JPH05161833A - Production of semipermeable membrane having high water permeability - Google Patents

Production of semipermeable membrane having high water permeability

Info

Publication number
JPH05161833A
JPH05161833A JP30055491A JP30055491A JPH05161833A JP H05161833 A JPH05161833 A JP H05161833A JP 30055491 A JP30055491 A JP 30055491A JP 30055491 A JP30055491 A JP 30055491A JP H05161833 A JPH05161833 A JP H05161833A
Authority
JP
Japan
Prior art keywords
membrane
water
polymer
semipermeable membrane
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30055491A
Other languages
Japanese (ja)
Other versions
JP3169404B2 (en
Inventor
Hiroyoshi Oya
博義 大屋
Masatoshi Kamisaka
正利 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17886231&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05161833(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP30055491A priority Critical patent/JP3169404B2/en
Publication of JPH05161833A publication Critical patent/JPH05161833A/en
Application granted granted Critical
Publication of JP3169404B2 publication Critical patent/JP3169404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce a semipermeable membrane excellent in water permeability by producing a semipermeable membrane from a membrane forming raw solution based on a base polymer and a decomposable polymer and subsequently decomposing and removing the decomposable polymer using a decomposing agent. CONSTITUTION:A base polymer such as a polysulfone resin or an acrylonitrile resin and a decomposable polymer such as a proteinaceous polymer or polyvinyl pyrrolidone are mixed and melted to prepare a membrane forming raw material. An injection liquid is injected in the membrane forming raw solution to spin said raw solution and the formed yarn is coagulated to form a yarn membrane. The formed membrane is washed with water to be heat-treated and the decomposable polymer is decomposed and removed by a decomposing agent such as sodium hypochlorite without modifying the base polymer. Finally, the membrane is washed with water to perfectly wash off the decomposed matter. By this method, a semipermeable membrane having high water permeability is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半透膜の製造方法に関
し、さらに詳しくは透水性能に優れた半透膜の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semipermeable membrane, and more particularly to a method for producing a semipermeable membrane having excellent water permeability.

【0002】[0002]

【従来の技術】従来より人工膜の素材としては、セルロ
ースアセテート等のセルロース誘導体、ポリアクリロニ
トリル系樹脂、ポリメタクリル酸メチル系樹脂、ポリア
ミド系樹脂、ポリスルホン系樹脂、ポリフッ化ビニリデ
ン系樹脂等多くの高分子が用いられてきた。その中で、
特にポリスルホン系樹脂、ポリフッ化ビニリデン系樹脂
は耐熱性、耐薬品性が良好であることから人工膜用素材
として近年特に注目されている。しかしながら、これら
の樹脂は疎水性が非常に強いため湿式製膜法によって得
られる膜は、膜面に緻密な構造が形成されやすく、親水
性を有するセルロース系樹脂から得られる膜と比較して
透水性能が低いといった問題があった。
2. Description of the Related Art Conventionally, as materials for artificial membranes, cellulose derivatives such as cellulose acetate, polyacrylonitrile-based resins, polymethylmethacrylate-based resins, polyamide-based resins, polysulfone-based resins, polyvinylidene fluoride-based resins, etc. Molecules have been used. inside that,
In particular, polysulfone-based resins and polyvinylidene fluoride-based resins have been particularly attracting attention in recent years as materials for artificial membranes because they have good heat resistance and chemical resistance. However, since these resins have very strong hydrophobicity, the membrane obtained by the wet film-forming method tends to form a dense structure on the membrane surface and is more permeable to water than a membrane obtained from a hydrophilic cellulosic resin. There was a problem of poor performance.

