JPH05163008A - Production of raw material powder for carbonaceous material - Google Patents

Production of raw material powder for carbonaceous material

Info

Publication number
JPH05163008A
JPH05163008A JP3326167A JP32616791A JPH05163008A JP H05163008 A JPH05163008 A JP H05163008A JP 3326167 A JP3326167 A JP 3326167A JP 32616791 A JP32616791 A JP 32616791A JP H05163008 A JPH05163008 A JP H05163008A
Authority
JP
Japan
Prior art keywords
product
raw material
heat
absorption spectrum
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3326167A
Other languages
Japanese (ja)
Inventor
Shoichi Hashiguchi
正一 橋口
Noritoshi Takao
憲利 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3326167A priority Critical patent/JPH05163008A/en
Publication of JPH05163008A publication Critical patent/JPH05163008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain raw material powder having a high density and good electric-discharge machinability by finely pulverizing a product satisfied with a specific condition originated from the double bonds of C and O in IR absorption spectrum among the products produced by thermally treating a carbonaceous raw material and having a prescribed volatile content. CONSTITUTION:A carbonaceous raw material is thermally treated into products having a volatile content of 3-20wt.%, an average particle size of 15-20mum and a toluene soluble content of 1-10wt.%. The product satisfied with one or more of four conditions originated from the stretching oscillation of the double bonds of C and O in IR absorption spectrum among the thermal products is finely pulverized. As the four conditions, a ratio between the peak of an IR absorption spectrum originated from C=0 at a place near to 1700cm<-1> based on 1790cm<-1> and 1665cm<-1> and the peak of an IR absorption spectrum originated from C=C at a place near to 1600cm<-1> based on 1665cm<-1> and 1540cm<-1> is set to <=0.25. The changing rate from the carbonaceous raw material to a thermal treatment product in the peak ratio is set to <=4 as the other condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度特殊炭素材の原料
粉として有用な原料粉の製造方法に関するものである。
さらに詳しくは高密度でかつ放電加工特性が良い特殊炭
素材用原料粉の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material powder useful as a raw material powder for a high-density special carbon material.
More specifically, it relates to a method for producing a raw material powder for a special carbon material, which has a high density and excellent electric discharge machining characteristics.

【0002】[0002]

【従来の技術】従来特殊炭素材はピッチコークス又は石
油コークスを所定の割合に粒度配合した粒と粉を加熱、
混合しながらバインダーピッチを適当量添加ねつ合後、
成形して製造される。さらにこの生成形体を焼成、黒鉛
化後、加工して製品である特殊炭素材を製造している。
2. Description of the Related Art Conventionally, a special carbon material is a mixture of pitch coke or petroleum coke mixed in a predetermined ratio with particles and powder,
Add an appropriate amount of binder pitch while mixing, and after mixing,
Manufactured by molding. Further, this green body is fired, graphitized, and then processed to produce a special carbon material as a product.

【0003】また最近ピッチを熱処理後、溶剤で処理し
て得たメソカーボンマイクロビーズを成形して特殊炭素
材を製造する方法も報告されている。
Further, recently, a method for producing a special carbon material by molding mesocarbon microbeads obtained by treating a pitch with a solvent after heat treatment has been reported.

【発明が解決しようとする課題】これらの方法は製品の
嵩密度が低い、強度が低い等製品の特性が不十分であ
り、また工程が複雑で製品コストが高い等の課題があ
り、低コストで特性の良い特殊炭素材の出現が望まれて
いた。
These methods have problems that the product properties are insufficient such as low bulk density and low strength of the product, and that the process is complicated and the product cost is high. Therefore, the advent of special carbon materials with good characteristics was desired.

【0004】また近年炭素材は放電加工用電極としての
利用が注目され、需要が急増の傾向にあるが、従来の炭
素材では放電加工特性が不十分であり、もっと放電加工
特性の良い炭素材、特に放電加工時の消耗率が低い炭素
材が要求されている。またメソカーボンから製造した炭
素材では工程が複雑なためにコストが高く、製造コスト
がもっと低くて高特性のものが求められている。
In recent years, the use of carbon materials as an electrode for electric discharge machining has attracted attention, and the demand for them is increasing rapidly. However, conventional carbon materials have insufficient electric discharge machining characteristics, and carbon materials with better electric discharge machining characteristics. Particularly, a carbon material having a low wear rate during electric discharge machining is required. In addition, a carbon material manufactured from mesocarbon is expensive because of the complicated process, and it is required to have a low manufacturing cost and high characteristics.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らはか
かる状況に鑑み、高強度でかつ放電特性の良い特殊炭素
材を製造すべく鋭意検討した結果、炭素質原料を熱処理
し、ある特性を持つ原料となし、微粉砕して成形後、製
品とすると高特性となることを見出し、本発明に到達し
た。すなわち本発明の要旨は、炭素質原料を熱処理して
得られる熱処理生成物であり、揮発分(VM)が20%
以下でかつ3%以上であり、平均粒度が15〜20μm
におけるトルエン可溶分(TS)が10%以下でかつ1
%以上であるもののうち、赤外吸収スペクトルによる炭
素と酸素の二重結合(C=O)に由来するピークが、下
記に示す条件(1)ないし(4)の少なくとも一つを満
足するものを微粉砕することを特徴とする炭素材用原料
粉の製造法にある。
Under the circumstances, the inventors of the present invention have made earnest studies to produce a special carbon material having high strength and good discharge characteristics, and as a result, heat-treating a carbonaceous raw material to obtain a certain characteristic. The present invention has been accomplished by discovering that a product having high characteristics can be obtained by forming a product after forming a raw material having the above, finely pulverizing and molding. That is, the gist of the present invention is a heat-treated product obtained by heat-treating a carbonaceous raw material, which has a volatile content (VM) of 20%.
It is less than or equal to 3% and the average particle size is 15-20 μm
Toluene soluble content (TS) in 10% or less and 1
% Or more, the peak derived from the carbon-oxygen double bond (C═O) in the infrared absorption spectrum satisfies at least one of the following conditions (1) to (4): It is a method for producing a raw material powder for a carbon material, which is characterized by finely pulverizing.

