072】[0072]

【実施例38】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした750
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.83であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に20%添加して、混合
物を得、該混合物を微粉砕して平均粒度19μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.85、曲げ強度は750kg/cm2であった。
Example 38 The same carbonaceous raw material as in Example 29 was heat treated to obtain a heat treated product having a VM of 13.6% and a γ resin content of 5.1%. 750 based on 990 cm-1 and 640 cm-1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.83. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 19 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite compact had a bulk density of 1.85 and a bending strength of 750 kg / cm 2 .

【0073】[0073]

【実施例39】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした750
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は3.25であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度25μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.88、曲げ強度は830kg/cm2であっ
た。
Example 39 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. In addition, the infrared absorption spectrum of the product is 750 cm based on 990 cm −1 and 640 cm −1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 3.25. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.88 and a bending strength of 830 kg / cm 2 .

【0074】[0074]

【実施例40】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした750
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.83であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に20%添加して、混合
物を得、該混合物を微粉砕して平均粒度27μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、アチソン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.87、曲げ強度は800kg/cm2であった。
Example 40 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. 750 based on 990 cm-1 and 640 cm-1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.83. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 27 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze to 1000 ° C, it is heated in an Acheson furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.87 and a bending strength of 800 kg / cm 2 .

【0075】[0075]

【実施例41】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした750
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.18であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度23μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.84、曲げ強度は730kg/cm2であっ
た。
Example 41 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM content of 13.6% and a γ resin content of 5.1%. In addition, the infrared absorption spectrum of the product is 750 cm based on 990 cm −1 and 640 cm −1.
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.18. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.84 and a bending strength of 730 kg / cm 2 .

【0076】[0076]

【実施例42】実施例29と同じ炭素質原料を熱処理し
て、VMが13.6%、γレジン量は5.1%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした947
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.85であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.83、曲げ強度は670kg/cm2であった。
Example 42 The same carbonaceous raw material as in Example 29 was heat treated to obtain a heat treated product having a VM of 13.6% and a γ resin amount of 5.1%. 947 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.85. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.83 and a bending strength of 670 kg / cm 2 .

【0077】[0077]

【実施例43】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした947
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.20であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000まで焼成後、タンマン炉で2
800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密
度は1.85、曲げ強度は750kg/cm2であっ
た。
Example 43 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. In addition, 947 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of the product
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.20. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. It was After firing this molded body up to 1000 in a breeze, 2 in a Tammann furnace
A product was obtained by graphitizing to 800 ° C. The graphite compact had a bulk density of 1.85 and a bending strength of 750 kg / cm 2 .

【0078】[0078]

【実施例44】実施例29と同じ炭素質原料を熱処理し
て、VMが14.0%、γレジン量は5.9%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした947
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.85であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に10%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、アチソン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.88、曲げ強度は750kg/cm2であった。
Example 44 The same carbonaceous raw material as in Example 29 was heat-treated to obtain a heat-treated product having a VM of 14.0% and a γ-resin amount of 5.9%. 947 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.85. After roughly crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze to 1000 ° C, it is heated in an Acheson furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.88 and a bending strength of 750 kg / cm 2 .

【0079】[0079]