【0003】そのため、これまでに高い透水性能を有す
る膜を得るために種々の製法が試みられてきた。例えば
樹脂濃度を低くする、膜厚を薄くする、製膜原液
に無機系、有機系膨潤剤を添加する、膜を親水化する
等の方法が試みられている。しかし、、の方法では
透水性能を上げることは可能であるが、その反面機械的
強度が低下するために実用的でなかった。の方法では
無機系膨潤剤として硝酸リチウム、塩化リチウム、硝酸
アンモニウムなど、また有機系膨潤剤としてはエタノー
ル、エチレングリコール類等を添加する方法が試みられ
てきた。しかしながら、一般に膜の後処理工程において
脱溶剤やポリマーの凝固を十分にに行わせる目的で熱水
処理が施されることが多く、そのためポリマーの収縮が
起きてしまい膨潤剤の効果は十分に発揮できていなかっ
た。の方法では、製膜後に疎水性ポリマーの表面に親
水性モノマーをグラフト重合させる方法、あるいは製膜
時に親水性ポリマーをブレンドする方法が用いられてい
る。しかし、いずれの方法も親水性ポリマーが水溶液中
で膨潤し膜の細孔を閉塞してしまうという問題があり、
膜の親水化の点では効果があるものの高透水化の点では
むしろ逆効果であった。
Therefore, various manufacturing methods have been tried so far in order to obtain a membrane having high water permeability. For example, attempts have been made to reduce the resin concentration, to reduce the film thickness, to add an inorganic or organic swelling agent to the stock solution for film formation, or to make the film hydrophilic. However, although the method of (1) can improve the water permeability, it is not practical because its mechanical strength is lowered. In the above method, a method of adding lithium nitrate, lithium chloride, ammonium nitrate or the like as an inorganic swelling agent and ethanol, ethylene glycol or the like as an organic swelling agent has been tried. However, in general, hot water treatment is often performed in the post-treatment step of the membrane for the purpose of sufficiently removing the solvent and coagulating the polymer, which causes shrinkage of the polymer and sufficiently exerts the effect of the swelling agent. It wasn't done. In the method (1), a method of graft-polymerizing a hydrophilic monomer on the surface of a hydrophobic polymer after film formation, or a method of blending a hydrophilic polymer during film formation is used. However, both methods have the problem that the hydrophilic polymer swells in the aqueous solution and blocks the pores of the membrane,
Although it was effective in terms of making the membrane hydrophilic, it was rather the opposite in terms of increasing water permeability.

【0004】[0004]

【発明が解決しようとする課題】従って本発明の目的
は、上記従来技術の問題点を解消すること、即ち透水性
能に優れる半透膜の製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems of the prior art, that is, to provide a method for producing a semipermeable membrane having excellent water permeability.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に鋭意検討した結果、本発明に至った。即ち、本発明
は、基材ポリマーと分解性ポリマーを混和溶解した溶液
を主成分とする製膜原液より製造した半透膜の後処理に
おいて、分解剤を用いて分解性ポリマーの一部または全
部を分解除去することを特徴とする高透水性能半透膜の
製造方法である。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present invention has been accomplished. That is, the present invention is a post-treatment of a semipermeable membrane produced from a film-forming stock solution containing a base polymer and a degradable polymer as a main component, in a post-treatment of a semipermeable membrane. Is a method for producing a semipermeable membrane having high water permeability, which comprises decomposing and removing

【0006】以下本発明を詳細に記述する。本発明で用
いる基材ポリマーは湿式製膜が可能であり、かつ分解剤
で分解されないものであればよく、そのようなポリマー
としてポリスルホン系樹脂、ポリフッ化ビニリデン系樹
脂、アクリロニトリル系樹脂、ポリメタクリル酸メチル
系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエ
ーテルイミド系樹脂及び酢酸セルロース系樹脂等が上げ
られるが特に限定されない。
The present invention will be described in detail below. The base polymer used in the present invention may be a film that can be formed by a wet process and is not decomposed by a decomposing agent, and as such a polymer, a polysulfone-based resin, a polyvinylidene fluoride-based resin, an acrylonitrile-based resin, or polymethacrylic acid is used. Examples thereof include methyl-based resins, polyamide-based resins, polyimide-based resins, polyetherimide-based resins and cellulose acetate-based resins, but are not particularly limited.