【0006】(1)1790cm−1と1665cm−
1をベースとした1700cm−1付近のC=O二重結
合に由来する赤外吸収スペクトルのピークと1665c
m−1と1540cm−1をベースとした1600cm
−1付近のC=C二重結合に由来するピークの比が0.
25以下である熱処理生成物。
(1) 1790 cm-1 and 1665 cm-
1650 c and the peak of the infrared absorption spectrum derived from the C = O double bond near 1700 cm-1 and 1665c
1600 cm based on m-1 and 1540 cm-1
The ratio of the peaks derived from the C = C double bond near -1 is 0.
A heat-treated product that is 25 or less.

【0007】(2)下記に示す赤外吸収スペクトルの比
における上記熱処理生成物と該炭素質原料の比が、すな
わち炭素質原料から熱処理生成物への変化率が4.0以
下である熱処理生成物。
(2) Heat treatment product having a ratio of the heat treatment product and the carbonaceous raw material in the ratio of infrared absorption spectrum shown below, that is, a rate of change from the carbonaceous raw material to the heat treatment product is 4.0 or less. object.

【0008】記;1790cm−1と1665cm−1
をベースとした1700cm−1付近のC=O二重結合
に由来する赤外吸収スペクトルのピークと1665cm
−1と1540cm−1をベースとした1600cm−
1付近のC=C二重結合に由来するピークの比。
Note: 1790 cm-1 and 1665 cm-1
Of the infrared absorption spectrum derived from the C = O double bond near 1700 cm-1 and 1665 cm based on
-1 and 1540 cm-1 based on 1600 cm-
Ratio of peaks derived from C = C double bond near 1.

【0009】(3)1790cm−1と1665cm−
1をベースとした1740cm−1付近のC=O二重結
合に由来する赤外吸収スペクトルのピークと1665c
m−1と1540cm−1をベースとした1600cm
−1付近のC=C二重結合に由来するピークの比が0.
06以下である熱処理生成物。
(3) 1790 cm-1 and 1665 cm-
1665c and an infrared absorption spectrum peak at 1740 cm-1 derived from a C = O double bond and 1665c
1600 cm based on m-1 and 1540 cm-1
The ratio of the peaks derived from the C = C double bond near -1 is 0.
A heat treated product which is less than or equal to 06.

【0010】(4)実質的に1777cm−1付近のC
=O二重結合に由来するピークがない熱処理生成物。 以下、本発明を詳細に説明する。まず、本発明における
炭素質原料は石炭乾留時に副生するコールタール又はこ
れより得られるコールタールピッチ、およびこれらの熱
処理生成物、石油系重質油およびそれらを熱処理したも
の、またそれらの水添生成物、それらの熱処理生成物、
及びナフタリン等の低分子化合物を重縮合して得られる
ピッチまたそれらのの熱処理生成物、さらにはこれらを
溶剤で処理して得られた重質成分及びそれらの熱処理生
成物等が含まれる。またさらにはピッチ類、生コークス
等を混合したもの、さらにはカーボンブラック、仮焼コ
ークス等の微粉末、活性炭等を混合したものでも良く、
さらにはそれらを熱処理したものでも良く、通常ディレ
ードコーカー、オートクレーブ等により350〜480
℃、1〜72時間程度熱処理することで得られる。
(4) C near 1777 cm -1
= A heat-treated product without peaks originating from the O double bond. Hereinafter, the present invention will be described in detail. First, the carbonaceous raw material in the present invention is coal tar by-produced during coal carbonization or coal tar pitch obtained from it, and heat-treated products thereof, petroleum heavy oil and heat-treated products thereof, and hydrogenation thereof. Products, their heat-treated products,
And pitches obtained by polycondensing low molecular weight compounds such as naphthalene and heat-treated products thereof, and heavy components obtained by treating these with a solvent and heat-treated products thereof. Further, a mixture of pitches, raw coke, etc., and further a mixture of carbon black, fine powder such as calcined coke, activated carbon, etc. may be used.
Further, those obtained by heat treatment may be used, and usually 350 to 480 by a delayed coker, autoclave, etc.
It can be obtained by heat treatment at a temperature of 1 to 72 hours.

【0011】又、該炭素質原料の揮発分(VM)は40
重量%を越えたものも使用できるが、40重量%を越え
ると目標の物性に調整する時間が長く、処理能力が落
ち、コストが高くなるので該原料のVMは40重量%以
下が望ましく、さらには35%以下が好ましく、最も好
ましくは30%以下である。
The volatile matter (VM) of the carbonaceous raw material is 40
Although the amount exceeding 40% by weight can be used, if the amount exceeds 40% by weight, it takes a long time to adjust to the target physical properties, the processing capacity decreases, and the cost becomes high. Therefore, the VM of the raw material is preferably 40% by weight or less. Is preferably 35% or less, and most preferably 30% or less.