【実施例45】コールタールピッチをディレードコーカ
ーで熱処理して得たVMが20.5%で、かつγレジン
量は24.4%の炭素質原料を空気の存在下で熱処理を
行なった。熱処理生成物のVMが13.9%、γレジン
量は6.5%であった。また生成物の赤外吸収スペクト
ルの990cm−1と640cm−1をベースとした8
75cm−1付近のピークと820cm−1付近のピー
クの比は1.04であった。この生成物を粗粉砕後、コ
ークスとバインダーピッチをねつ合時に20%添加し
て、混合物を得、該混合物を微粉砕して平均粒度27μ
mとし、モールドプレスにて成形し、成形体を得た。こ
の成形体をブリーズ中1000℃まで焼成後、アチソン
炉で2800℃まで黒鉛化して製品を得た。黒鉛成形体
の嵩密度は1.87、曲げ強度は760kg/cm2
あった。
Example 45 A carbonaceous raw material having a VM of 20.5% and a γ resin content of 24.4% obtained by heat treating coal tar pitch in a delayed coker was heat treated in the presence of air. The heat-treated product had a VM of 13.9% and a γ-resin amount of 6.5%. In addition, the infrared absorption spectrum of the product was based on 990 cm-1 and 640 cm-1.
The ratio of the peak near 75 cm-1 to the peak near 820 cm-1 was 1.04. After coarsely pulverizing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was finely pulverized to have an average particle size of 27μ.
m, and molded by a mold press to obtain a molded body. This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.87 and a bending strength of 760 kg / cm 2 .

【0080】[0080]

【実施例46】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は6.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと820cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
において、熱処理生成物と炭素質原料とのピークの比は
0.99であった。この生成物を粗粉砕後、コークスと
バインダーピッチをねつ合時に10%添加して、混合物
を得、該混合物を微粉砕して平均粒度17μmとし、モ
ールドプレスにて成形し、成形体を得た。この成形体を
ブリーズ中1000℃まで焼成後、アチソン炉で280
0℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度は
1.85、曲げ強度は750kg/cm2であった。
Example 46 The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 6.5%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
In the ratio of the peak near cm-1 to the peak near 820 cm-1, in the ratio of the peak of the heat treatment product and the carbonaceous raw material, the ratio of the peak of the heat treatment product and the carbonaceous raw material was 0.99. .. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was After firing this molded body in a breeze to 1000 ° C, it is heated to 280 in an Acheson furnace.
A product was obtained by graphitizing to 0 ° C. The graphite compact had a bulk density of 1.85 and a bending strength of 750 kg / cm 2 .

【0081】[0081]

【実施例47】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は7.0%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと820cm−1付近のピークの
比は1.06であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度25μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、アチソン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.88、曲げ強度は780kg/cm2であっ
た。
Example 47 The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 7.0%. In addition, the infrared absorption spectrum of the product is 875 based on 990 cm −1 and 640 cm −1.
The ratio of the peak near cm-1 to the peak near 820 cm-1 was 1.06. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture. It was This molded product was fired in a breeze to 1000 ° C. and then graphitized to 2800 ° C. in an Acheson furnace to obtain a product. The graphite molded body had a bulk density of 1.88 and a bending strength of 780 kg / cm 2 .

【0082】[0082]

【実施例48】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は7.0%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと820cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
において、熱処理生成物と炭素質原料とのピークの比は
0.99であった。この生成物を粗粉砕後、コークスと
バインダーピッチをねつ合時に20%添加して、混合物
を得、該混合物を微粉砕して平均粒度23μmとし、モ
ールドプレスにて成形し、成形体を得た。この成形体を
ブリーズ中1000℃まで焼成後、アチソン炉で280
0℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度は
1.87、曲げ強度は770kg/cm2であった。
Example 48 The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 7.0%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
In the ratio of the peak near cm-1 to the peak near 820 cm-1, in the ratio of the peak of the heat treatment product and the carbonaceous raw material, the ratio of the peak of the heat treatment product and the carbonaceous raw material was 0.99. .. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture. It was After firing this molded body in a breeze to 1000 ° C, it is heated to 280 in an Acheson furnace.
A product was obtained by graphitizing to 0 ° C. The graphite molded body had a bulk density of 1.87 and a bending strength of 770 kg / cm 2 .

【0083】[0083]

【実施例49】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は6.5%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと750cm−1付近のピークの
比は2.09であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.82、曲げ強度は715kg/cm2であっ
た。
[Example 49] The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 6.5%. In addition, the infrared absorption spectrum of the product is 875 based on 990 cm −1 and 640 cm −1.
The ratio of the peak near cm-1 to the peak near 750 cm-1 was 2.09. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. It was This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.82 and a bending strength of 715 kg / cm 2 .