【0007】一方、本発明に用いる分解性ポリマーはタ
ンパク質系ポリマー、ポリエチレングリコール系ポリマ
ー、多糖類、ポリビニルアルコール系ポリマー、ポリア
クリル酸系ポリマー、ポリビニルピロリドン等が挙げら
れるが多種類の基材ポリマーと相溶性を有し、しかも分
解反応が容易であるポリビニルピロリドンが特に好まし
い。
On the other hand, examples of the degradable polymer used in the present invention include protein-based polymers, polyethylene glycol-based polymers, polysaccharides, polyvinyl alcohol-based polymers, polyacrylic acid-based polymers, and polyvinylpyrrolidone. Polyvinylpyrrolidone is particularly preferable because it has compatibility and the decomposition reaction is easy.

【0008】また本発明に用いる分解剤は基材ポリマー
を分解することなく分解性ポリマーを容易に分解するも
のであればよく、オキソ酸、次亜塩素酸、次亜塩素酸塩
水溶液、次亜臭素酸、次亜臭素酸塩水溶液、次亜ヨウ素
酸、次亜ヨウ素酸塩水溶液、次亜リン酸、次亜リン酸塩
水溶液等の酸性溶液や水酸化カリウム、水酸化ナトリウ
ム水溶液等のアルカリ溶液、またトリプシン、ウレアー
ゼ、セルラーゼ等の酵素類が上げられる。例えば、分解
性ポリマーがポリビニルピロリドンである場合、次亜塩
素酸ナトリウムが特に好ましい。
The decomposing agent used in the present invention may be any one that can easily decompose a decomposable polymer without decomposing the base polymer, such as oxo acid, hypochlorous acid, an aqueous solution of hypochlorite, and hypochlorous acid. Bromic acid, aqueous solution of hypobromite, hypoiodic acid, aqueous solution of hypoiodite, hypophosphorous acid, aqueous solution of hypophosphite, etc. or alkaline solution of potassium hydroxide, sodium hydroxide solution, etc. In addition, enzymes such as trypsin, urease and cellulase can be used. For example, sodium hypochlorite is particularly preferred when the degradable polymer is polyvinylpyrrolidone.

【0009】また本発明の基材ポリマーと分解性ポリマ
ーの溶解に用いる溶剤は基材ポリマー、分解性ポリマー
を共に溶解するものであり、例えば、基材ポリマーがポ
リスルホン系樹脂、分解性ポリマーがポリビニルピロリ
ドンである場合、ジメチルスルホキシド、N−メチル−
2ピロリドン、ジメチルアセトアミド等である。本発明
の製膜原液におけるポリマーの濃度は製膜可能でかつ分
解性ポリマーを分解除去した後、膜としての機械的強度
を有する範囲であり、10〜30重量%が好ましい。ま
た製膜原液における分解性ポリマーの濃度範囲は、分解
除去により十分な透水性能が得られる濃度でなければな
らず、そのためには全ポリマー重量に対し5%〜50%
が好ましい。また、原液の粘度、溶解状態を制御する目
的で水、アルコール類、グリコール類、塩類等の第4成
分を製膜原液に添加することも可能であり、その種類、
添加量は組み合わせにより随意行えばよい。
Further, the solvent used for dissolving the base polymer and the degradable polymer of the present invention dissolves both the base polymer and the degradable polymer. For example, the base polymer is a polysulfone resin and the degradable polymer is polyvinyl. In the case of pyrrolidone, dimethyl sulfoxide, N-methyl-
2 Pyrrolidone, dimethylacetamide and the like. The concentration of the polymer in the stock solution for film formation of the present invention is within a range capable of forming a film and having mechanical strength as a film after the decomposable polymer is decomposed and removed, and is preferably 10 to 30% by weight. Further, the concentration range of the degradable polymer in the membrane forming stock solution must be a concentration at which sufficient water permeation performance can be obtained by decomposition and removal, and for that purpose, 5% to 50% relative to the total polymer weight.
Is preferred. In addition, it is possible to add a fourth component such as water, alcohols, glycols, and salts to the stock solution for film formation in order to control the viscosity and the dissolved state of the stock solution.
The amount to be added may be arbitrarily selected depending on the combination.