【0012】またこれらの原料はトルエン可溶分(T
S) (γ−レジン量)が高過ぎると低沸点留分が多
く、融着するために熱処理効率が悪いので該原料のγ−
レジン量は40%以下が望ましく、さらには35%以下
が好ましく、最も好ましくは30%以下である。
Further, these raw materials are toluene-soluble components (T
S) If the (γ-resin amount) is too high, there are many low-boiling fractions and the heat treatment efficiency is poor due to fusion, so the γ-content of the raw material is
The amount of resin is preferably 40% or less, more preferably 35% or less, and most preferably 30% or less.

【0013】本発明において、該炭素質原料の熱処理は
通常、200〜350℃、0.5〜48時間程度で行な
われるが、処理を均一にまた効率良く行うためには機械
的エネルギーを付与した方が良い。機械的エネルギーと
しては撹拌、超音波等が挙げられる。また熱処理は不活
性ガス中(アルゴン、窒素等)、自生圧下で行っても良
いが、空気の存在下でも行われる。
In the present invention, the heat treatment of the carbonaceous raw material is usually carried out at 200 to 350 ° C. for about 0.5 to 48 hours, but mechanical energy is applied in order to carry out the treatment uniformly and efficiently. Better. Examples of mechanical energy include stirring and ultrasonic waves. The heat treatment may be carried out in an inert gas (argon, nitrogen, etc.) under autogenous pressure, but also in the presence of air.

【0014】本発明において目的とする熱処理生成物
は、VMが3%以上、20重量%以下であって、また平
均粒度が15〜20μmにおけるトルエン可溶分(T
S)が10%以下でかつ1%以上のものである。該熱処
理生成物のVMが20%を超えると焼成時の重量減が大
き過ぎ、特性が低下する、焼成時に割れる等の問題があ
る。また3%未満では燒結性が低下して特性がでない。
The heat-treated product intended in the present invention has a VM content of 3% or more and 20% by weight or less and a toluene-soluble component (T) at an average particle size of 15 to 20 μm.
S) is 10% or less and 1% or more. If the VM of the heat-treated product exceeds 20%, there is a problem that the weight loss during firing is too large, the characteristics are deteriorated, and cracking occurs during firing. On the other hand, if it is less than 3%, the sinterability is lowered and the properties are not obtained.

【0015】また上記の熱処理生成物は、これを粉砕し
て平均粒度が15〜20μmとした時のTS量が10重
量%以下であり、かつ1重量%以上であるのが好まし
い。TS量を10重量%以下とすることにより成形体焼
成時の発泡割れの傾向が低下し、また1重量%以上とす
ることにより燒結性が向上する。
The heat-treated product preferably has a TS content of 10% by weight or less and 1% by weight or more when the average particle size is crushed to 15 to 20 μm. When the TS amount is 10% by weight or less, the tendency of foam cracking during firing of the molded article is reduced, and when it is 1% by weight or more, the sinterability is improved.

【0016】またさらには赤外線吸収スペクトルにおけ
る炭素と酸素の二重結合(C=O)に由来するピークが
ある範囲以下のものが好ましい。すなわち熱処理が進む
と高分子化反応を起こし固化し溶触しなくなり、接着性
が悪くなってくる。特に酸素の存在した状態で熱処理が
進むと不融化反応を生じ、炭素質粉末の燒結性が減少
し、接着しなくなり、生成した炭素材の特性が悪化して
しまうので該炭素質粉末中の酸素量はある範囲以下のも
のが好ましい。すなわち該炭素質粉末中の酸素量が多い
ほど、不融化反応が進んでおり、燒結性が低下するもの
である。また該炭素質粉末中の酸素量が少ないものはそ
れほど不融化は進んでおらず、燒結性は保持しているの
で好ましい。すなわちピッチ等のれき青物の赤外吸収ス
ペクトルにおいて炭素と酸素の二重結合(C=O)に由
来する伸縮振動は1700、1740、1777cm−
1付近にピークが存在するので、炭素と酸素の二重結合
のピークを1790cm−1と1665cm−1をベー
スとした1700、1740、1777cm−1付近の
ピークの高さで示す。ピークの高さはKBrに対するサ
ンプルの濃度で変わるので1665cm−1と1540
cm−1をベースとした1600cm−1付近のC=C
二重結合に由来するピーク高さとの比で炭素と酸素の二
重結合のピークを示すと1790cm−1と1665c
m−1をベースとした1700、1740付近の炭素と
酸素の二重結合に由来する赤外吸収スペクトルのピーク
と1665cm−1と1540cm−1をベースとした
1600cm−1付近のC=C二重結合に由来するピー
クの比がそれぞれ0.25以下、0.06以下、また1
777cm−1についてはそのピークが存在しない熱処
理生成物が好ましい。
Further, those having a peak in the infrared absorption spectrum derived from a double bond (C═O) of carbon and oxygen (C═O) are preferably within the range. That is, as the heat treatment progresses, a polymerizing reaction is caused to solidify and not to be touched, resulting in poor adhesiveness. In particular, when the heat treatment proceeds in the presence of oxygen, an infusibilization reaction occurs, the sinterability of the carbonaceous powder is reduced, the adhesion is lost, and the properties of the carbonaceous material produced deteriorate. The amount is preferably within a certain range. That is, as the amount of oxygen in the carbonaceous powder increases, the infusibilization reaction proceeds and the sinterability decreases. Further, it is preferable that the carbonaceous powder having a small amount of oxygen is not so much infusibilized and retains the sinterability. That is, the stretching vibrations derived from the double bond (C = O) of carbon and oxygen in the infrared absorption spectrum of bituminous substances such as pitch are 1700, 1740 and 1777 cm-.
Since there is a peak in the vicinity of 1, the peaks of the double bond of carbon and oxygen are shown by the heights of the peaks in the vicinity of 1700, 1740 and 1777 cm-1 based on 1790 cm-1 and 1665 cm-1. Since the height of the peak changes depending on the concentration of the sample with respect to KBr, it is 1665 cm-1 and 1540.
C = C around 1600 cm-1 based on cm-1
The peaks of the double bonds of carbon and oxygen are 1790 cm −1 and 1665 c when compared with the peak height derived from the double bonds.
Infrared absorption spectrum peaks derived from the carbon-oxygen double bond near 1700 and 1740 based on m-1 and C = C double around 1600 cm-1 based on 1665 cm-1 and 1540 cm-1. The ratio of peaks derived from binding is 0.25 or less, 0.06 or less, or 1
For 777 cm-1, a heat treated product free of peaks is preferred.