【0084】[0084]

【実施例50】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は6.5%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと750cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
は0.92であった。この生成物を粗粉砕後、コークス
とバインダーピッチをねつ合時に20%添加して、混合
物を得、該混合物を微粉砕して平均粒度17μmとし、
モールドプレスにて成形し、成形体を得た。この成形体
をブリーズ中1000℃まで焼成後、タンマン炉で28
00℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度
は1.86、曲げ強度は760kg/cm2であった。
Example 50 The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 6.5%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
In the ratio of the peak near cm-1 and the peak near 750 cm-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 0.92. After coarsely crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, which was pulverized to an average particle size of 17 μm,
Molding was performed with a mold press to obtain a molded body. After firing this molded body in a breeze up to 1000 ° C, it is heated in a Tammann furnace to 28
A product was obtained by graphitizing to 00 ° C. The graphite molded body had a bulk density of 1.86 and a bending strength of 760 kg / cm 2 .

【0085】[0085]

【実施例51】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は7.0%である熱
処理生成物を得た。また生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと750cm−1付近のピークの
比は2.20であった。この生成物を粗粉砕後、コーク
スとバインダーピッチをねつ合時に20%添加して、混
合物を得、該混合物を微粉砕して平均粒度17μmと
し、モールドプレスにて成形し、成形体を得た。この成
形体をブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して製品を得た。黒鉛成形体の嵩
密度は1.82、曲げ強度は770kg/cm2であっ
た。
Example 51 The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 7.0%. In addition, the infrared absorption spectrum of the product is 875 based on 990 cm −1 and 640 cm −1.
The ratio of the peak near cm-1 to the peak near 750 cm-1 was 2.20. After roughly crushing this product, 20% of coke and binder pitch were added at the time of mating to obtain a mixture, and the mixture was finely crushed to have an average particle size of 17 μm and molded by a mold press to obtain a molded body. It was This molded body was fired in a breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a product. The graphite molded body had a bulk density of 1.82 and a bending strength of 770 kg / cm 2 .

【0086】[0086]

【実施例52】実施例45と同じ炭素質原料を熱処理し
て、VMが13.9%、γレジン量は7.0%である熱
処理生成物を得た。この生成物の赤外吸収スペクトルの
990cm−1と640cm−1をベースとした875
cm−1付近のピークと750cm−1付近のピークの
比において、熱処理生成物と炭素質原料とのピークの比
において、熱処理生成物と炭素質原料とのピークの比は
0.92であった。この生成物を粗粉砕後、コークスと
バインダーピッチをねつ合時に10%添加して、混合物
を得、該混合物を微粉砕して平均粒度17μmとし、モ
ールドプレスにて成形し、成形体を得た。この成形体を
ブリーズ中1000℃まで焼成後、タンマン炉で280
0℃まで黒鉛化して製品を得た。黒鉛成形体の嵩密度は
1.75、曲げ強度は590kg/cm2であった。
[Example 52] The same carbonaceous raw material as in Example 45 was heat-treated to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 7.0%. 875 based on 990 cm -1 and 640 cm -1 of the infrared absorption spectrum of this product
In the ratio of the peak in the vicinity of cm-1 and the peak in the vicinity of 750 cm-1, in the ratio of the peaks of the heat treatment product and the carbonaceous raw material, the ratio of the peak of the heat treatment product and the carbonaceous raw material was 0.92. .. After coarsely crushing this product, 10% of coke and binder pitch were added at the time of mating to obtain a mixture. It was After firing this molded body in a breeze to 1000 ° C, it is heated to 280 in a Tammann furnace.
A product was obtained by graphitizing to 0 ° C. The graphite compact had a bulk density of 1.75 and a bending strength of 590 kg / cm 2 .