【0010】以上の条件により調整した製膜原液を用い
て製膜を行うが、製膜法は特に限定されるものではな
く、従来公知の製膜技術が広く使える。例えば、中空糸
膜を製造する場合、製膜原液を環状ノズルから直接ある
いは、一度気体中に吐出させた後、凝固浴へ導き脱溶剤
することにより得られる。ノズル吐出時の製膜原液の温
度は、紡糸を行いやすい粘度になるように制御し得る。
また、この温度で膜の孔径を制御することも可能であ
る。環状ノズルの芯部に流す物質は空気等の気体、ある
いは基材ポリマーの溶剤または非溶剤またはそれらの混
合物といった液体等が用いられる。これらは得られる膜
の孔径を制御する目的で適宜選ばれる。製膜原液を一度
気体中を走行させる場合気体部分を空中走行させる時
間、即ち空中走行距離や気体部分の雰囲気温度、湿度等
も得られる膜の孔径を制御する目的で適宜選ぶことも可
能である。
Film formation is carried out using the film forming stock solution adjusted under the above conditions, but the film forming method is not particularly limited, and conventionally known film forming techniques can be widely used. For example, in the case of producing a hollow fiber membrane, it can be obtained by directly discharging the membrane-forming stock solution from an annular nozzle or once discharging it into a gas, and then introducing it into a coagulation bath to remove the solvent. The temperature of the stock solution for film formation at the time of discharge from the nozzle can be controlled so that the viscosity is such that spinning is easy.
It is also possible to control the pore size of the membrane at this temperature. As the substance to be flown to the core of the annular nozzle, gas such as air or liquid such as solvent or non-solvent of the base polymer or a mixture thereof is used. These are appropriately selected for the purpose of controlling the pore size of the obtained membrane. When the film forming stock solution is once run in gas, the time for running the gas part in the air, that is, the air running distance, the atmospheric temperature of the gas part, the humidity, etc. can be appropriately selected for the purpose of controlling the pore size of the film. ..

【0011】以上述べてきたような製膜方法は、いずれ
も目的とする膜の孔径を達成するために適宜選べばよ
く、このようなことは同業者にとっては容易なことであ
る。製膜後の膜は、まず、水洗し、続いて熱処理、分解
除去処理、さらに水洗の順で処理を行う。水洗後、基材
ポリマーを完全に凝固、固定させる目的で基材ポリマー
のガラス転移点以下の温度で十分に熱処理を行うことが
好ましい。一般に、半透膜は工業用途、特に医薬品精
製、食品製造等に用いられる場合、殺菌の目的で熱水処
理が施される。この時、基材ポリマーが完全に凝固・固
定されていない場合、熱による基材ポリマーの収縮が生
じ、透水性能が大幅に低下する恐れがあるからである。
このような問題を避けるために、例えば基材ポリマーが
ポリスルホン系樹脂の場合90℃の熱水で5分以上処理
すれば十分である。
In any of the film forming methods described above, any method may be appropriately selected in order to achieve the desired pore size of the film, and such a thing is easy for those skilled in the art. The film after film formation is first washed with water, followed by heat treatment, decomposition and removal treatment, and further treatment with water. After washing with water, it is preferable to perform sufficient heat treatment at a temperature not higher than the glass transition point of the base polymer for the purpose of completely solidifying and fixing the base polymer. Generally, the semipermeable membrane is subjected to hot water treatment for the purpose of sterilization when it is used for industrial purposes, particularly for drug purification, food production and the like. At this time, if the base polymer is not completely solidified and fixed, the base polymer may shrink due to heat, and the water permeability may be significantly reduced.
In order to avoid such a problem, for example, when the base polymer is a polysulfone-based resin, it is sufficient to treat with hot water at 90 ° C. for 5 minutes or more.