【0017】また該炭素質原料はそれのみでは発泡して
割れる等の問題があるので、炭素質原料を熱処理して燒
成時に割れないように調整して特性が出現するようにす
る必要があるが、この炭素質原料から熱処理生成物への
炭素と酸素の二重結合の変化率で示すと1790cm−
1と1665cm−1をベースとした1700cm−1
付近の炭素と酸素の二重結合に由来する赤外吸収スペク
トルのピークと1665cm−1と1540cm−1を
ベースとした1600cm−1付近のC=C二重結合に
由来するピークの比において、上記熱処理生成物と該炭
素質原料の比が、すなわち炭素質原料から熱処理生成物
への変化率が4.0以下となる条件で熱処理するのが好
ましい。
Further, since the carbonaceous raw material has a problem such as foaming and cracking by itself, it is necessary to heat-treat the carbonaceous raw material so that the carbonaceous raw material is not cracked during firing so that the characteristics are exhibited. However, the rate of change of double bond of carbon and oxygen from the carbonaceous raw material to the heat-treated product is 1790 cm −.
1 and 1665 cm-1 based on 1700 cm-1
In the ratio of the peak of the infrared absorption spectrum derived from the double bond of carbon and oxygen in the vicinity and the peak derived from the C = C double bond in the vicinity of 1600 cm-1 based on 1665 cm-1 and 1540 cm-1, It is preferable to perform the heat treatment under the condition that the ratio of the heat treated product to the carbonaceous raw material, that is, the rate of change from the carbonaceous raw material to the heat treated product is 4.0 or less.

【0018】また該ピークの比はベースの取り方によっ
ても異なるが、1725cm−1と1665cm−1を
ベースとした時は1700cm−1のピークは0.20
以下の熱処理生成物が好ましい。また上記熱処理生成物
と該炭素質原料の比については、すなわち炭素質原料か
ら熱処理生成物への変化率は0.70以下となる条件で
熱処理するのが好ましい。
The ratio of the peaks varies depending on how the base is taken, but when the bases are 1725 cm-1 and 1665 cm-1, the peak at 1700 cm-1 is 0.20.
The following heat treated products are preferred: Regarding the ratio of the heat-treated product to the carbonaceous raw material, that is, the heat treatment is preferably performed under the condition that the rate of change from the carbonaceous raw material to the heat-treated product is 0.70 or less.

【0019】一般に1700cm−1付近のピークはケ
トン基に由来するものであり、1740cm−1付近の
ピークはエステル基に由来するものであり、また177
7cm−1付近のピークはラクトン類に由来するもので
あるといわれており、不融化反応の進展とともに170
0、次いで1740、さらには1777cm−1付近の
ピークが増加してくる。これらの酸素結合はそれぞれあ
る範囲以下のものが望ましい。
Generally, the peak around 1700 cm -1 is derived from a ketone group, the peak around 1740 cm -1 is derived from an ester group, and 177
The peak around 7 cm-1 is said to be derived from lactones, and is 170% as the infusible reaction progresses.
The peak near 0, then 1740, and further around 1777 cm −1 increases. It is desirable that each of these oxygen bonds be within a certain range.

【0020】またこれらの該熱処理生成物は一種でも使
用できるが、二種類以上のものを混合して使用すること
もできる。これらの熱処理生成物は常法に従い、微粉砕
して原料粉を得ることができる。良好な成形品を得るた
めには原料粉の平均粒度は100μm以下が望ましい
が、製品の均一性をさらに向上させるためには好ましく
は50μm以下、さらに好ましくは30μm以下、最も
好ましくは20μm以下に微粉砕するのが望ましい。
These heat-treated products may be used alone or in combination of two or more. These heat-treated products can be finely pulverized to obtain a raw material powder according to a conventional method. The average particle size of the raw material powder is preferably 100 μm or less in order to obtain a good molded product, but in order to further improve the uniformity of the product, it is preferably 50 μm or less, more preferably 30 μm or less, and most preferably 20 μm or less. It is desirable to grind.