【0087】[0087]

【比較例−1】炭素質粉末を添加することなく、実施例
1と同様の方法で成形体を得た。該黒鉛成形体の嵩密度
は1.66、曲げ強度は400kg/cm2であった。
Comparative Example-1 A molded body was obtained in the same manner as in Example 1 without adding carbonaceous powder. The graphite compact had a bulk density of 1.66 and a bending strength of 400 kg / cm 2 .

【0088】[0088]

【比較例−2】炭素質粉末を添加することなく、実施例
5と同様の方法で成形体を得た。該黒鉛成形体の嵩密度
は1.77、曲げ強度は510kg/cm2であった。
[Comparative Example-2] A molded product was obtained in the same manner as in Example 5 without adding carbonaceous powder. The graphite compact had a bulk density of 1.77 and a bending strength of 510 kg / cm 2 .

【0089】[0089]

【比較例−3】炭素質粉末を添加することなく、実施例
13と同様の方法で成形体を得た。該黒鉛成形体の嵩密
度は1.83、曲げ強度は620kg/cm2であっ
た。
[Comparative Example-3] A molded body was obtained in the same manner as in Example 13 without adding carbonaceous powder. The graphite compact had a bulk density of 1.83 and a bending strength of 620 kg / cm 2 .

【0090】[0090]