【0012】しかるべき後、分解性ポリマーを分解除去
するが分解反応は基材ポリマーを変性させることなく分
解性ポリマーの一部または全部を迅速簡便に分解除去す
ることが好ましい。また分解性ポリマーは基材ポリマー
に対し5重量%以下になるように除去されなければなら
ない。分解性ポリマーが5重量%以上残存すると十分な
透水性能が得られないばかりか、膜を長期的に使用する
場合に分解性ポリマーが徐々に分解され膜性能が変化し
てくる恐れがあるからである。このように分解性ポリマ
ーを迅速簡便に分解除去する方法としては、例えば基材
ポリマーがポリスルホン系樹脂、分解性ポリマーがポリ
ビニルピロリドンであれば10〜5000ppmの次亜
塩素酸ナトリウム水溶液で室温で5分以上処理すれば十
分に目的が達成される。
After that, the decomposable polymer is decomposed and removed, but it is preferable that the decomposition reaction decomposes and removes part or all of the degradable polymer quickly and simply without modifying the base polymer. Further, the degradable polymer must be removed so as to be 5% by weight or less with respect to the base polymer. If 5% by weight or more of the degradable polymer remains, sufficient water permeability may not be obtained, and the degradable polymer may be gradually decomposed and the membrane performance may change when the membrane is used for a long period of time. is there. As a method for rapidly and simply decomposing and removing the degradable polymer, for example, when the base polymer is a polysulfone-based resin and the degradable polymer is polyvinylpyrrolidone, an aqueous solution of sodium hypochlorite of 10 to 5000 ppm is used at room temperature for 5 minutes. If the above processing is performed, the purpose is sufficiently achieved.

【0013】最後に、分解処理後は分解物を完全に洗い
去る目的で室温で水洗を行う。またさらに重要なこと
は、以上述べてきた本発明の一連の製造方法が連続工程
で行われる点である。分解処理においては、製造工程後
別の工程で実施することもまた連続した工程中で制膜後
直ちに処理することもできるが、一般に事業性を考えた
場合、製造コストの点から製造工程は迅速、簡便に行わ
れることが好ましく、特に各工程が連続的に行われるこ
とが好ましい。
Finally, after the decomposition treatment, washing with water is carried out at room temperature for the purpose of completely washing off the decomposed products. What is more important is that the series of production methods of the present invention described above are performed in continuous steps. In the decomposition process, it can be carried out in a separate process after the manufacturing process, or it can be processed immediately after the film formation in a continuous process, but in general, considering the business feasibility, the manufacturing process is quick because of the manufacturing cost. It is preferable that the steps are carried out conveniently, and it is particularly preferable that the steps are carried out continuously.

【0014】[0014]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0015】[0015]

【実施例1】ジメチルアセトアミド(以下DMACと略
記)80.0g、の溶媒にポリビニルピロリドン 5.
0g(ナカライテスク社 K−90:以下PVPと略
記)、ポリスルホン樹脂(AMOCO社 ユーデルP−
3500:以下PSFと略記)15gを加え、60℃で
5時間溶解し静置脱胞後製膜原液とした。
Example 1 Polyvinylpyrrolidone was added to a solvent of 80.0 g of dimethylacetamide (hereinafter abbreviated as DMAC).
0 g (Nacalai Tesque K-90: hereinafter abbreviated as PVP), polysulfone resin (AMOCO Udel P-
3500: PSF (hereinafter abbreviated as PSF)) (15 g) was added and the mixture was dissolved at 60 ° C. for 5 hours to give a membrane-forming stock solution after stationary desalination.

【0016】この製膜原液を注入液に水を用いて、内径
0.64mm、外径1.04mmの環状オリフィスから
なる紡口により紡糸を行い、さらに紡口から15mm下
方に設置した60℃の水浴中を通過させ凝固させた後、
熱水処理槽を5分間、分解処理槽を10分間、水洗槽を
3分間通過させ通常の方法でカセに巻き取り中空糸膜を
得た。
This membrane-forming stock solution was spun with water as an injecting solution by means of a spinneret consisting of an annular orifice having an inner diameter of 0.64 mm and an outer diameter of 1.04 mm, and further at a temperature of 60 ° C. placed 15 mm below the spinneret. After passing through a water bath to solidify,
After passing through the hot water treatment tank for 5 minutes, the decomposition treatment tank for 10 minutes, and the water washing tank for 3 minutes, the hollow fiber membrane was wound up on a cassette by a usual method to obtain a hollow fiber membrane.