【0021】特殊炭素材を製造するための成形は通常の
モールド成形、冷間等方圧成形等が用いられる。また燒
成は不活性ガス中、コークスブリーズ中いずれでも可能
であり、800〜1000℃の温度でなされる。さらに
黒鉛化はタンマン炉、アチソン炉、誘導加熱等の常法が
使用でき、通常2000〜3000℃でなされる。
As the molding for producing the special carbon material, ordinary molding, cold isostatic molding or the like is used. Sintering can be performed in an inert gas or in a coke breeze, and is performed at a temperature of 800 to 1000 ° C. Further, graphitization can be carried out by a conventional method such as a Tammann furnace, an Acheson furnace, an induction heating, etc., and usually at 2000 to 3000 ° C.

【0022】[0022]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【実施例1】コールタールピッチをディレードコーカー
で熱処理して得たVMが20.5%で、かつγレジン量
が24.4%の炭素質原料を空気の存在下で熱処理を行
なった。熱処理生成物のVMは13.6%であり、γレ
ジン量は5.1%であった。また生成物の赤外吸収スペ
クトルの1790cm−1と1665cm−1をベース
とした1700cm−1付近のピークと1665cm−
1と1540cm−1をベースとした1600cm−1
付近のピークの比は0.08であった。
Example 1 A carbonaceous raw material having a VM of 20.5% and a γ-resin amount of 24.4% obtained by heat-treating coal tar pitch in a delayed coker was heat-treated in the presence of air. The VM of the heat-treated product was 13.6%, and the amount of γ resin was 5.1%. Further, the infrared absorption spectrum of the product has a peak at around 1700 cm-1 based on 1790 cm-1 and 1665 cm-1, and 1665 cm-
1600cm-1 based on 1 and 1540cm-1
The ratio of peaks in the vicinity was 0.08.

【0023】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.93であり、放
電加工時の消耗率は0.8%であった。
The product is milled to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.93, and the wear rate during electric discharge machining was 0.8%.

【0024】[0024]

【実施例2】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.4%であり、γレジン
量は5.0%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1700cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比において、熱処理生成物
と該炭素質原料とのピークの比は1.54であった。
Example 2 The same carbonaceous raw material as in Example 1 was heat treated in the presence of air to obtain a heat treated product having a VM of 13.4% and a γ resin content of 5.0%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 based peak and 1 near 1700 cm-1
16 based on 665 cm-1 and 1540 cm-1
In the peak ratio near 00 cm-1, the peak ratio of the heat treatment product and the carbonaceous raw material was 1.54.

【0025】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で焼成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.93であり、放
電加工時の消耗率は0.8%であった。
The product is finely ground to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was fired in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.93, and the wear rate during electric discharge machining was 0.8%.

【実施例3】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.8%であり、γレジン
量は5.3%である熱処理生成物を得た。
Example 3 The same carbonaceous raw material as in Example 1 was heat treated in the presence of air to obtain a heat treated product having a VM of 13.8% and a γ resin content of 5.3%.

【0026】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1740
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.0であった。
179 of the infrared absorption spectrum of this product
1740 based on 0 cm-1 and 1665 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.0.

【0027】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で焼成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。この生成物を微粉砕して、平均粒度を16μ
mとしたものをモールドプレスにて成形して成形体を得
た。この生成形体をコークスブリーズ中1000℃まで
焼成後、タンマン炉で2800℃まで黒鉛化して成形体
を得た。
The product was pulverized to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was fired in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The product is pulverized to an average particle size of 16μ
m was molded by a mold press to obtain a molded body. This green body was fired in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body.

【0028】該黒鉛成形体の嵩密度は1.93であり、
放電加工時の消耗率は0.8%であった。
The bulk density of the graphite molded body is 1.93,
The wear rate during electric discharge machining was 0.8%.

【実施例4】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.9%であり、γレジン
量は5.2%である熱処理生成物を得た。
Example 4 The same carbonaceous raw material as in Example 1 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 13.9% and a γ-resin amount of 5.2%.

【0029】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1777
cm−1付近のピークは検出されなかった。この生成物
を微粉砕して、平均粒度を16μmとしたものをモール
ドプレスにて成形して成形体を得た。この生成形体をコ
ークスブリーズ中1000℃まで焼成後、タンマン炉で
2800℃まで黒鉛化して成形体を得た。
179 of the infrared absorption spectrum of this product
1777 based on 0 cm-1 and 1665 cm-1
No peak near cm-1 was detected. This product was finely pulverized, and a product having an average particle size of 16 μm was molded by a mold press to obtain a molded product. This green body was fired in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body.

【0030】該黒鉛成形体の嵩密度は1.93であり、
放電加工時の消耗率は0.8%であった。
The bulk density of the molded graphite was 1.93,
The wear rate during electric discharge machining was 0.8%.

【実施例5】コールタールピッチをディレードコーカー
で熱処理して得たVMが20.6%で、かつγレジン量
が21.1%の炭素質原料を空気の存在下で熱処理を行
なった。熱処理生成物のVMは13.5%であり、γレ
ジン量は4.5%であった。また生成物の赤外吸収スペ
クトルの1790cm−1と1665cm−1をベース
とした1700cm−1付近のピークと1665cm−
1と1540cm−1をベースとした1600cm−1
付近のピークの比は0.12であった。
Example 5 A carbonaceous raw material having a VM of 20.6% and a γ-resin amount of 21.1% obtained by heat-treating coal tar pitch with a delayed coker was heat-treated in the presence of air. The VM of the heat-treated product was 13.5% and the amount of γ-resin was 4.5%. Further, the infrared absorption spectrum of the product has a peak at around 1700 cm-1 based on 1790 cm-1 and 1665 cm-1, and 1665 cm-
1600cm-1 based on 1 and 1540cm-1
The ratio of peaks in the vicinity was 0.12.