【発明の効果】以上述べたようにコークスとバインダー
ピッチをねつ合して炭素材を製造していた従来の方法に
本発明による炭素質粉末をねつ合、粉砕時に簡単に添加
するのみで嵩密度、機械的強度が向上するものである。
As described above, the carbonaceous powder according to the present invention is kneaded by simply adding the carbonaceous powder according to the present invention to the conventional method in which the carbon material is produced by kneading the coke and the binder pitch. The bulk density and mechanical strength are improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コークスとバインダーピッチをねつ合
して炭素材を製造するに際し、炭素質原料を熱処理して
得られる熱処理生成物であって、揮発分(VM)が30
%以下でかつ3%以上であり、平均粒度が15〜20μ
mにおけるトルエン可溶分(TS)が30%以下でかつ
1%以上である炭素質粉末のうち、赤外吸収スペクトル
の炭素と水素との結合(C−H)に由来する下記に示す
条件(1)ないし(8)の少なくともいずれか一つを満
足するものを添加することを特徴とする高密度特殊炭素
材の製造方法。 (1)2935cm−1と2860cm−1をベースと
した2913cm−1付近の脂肪族系C−H結合の伸縮
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.05以上である熱処理生成物。 (2)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.07以上である熱
処理生成物。 記;2935cm−1と2860cm−1をベースとし
た2913cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比 (3)1540cm−1と1280cm−1をベースと
した1440cm−1付近の脂肪族系C−H結合の変角
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.65以上である熱処理生成物。 (4)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.55以上である熱
処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1440cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピーク比 (5)1540cm−1と1280cm−1をベースと
した1375cm−1付近の脂肪族系C−H結合の変角
振動に由来する赤外吸収スペクトルのピークと、163
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピーク比が
0.25以上である熱処理生成物。 (6)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.45以上である
熱処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1375cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比 (7)1540cm−1と1280cm−1をベースと
した1330cm−1付近の脂肪族系C−H結合の変角
振動に由来する赤外吸収スペクトルのピークと、166
5cm−1と1540cm−1をベースとした1600
cm−1付近のC=C二重結合に由来するピークの比が
0.15以上である熱処理生成物。 (8)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.40以上である
熱処理生成物。 記;1540cm−1と1280cm−1をベースとし
た1330cm−1付近の脂肪族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比
1. A heat-treated product obtained by heat-treating a carbonaceous raw material when a carbon material is produced by combining a coke and a binder pitch and having a volatile content (VM) of 30.
% Or less and 3% or more, and the average particle size is 15 to 20 μ.
Among the carbonaceous powders having a toluene-soluble content (TS) in m of 30% or less and 1% or more, the following conditions derived from the bond (CH) between carbon and hydrogen in the infrared absorption spectrum ( A method for producing a high-density special carbon material, characterized in that a material satisfying at least any one of 1) to (8) is added. (1) The peak of the infrared absorption spectrum derived from the stretching vibration of the aliphatic C—H bond near 2913 cm −1 based on 2935 cm −1 and 2860 cm −1, and 166
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product in which the ratio of peaks derived from the C = C double bond near cm-1 is 0.05 or more. (2) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the ratio of the infrared absorption spectrum shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 0.07 or more. Note; Infrared absorption spectrum peak derived from aliphatic C—H bond near 2913 cm −1 based on 2935 cm −1 and 2860 cm −1, and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1 (3) Aliphatic C-H bond near 1440 cm-1 based on 1540 cm-1 and 1280 cm-1 166 peak of infrared absorption spectrum derived from the bending vibration of
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product having a ratio of peaks derived from a C = C double bond in the vicinity of cm-1 of 0.65 or more. (4) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.55 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1440 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Peak ratio derived from C = C double bond near 1600 cm-1 based on 540 cm-1 (5) Of aliphatic C-H bond near 1375 cm-1 based on 1540 cm-1 and 1280 cm-1 163 peak of infrared absorption spectrum derived from bending vibration
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product having a peak ratio of 0.25 or more derived from a C = C double bond near cm-1. (6) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the ratio of infrared absorption spectra shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.45 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1375 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1 (7) Aliphatic C-H bond near 1330 cm-1 based on 1540 cm-1 and 1280 cm-1 166 peak of infrared absorption spectrum derived from the bending vibration of
1600 based on 5 cm-1 and 1540 cm-1
A heat-treated product having a ratio of peaks derived from a C = C double bond near cm-1 of 0.15 or more. (8) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.40 or more. Note: Infrared absorption spectrum peak derived from aliphatic C—H bond near 1330 cm −1 based on 1540 cm −1 and 1280 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1
【請求項2】 コークスとバインダーピッチをねつ合
して炭素材を製造するに際し、炭素質原料を熱処理して
得られる熱処理生成物であり、揮発分が30重量%以下
で3重量%以上であり、かつ平均粒度が15〜20μm
におけるトルエン可溶分が30重量%以下で1重量%以
上である炭素質粉末のうち、赤外吸収スペクトルの芳香
族系炭素と水素との結合(C−H)に由来する下記に示
す条件(1)〜(14)の少なくとも一つを満足するも
のを添加することを特徴とする高密度特殊炭素材の製造
方法。 (1)990cm−1と640cm−1をベースとした
875cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、990c
m−1と640cm−1をベースとした820cm−1
付近の芳香族系C−H結合の面外変角振動に由来するピ
ークの比が1.15以下である熱処理生成物。 (2)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が1.10以下である
熱処理生成物。 記;990cm−1と640cm−1をベースをした8
75cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと990cm−1と640cm
−1をベースとした820cm−1付近の芳香族系C−
H結合に由来するピークの比 (3)990cm−1と640cm−1をベースとした
875cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、990c
m−1と640cm−1をベースとした750cm−1
付近の芳香族系C−H結合の面外変角振動に由来するピ
ークの比が2.35以下である炭素材用原料。 (4)下記に示す赤外吸収スペクトルの比における、上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が1.00以下である
熱処理生成物。 記;990cm−1と640cm−1をベースとした8
75cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと990cm−1と640cm
−1をベースとした750cm−1付近のC=C二重結
合に由来するピークの比 (5)990cm−1と640cm−1をベースとした
947cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が0.15以上である熱処理生成物。 (6)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.85以上である熱
処理生成物。 記;990cm−1と640cm−1をベースとした9
47cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (7)990cm−1と640cm−1をベースとした
875cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が1.10以上である熱処理生成物。 (8)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が0.80以上である熱
処理生成物。 記;990cm−1と640cm−1をベースとした8
75cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (9)990cm−1と640cm−1をベースとした
820cm−1付近の芳香族系C−H結合の面外変角振
動に由来する赤外吸収スペクトルのピークと、1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が1.20以上である熱処理生成物。 (10)下記に示す赤外吸収スペクトルの比における上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.80以上である
熱処理生成物。 記;990cm−1と640cm−1をベースとした8
20cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (11)990cm−1と640cm−1をベースとし
た750cm−1付近の芳香族系C−H結合の面外変角
振動に由来する赤外吸収スペクトルのピークと1665
cm−1と1540cm−1をベースとした1600c
m−1付近のC=C二重結合の伸縮振動に由来するピー
クの比が2.60以上である熱処理生成物。 (12)下記に示す赤外吸収スペクトルの比における上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.80以上である
熱処理生成物。 記;990cm−1と640cm−1をベースとした7
50cm−1付近の芳香族系C−H結合に由来する赤外
吸収スペクトルのピークと1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピークの比 (13)3245cm−1と2935cm−1をベース
とした3050cm−1付近の芳香族系C−H結合に由
来する赤外吸収スペクトルのピークと1665cm−1
と1540cm−1をベースとした1600cm−1付
近のC=C二重結合に由来するピークの比が0.70以
上である熱処理生成物。 (14)下記に示す赤外吸収スペクトルの比における上
記熱処理生成物と該炭素質原料の比が、すなわち炭素質
原料から熱処理生成物への変化率が0.65以上である
熱処理生成物。 記;3245cm−1と2935cm−1をベースとし
た3050cm−1付近の芳香族系C−H結合に由来す
る赤外吸収スペクトルのピークと1665cm−1と1
540cm−1をベースとした1600cm−1付近の
C=C二重結合に由来するピークの比
2. A heat-treated product obtained by heat-treating a carbonaceous raw material in producing a carbon material by combining coke and binder pitch, wherein the volatile content is 30% by weight or less and 3% by weight or more. Yes, with an average particle size of 15 to 20 μm
In the carbonaceous powder having a toluene-soluble content of 30% by weight or less and 1% by weight or more in the above, the following conditions derived from the bond (C-H) between aromatic carbon and hydrogen in the infrared absorption spectrum ( A method for producing a high-density special carbon material, characterized in that a material satisfying at least one of 1) to (14) is added. (1) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic C—H bond near 875 cm −1 based on 990 cm −1 and 640 cm −1, and 990c
820 cm-1 based on m-1 and 640 cm-1
A heat-treated product in which a ratio of peaks derived from out-of-plane bending vibration of an aromatic C—H bond in the vicinity is 1.15 or less. (2) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the ratio of infrared absorption spectra shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 1.10 or less. Note; 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 75 cm −1 and 990 cm −1 and 640 cm
-1 based aromatic C- around 820 cm -1
Ratio of peaks derived from H bond (3) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic C—H bond around 875 cm −1 based on 990 cm −1 and 640 cm −1 , 990c
750 cm-1 based on m-1 and 640 cm-1
A raw material for a carbon material, which has a peak ratio of 2.35 or less derived from out-of-plane bending vibration of an aromatic C—H bond in the vicinity. (4) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 1.00 or less. Note: 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 75 cm −1 and 990 cm −1 and 640 cm
Ratio of peaks derived from C = C double bond near 750 cm-1 based on -1 (5) Aromatic C-H bond near 947 cm-1 based on 990 cm-1 and 640 cm-1 The peak of the infrared absorption spectrum derived from the out-of-plane bending vibration,
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 0.15 or more. (6) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.85 or more. Note: 9 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 47 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (7) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic C-H bond near 875 cm-1 based on 990 cm-1 and 640 cm-1 And 1665
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 1.10 or more. (8) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.80 or more. Note: 8 based on 990 cm-1 and 640 cm-1
Peak of infrared absorption spectrum derived from aromatic C—H bond near 75 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (9) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic CH bond near 820 cm-1 based on 990 cm-1 and 640 cm-1 And 1665
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 1.20 or more. (10) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.80 or more. Note: 8 based on 990 cm-1 and 640 cm-1
Peaks of infrared absorption spectrum derived from aromatic C—H bond near 20 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (11) Peak of infrared absorption spectrum derived from out-of-plane bending vibration of aromatic C-H bond near 750 cm-1 based on 990 cm-1 and 640 cm-1 And 1665
1600c based on cm-1 and 1540cm-1
A heat-treated product having a ratio of peaks derived from stretching vibration of a C = C double bond near m-1 of 2.60 or more. (12) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the ratio of the infrared absorption spectrum shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 0.80 or more. Note: 7 based on 990 cm-1 and 640 cm-1
Peaks of infrared absorption spectrum derived from aromatic C—H bond near 50 cm −1 and 1665 cm −1 and 1540
C = C around 1600 cm-1 based on cm-1
Ratio of peaks derived from double bond (13) Peak of infrared absorption spectrum derived from aromatic C—H bond near 3050 cm −1 based on 3245 cm −1 and 2935 cm −1 and 1665 cm −1
And a heat-treated product in which the ratio of peaks derived from C = C double bond near 1600 cm-1 based on 1540 cm-1 is 0.70 or more. (14) A heat-treated product in which the ratio of the heat-treated product to the carbonaceous raw material in the infrared absorption spectrum ratio shown below, that is, the rate of change from the carbonaceous raw material to the heat-treated product is 0.65 or more. Note: Infrared absorption spectrum peak derived from aromatic C—H bond around 3050 cm −1 based on 3245 cm −1 and 2935 cm −1 and 1665 cm −1 and 1
Ratio of peaks derived from C = C double bond near 1600 cm-1 based on 540 cm-1
JP3326169A 1991-12-10 1991-12-10 Production of specific high density carbonaceous material Pending JPH05163010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326169A JPH05163010A (en) 1991-12-10 1991-12-10 Production of specific high density carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326169A JPH05163010A (en) 1991-12-10 1991-12-10 Production of specific high density carbonaceous material