【0017】なお凝固浴槽は室温の水を使用し、熱水処
理槽は90℃の水を使用し、分解処理槽は1000pp
mの次亜塩素酸ナトリウム水溶液を使用し、水洗槽は7
0℃の水を使用した。元素分析により、得られた中空糸
膜のPVP残存量を測定したところ全ポリマー重量に対
し1.2重量%であった。また、この中空糸膜の純水の
透水性能(すなわち、Flux;単位面積、時間、圧力
あたりの膜の透水量)及び各種タンパク質溶液のろ過試
験から求めたタンパク質の阻止率を表1に示した。
The coagulation bath uses room temperature water, the hot water treatment tank uses 90 ° C. water, and the decomposition treatment tank uses 1000 pp.
m sodium hypochlorite aqueous solution is used, and the washing tank is 7
Water at 0 ° C was used. When the residual PVP amount of the obtained hollow fiber membrane was measured by elemental analysis, it was 1.2% by weight based on the total weight of the polymer. In addition, Table 1 shows the water permeation performance of pure water (that is, Flux; water permeation amount of the membrane per unit area, time, and pressure) of this hollow fiber membrane and the protein blocking rate obtained from the filtration test of various protein solutions. ..

【0018】なおタンパク質の阻止率は、250ppm
タンパク質溶液を液温38℃、圧力1kg/cm2 の条
件でろ過し、その透過液のタンパク質濃度から下式によ
り算出した。 阻止率(%)=100×(1−C1 /C0 ) C1 :透過液のタンパク質濃度 C2 :元液のタンパク質濃度
The protein inhibition rate is 250 ppm.
The protein solution was filtered under the conditions of a liquid temperature of 38 ° C. and a pressure of 1 kg / cm 2 , and calculated from the protein concentration of the permeate by the following formula. Rejection rate (%) = 100 × (1−C 1 / C 0 ) C 1 : Protein concentration of permeate C 2 : Protein concentration of original solution

【0019】[0019]

【実施例2】実施例1と同様の製膜原液を注入液に水/
DMAC=1/1の溶液を用いて、実施例1と同様の紡
口により紡糸を行った。また以後の工程も実施例1と同
様の条件で行った。元素分析により、得られた中空糸膜
のPVP残存量を測定したところ全ポリマー重量に対し
0.8%であった。またこの中空糸膜の純水の透水性能
及び250ppm濃度の各種タンパク質溶液のろ過試験
から求めたタンパク質の阻止率を表1に示した。
[Example 2] The same film-forming stock solution as in Example 1 was used as an injecting solution with water / water.
Spinning was performed by the same spinning method as in Example 1 using a solution of DMAC = 1/1. The subsequent steps were also performed under the same conditions as in Example 1. When the residual PVP amount of the obtained hollow fiber membrane was measured by elemental analysis, it was 0.8% based on the total polymer weight. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0020】[0020]

【比較例1】実施例1と同様の製膜原液を注入液に水を
用いて、実施例1と同様の紡口により紡糸を行い、さら
に紡口から15mm下方に設置した凝固浴を通過させた
後、水洗槽に3分間通過させ通常の方法でカセに巻き取
り中空糸膜を得た。なお凝固浴槽は室温の水を使用し、
水洗槽は70℃の水を使用した。
[Comparative Example 1] The same film-forming stock solution as in Example 1 was used, and water was used as an injecting solution, spinning was carried out by the same spinner as in Example 1, and further passed through a coagulation bath placed 15 mm below the spinneret. After that, the hollow fiber membrane was passed through a water washing tank for 3 minutes and wound on a cassette to obtain a hollow fiber membrane. The coagulation bath uses room temperature water,
70 ° C. water was used as the washing tank.