【0031】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.93であり、放
電加工時の消耗率は0.5%であった。
The product was finely ground to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.93, and the wear rate during electric discharge machining was 0.5%.

【0032】[0032]

【実施例6】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.7%であり、γレジン
量は4.6%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1700cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比において、熱処理生成物
と該炭素質原料とのピークの比は2.25であった。
Example 6 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 13.7% and a γ-resin amount of 4.6%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 based peak and 1 near 1700 cm-1
16 based on 665 cm-1 and 1540 cm-1
In the peak ratio near 00 cm-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 2.25.

【0033】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.93であり、放
電加工時の消耗率は0.5%であった。
The product is finely ground to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.93, and the wear rate during electric discharge machining was 0.5%.

【実施例7】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.9%であり、γレジン
量は5.4%である熱処理生成物を得た。
Example 7 The same carbonaceous raw material as in Example 5 was heat treated in the presence of air to obtain a heat treated product having a VM of 13.9% and a γ resin content of 5.4%.

【0034】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1740
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.0であった。
179 of the infrared absorption spectrum of this product
1740 based on 0 cm-1 and 1665 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.0.

【0035】この生成物を微粉砕して、平均粒度を16
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.93であり、放
電加工時の消耗率は0.5%であった。
The product was finely ground to an average particle size of 16
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.93, and the wear rate during electric discharge machining was 0.5%.

【実施例8】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが13.4%であり、γレジン
量は4.7%である熱処理生成物を得た。
Example 8 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 13.4% and a γ-resin amount of 4.7%.

【0036】この生成物の赤外吸収スペクトルの177
7cm−1付近のピークは検出されなかった。この生成
物を微粉砕して、平均粒度を16μmとしたものをモー
ルドプレスにて成形して成形体を得た。この生成形体を
コークスブリーズ中1000℃まで燒成後、タンマン炉
で2800℃まで黒鉛化して成形体を得た。
177 of the infrared absorption spectrum of this product
No peak near 7 cm-1 was detected. This product was finely pulverized, and a product having an average particle size of 16 μm was molded by a mold press to obtain a molded product. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body.

【0037】該黒鉛成形体の嵩密度は1.93であり、
放電加工時の消耗率は0.5%であった。
The bulk density of the graphite compact was 1.93,
The wear rate during electric discharge machining was 0.5%.

【比較例1】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.4%であり、γレジン
量は6.0の熱処理生成物を得た。この生成物の赤外吸
収スペクトルの1790cm−1と1665cm−1を
ベースとした1700cm−1付近のピークと1665
cm−1と1540cm−1をベースとした1600c
m−1付近のピークの比は0.28であった。
Comparative Example 1 The same carbonaceous raw material as in Example 1 was heat treated in the presence of air to obtain a heat treated product having a VM of 14.4% and a γ resin content of 6.0. Infrared absorption spectrum of this product was based on 1790 cm −1 and 1665 cm −1, with a peak around 1700 cm −1 and 1665 cm −1.
1600c based on cm-1 and 1540cm-1
The ratio of peaks near m-1 was 0.28.

【0038】この生成物を微粉砕して、平均粒度を17
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.77であり、放
電加工時の消耗率は3.5%であった。
The product was milled to an average particle size of 17
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The graphite compact had a bulk density of 1.77 and a wear rate during electric discharge machining of 3.5%.

【比較例2】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.2%であり、γレジン
量は5.9%である熱処理生成物を得た。
Comparative Example 2 The same carbonaceous raw material as in Example 1 was heat treated in the presence of air to obtain a heat treated product having a VM of 14.2% and a γ resin amount of 5.9%.

【0039】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1700
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比において、熱処理生成物と該炭素質原料とのピークの
比は5.04であった。この生成物を微粉砕して、平均
粒度を17μmとしたものをモールドプレスにて成形し
て成形体を得た。この生成形体をコークスブリーズ中1
000℃まで燒成後、タンマン炉で2800℃まで黒鉛
化して成形体を得た。
179 of the infrared absorption spectrum of this product
1700 based on 0 cm-1 and 1665 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
In the peak ratio around 1600 cm-1 based on m-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 5.04. This product was finely pulverized, and the one having an average particle size of 17 μm was molded by a mold press to obtain a molded body. 1 in Coke Breeze
After sintering to 000 ° C., it was graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body.

【0040】該黒鉛成形体の嵩密度は1.77であり、
放電加工時の消耗率は3.5%であった。
The bulk density of the molded graphite was 1.77,
The wear rate during electric discharge machining was 3.5%.

【比較例3】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.4%であり、γレジン
量は6.1%である熱処理生成物を得た。
Comparative Example 3 The same carbonaceous raw material as in Example 1 was heat treated in the presence of air to obtain a heat treated product having a VM of 14.4% and a γ resin content of 6.1%.

【0041】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1740
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.08であった。
179 of the infrared absorption spectrum of this product
1740 based on 0 cm-1 and 1665 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.08.

【0042】この生成物を微粉砕して、平均粒度を17
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.77であり、放
電加工時の消耗率は3.5%であった。
The product was finely ground to an average particle size of 17
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The graphite compact had a bulk density of 1.77 and a wear rate during electric discharge machining of 3.5%.