Publications (1)

Publication Number Publication Date
JPH05163010A true JPH05163010A (en) 1993-06-29

Family

ID=18184821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326169A Pending JPH05163010A (en) 1991-12-10 1991-12-10 Production of specific high density carbonaceous material

Country Status (1)

Country Link
JP (1) JPH05163010A (en)

Similar Documents

Publication Publication Date Title
JP2007161574A (en) Process for producing silicon carbide-containing ceramic
JPS6143309B2 (en)
JP2005298231A (en) Manufacturing method of isotropic graphite material
JP2000007436A (en) Graphite material and its production
JPH05163010A (en) Production of specific high density carbonaceous material
JP2910002B2 (en) Special carbon material kneading method
JPS5978914A (en) Manufacture of special carbonaceous material
JPH05163009A (en) Production of specific high density carbonaceous material
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JPH05163011A (en) Production of raw material powder for carbonaceous material
JPH05163008A (en) Production of raw material powder for carbonaceous material
JPH04228412A (en) Composition for specific carbon material
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
JPH05229810A (en) Production of isotropic high density graphite material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JP2808807B2 (en) Production method of raw material powder for carbon material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JP2924061B2 (en) Production method of raw material powder for carbon material
JPH05170414A (en) Production of high density special carbonaceous material
JPH02271908A (en) Production of high-density and high-strength carbon material
JP2023075031A (en) Composite material, resin composition and manufacturing method of composite material
JPH05330813A (en) Production of raw material for high purity special carbonaceous material
JPH05279667A (en) Production of binder pitch
JPH05279669A (en) Production of binder pitch
JPH05279668A (en) Production of binder pitch