【0043】[0043]

【比較例4】実施例1と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.6%であり、γレジン
量は6.2%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1777cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比は0.02であった。
Comparative Example 4 The same carbonaceous raw material as in Example 1 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 14.6% and a γ-resin amount of 6.2%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 and the peak around 1777cm-1 and 1
16 based on 665 cm-1 and 1540 cm-1
The ratio of peaks near 00 cm-1 was 0.02.

【0044】この生成物を微粉砕して、平均粒度を17
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.77であり、放
電加工時の消耗率は3.5%であった。
The product was milled to an average particle size of 17
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The graphite compact had a bulk density of 1.77 and a wear rate during electric discharge machining of 3.5%.

【比較例5】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.4%であり、γレジン
量は7.4%の熱処理生成物を得た。
Comparative Example 5 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 14.4% and a γ resin content of 7.4%.

【0045】この生成物の赤外吸収スペクトルの179
0cm−1と1665cm−1をベースとした1700
cm−1付近のピークと1665cm−1と1540c
m−1をベースとした1600cm−1付近のピークの
比は0.35であった。
179 of the infrared absorption spectrum of this product
1700 based on 0 cm-1 and 1665 cm-1
peak around cm-1 and 1665 cm-1 and 1540c
The ratio of peaks near 1600 cm-1 based on m-1 was 0.35.

【0046】この生成物を微粉砕して、平均粒度を18
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.79であり、放
電加工時の消耗率は9.7%であった。
The product was milled to an average particle size of 18
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.79, and the wear rate during electric discharge machining was 9.7%.

【0047】[0047]

【比較例6】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.6%であり、γレジン
量は7.5%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1700cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比において、熱処理生成物
と該炭素質原料とのピークの比は6.11であった。
Comparative Example 6 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 14.6% and a γ-resin amount of 7.5%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 based peak and 1 near 1700 cm-1
16 based on 665 cm-1 and 1540 cm-1
In the peak ratio near 00 cm-1, the peak ratio between the heat treatment product and the carbonaceous raw material was 6.11.

【0048】この生成物を微粉砕して、平均粒度を18
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.79であり、放
電加工時の消耗率は9.7%であった。
The product was milled to an average particle size of 18
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.79, and the wear rate during electric discharge machining was 9.7%.

【0049】[0049]

【比較例7】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.2%であり、γレジン
量は7.1%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1740cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比は0.07であった。
Comparative Example 7 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 14.2% and a γ-resin amount of 7.1%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 based peak and 1 at around 1740 cm-1
16 based on 665 cm-1 and 1540 cm-1
The ratio of peaks near 00 cm-1 was 0.07.

【0050】この生成物を微粉砕して、平均粒度を18
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.79であり、放
電加工時の消耗率は9.7%であった。
The product was finely ground to an average particle size of 18
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.79, and the wear rate during electric discharge machining was 9.7%.

【0051】[0051]

【比較例8】実施例5と同じ炭素質原料を空気の存在下
で熱処理を行ない、VMが14.2%であり、γレジン
量は6.1%である熱処理生成物を得た。この生成物の
赤外吸収スペクトルの1790cm−1と1665cm
−1をベースとした1777cm−1付近のピークと1
665cm−1と1540cm−1をベースとした16
00cm−1付近のピークの比は0.04であった。
Comparative Example 8 The same carbonaceous raw material as in Example 5 was heat-treated in the presence of air to obtain a heat-treated product having a VM of 14.2% and a γ-resin amount of 6.1%. 1790 cm-1 and 1665 cm of the infrared absorption spectrum of this product
-1 and the peak around 1777cm-1 and 1
16 based on 665 cm-1 and 1540 cm-1
The ratio of peaks near 00 cm-1 was 0.04.

【0052】この生成物を微粉砕して、平均粒度を18
μmとしたものをモールドプレスにて成形して成形体を
得た。この生成形体をコークスブリーズ中1000℃ま
で燒成後、タンマン炉で2800℃まで黒鉛化して成形
体を得た。該黒鉛成形体の嵩密度は1.79であり、放
電加工時の消耗率は9.7%であった。
The product was milled to an average particle size of 18
What was made into μm was molded by a mold press to obtain a molded body. This green body was calcined in coke breeze to 1000 ° C., and then graphitized to 2800 ° C. in a Tammann furnace to obtain a molded body. The bulk density of the graphite compact was 1.79, and the wear rate during electric discharge machining was 9.7%.

【0053】[0053]

【比較例9】市販の放電加工用特殊炭素材(黒鉛成形
体)の嵩密度、放電加工時の消耗率はそれぞれ1.8
4、4.4%であった。
[Comparative Example 9] The bulk density and the wear rate during electric discharge machining of the commercially available special carbon material for electric discharge machining (graphite compact) were 1.8.
It was 4, 4.4%.

【発明の効果】以上述べたように本発明による原料粉を
用いて製造した炭素材は従来方法による炭素材よりも嵩
密度が高く、放電加工時の消耗率が低い等放電加工特性
が良好となり、また従来方法に比べて混合、ねつ合の工
程が省略でき、コストも低減できるものである。
As described above, the carbon material produced by using the raw material powder according to the present invention has a higher bulk density than the carbon material according to the conventional method and has a low wear rate during electric discharge machining, resulting in favorable electric discharge machining characteristics. In addition, as compared with the conventional method, the steps of mixing and mating can be omitted, and the cost can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素質原料を熱処理して得られる生成
物であり、揮発分が20重量%以下で3重量%以上であ
り、かつ平均粒度が15〜20μmにおけるトルエン可
溶分が10重量%以下で1重量%以上である熱処理生成
物のうち、赤外吸収スペクトルの炭素と酸素の二重結合
(C=O)の伸縮振動に由来する下記に示す条件(1)
ないし(4)の少なくとも一つを満足するものを微粉砕
することを特徴とする炭素材用原料粉の製造方法。 (1)1790cm−1と1665cm−1をベースと
した1700cm−1付近のC=O二重結合に由来する
赤外吸収スペクトルのピークと1665Cm−1と15
40cm−1をベースとした1600cm−1付近のC
=C二重結合に由来するピークの比が0.25以下であ
る熱処理生成物。 (2)下記に示す赤外吸収スペクトルの比における上記
熱処理生成物と該炭素質原料の比が、すなわち炭素質原
料から熱処理生成物への変化率が4.0以下である熱処
理生成物。 記;1790cm−1と1665cm−1をベースとし
た1700cm−1付近のC=O二重結合に由来する赤
外吸収スペクトルのピークと1665cm−1と154
0cm−1をベースとした1600cm−1付近のC=
C二重結合に由来するピークの比。 (3)1790cm−1と1665cm−1をベースと
した1740cm−1付近のC=C二重結合に由来する
赤外吸収スペクトルのピークと1665cm−1と15
40cm−1をベースとした1600cm−1付近のC
=C二重結合に由来するピークの比が0.06以下であ
る熱処理生成物。 (4)実質的に1777cm−1付近のC=O二重結合
に由来するピークがない熱処理生成物。
1. A product obtained by heat-treating a carbonaceous raw material, which has a volatile content of 20% by weight or less and 3% by weight or more, and a toluene-soluble content of 10% by weight at an average particle size of 15 to 20 μm. The condition (1) shown below, which is derived from the stretching vibration of the carbon-oxygen double bond (C = O) in the infrared absorption spectrum of the heat-treated product of 1% by weight or more below.
To a method of manufacturing a raw material powder for a carbon material, characterized in that the material satisfying at least one of (4) to (4) is pulverized. (1) The peak of the infrared absorption spectrum derived from the C = O double bond near 1700 cm-1 based on 1790 cm-1 and 1665 cm-1 and 1665 Cm-1 and 15
C around 1600 cm-1 based on 40 cm-1
= A heat-treated product having a ratio of peaks derived from a C double bond of 0.25 or less. (2) A heat treatment product in which the ratio of the heat treatment product to the carbonaceous raw material in the ratio of the infrared absorption spectrum shown below, that is, the rate of change from the carbonaceous raw material to the heat treatment product is 4.0 or less. Note: Infrared absorption spectrum peak derived from C = O double bond near 1700 cm-1 and 1665 cm-1 and 154 based on 1790 cm-1 and 1665 cm-1.
C = around 1600 cm-1 based on 0 cm-1
Ratio of peaks derived from C double bonds. (3) Infrared absorption spectrum peak derived from C = C double bond near 1740 cm-1 and 1665 cm-1 and 15 based on 1790 cm-1 and 1665 cm-1.
C around 1600 cm-1 based on 40 cm-1
= A heat-treated product having a ratio of peaks derived from a C double bond of 0.06 or less. (4) A heat-treated product having substantially no peak derived from a C═O double bond near 1777 cm −1.
JP3326167A 1991-12-10 1991-12-10 Production of raw material powder for carbonaceous material Pending JPH05163008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3326167A JPH05163008A (en) 1991-12-10 1991-12-10 Production of raw material powder for carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326167A JPH05163008A (en) 1991-12-10 1991-12-10 Production of raw material powder for carbonaceous material

Publications (1)

Publication Number Publication Date
JPH05163008A true JPH05163008A (en) 1993-06-29

Family

ID=18184803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326167A Pending JPH05163008A (en) 1991-12-10 1991-12-10 Production of raw material powder for carbonaceous material

Country Status (1)

Country Link
JP (1) JPH05163008A (en)

Similar Documents

Publication Publication Date Title
JP3093015B2 (en) Needle coke manufacturing method
JP4311777B2 (en) Method for producing graphite material
JPH05163008A (en) Production of raw material powder for carbonaceous material
JP2910002B2 (en) Special carbon material kneading method
JPS6172610A (en) Production of high-density graphite material
JPH05163011A (en) Production of raw material powder for carbonaceous material
JPS5978914A (en) Manufacture of special carbonaceous material
JPH0132162B2 (en)
JP2808807B2 (en) Production method of raw material powder for carbon material
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
JPH05163009A (en) Production of specific high density carbonaceous material
JP2924061B2 (en) Production method of raw material powder for carbon material
KR102508857B1 (en) Manufacturing method of carbonized blocks used for manufacturing isotropic graphite
JPH05163010A (en) Production of specific high density carbonaceous material
JP2924062B2 (en) Production method of raw material powder for carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH02296894A (en) Production of needle coke
JPH05330813A (en) Production of raw material for high purity special carbonaceous material
JPH0158125B2 (en)
JPH05229810A (en) Production of isotropic high density graphite material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPH0551258A (en) Production of high density and high strength graphite material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
KR100829230B1 (en) Preparing method of carbon particle
JPH0364448B2 (en)