【0021】元素分析により、得られた中空糸膜のPV
P残存量を測定したところ全ポリマー重量に対し22.
4%であった。またこの中空糸膜の純水の透水性能及び
250ppm濃度の各種タンパク質溶液のろ過試験から
求めたタンパク質の阻止率を表1に示した。
The PV of the hollow fiber membrane obtained by elemental analysis
The residual amount of P was measured to be 22.
It was 4%. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0022】[0022]

【比較例2】実施例1と同様の製膜原液を注入液に水/
DMAC=1/1を用いて、実施例1と同様の紡口によ
り紡糸を行い、さらに紡口から15mm下方に設置した
凝固浴を通過させた後、水洗槽に3分間通過させ通常の
方法でカセに巻き取り中空糸膜を得た。なお凝固浴槽は
室温の水を使用し、水洗槽は70℃の水を使用した。
[Comparative Example 2] The same film-forming stock solution as in Example 1 was used as an injection solution with water / water.
Using DMAC = 1/1, spinning was performed by the same spinning method as in Example 1, further passing through a coagulation bath placed 15 mm below the spinning opening, and then passing through a washing tank for 3 minutes by the usual method. A hollow fiber membrane was wound on a cassette. Water at room temperature was used as the coagulation bath, and water at 70 ° C. was used as the washing bath.

【0023】元素分析により、得られた中空糸膜のPV
P残存量を測定したところ全ポリマー重量に対し20.
3%であった。またこの中空糸膜の純水の透水性能及び
250ppm濃度の各種タンパク質溶液のろ過試験から
求めたタンパク質の阻止率を表1に示した。
The PV of the hollow fiber membrane obtained by elemental analysis
The residual amount of P was measured to be 20.
It was 3%. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0024】[0024]

【実施例3】DMAC 75g にPVP 10.0
g、 PSF 15gを加え、60℃で5時間溶解し静
置脱胞後製膜原液とした。この製膜原液を注入液に水を
用いて、実施例1と同様の方法で紡糸を行った。なお以
後の工程も実施例1と同様である。
EXAMPLE 3 PVP 10.0 on 75 g DMAC
g and PSF (15 g) were added, and the mixture was dissolved at 60 ° C. for 5 hours to give a membrane-forming stock solution after stationary desalting. This film-forming stock solution was spun in the same manner as in Example 1 using water as an injecting solution. The subsequent steps are the same as in the first embodiment.

【0025】元素分析により、得られた中空糸膜のPV
P残存量を測定したところ全ポリマー重量に対し3.3
%であった。またこの中空糸膜の純水の透水性能及び2
50ppm濃度の各種タンパク質溶液のろ過試験から求
めたタンパク質の阻止率を表1に示した。
The PV of the hollow fiber membrane obtained by elemental analysis
The residual amount of P was measured to be 3.3 based on the total weight of the polymer.
%Met. Moreover, the water permeability of pure water of this hollow fiber membrane and 2
Table 1 shows the protein inhibition rates obtained from filtration tests of various protein solutions having a concentration of 50 ppm.

【0026】[0026]

【実施例4】実施例3と同様の製膜原液を注入液に水/
DMAC=1/1の溶液を用いて、実施例1と同様の紡
口により紡糸を行った。また以後の工程も実施例1と同
様の条件で行った。元素分析により、得られた中空糸膜
のPVP残存量を測定したところ全ポリマー重量に対し
2.9%であった。またこの中空糸膜の純水の透水性能
及び250ppm濃度の各種タンパク質溶液のろ過試験
から求めたタンパク質の阻止率を表1に示した。
[Embodiment 4] The same film-forming stock solution as in Embodiment 3 was used as an injecting solution with water / water.
Spinning was performed by the same spinning method as in Example 1 using a solution of DMAC = 1/1. The subsequent steps were also performed under the same conditions as in Example 1. When the residual PVP amount of the obtained hollow fiber membrane was measured by elemental analysis, it was 2.9% based on the total weight of the polymer. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0027】[0027]

【比較例3】実施例3と同様の製膜原液を注入液に水を
用いて、実施例1と同様の紡口により紡糸を行い、さら
に紡口から15mm下方に設置した凝固浴を通過させた
後、水洗槽に3分間通過させ、通常の方法でカセに巻き
取り中空糸膜を得た。なお凝固浴槽は室温の水を使用
し、水洗槽は70℃の水を使用した。
[Comparative Example 3] The same film-forming stock solution as in Example 3 was used, and water was used as an injecting solution. The spinning was carried out by the same spinner as in Example 1, and the solution was passed through a coagulation bath located 15 mm below the spinneret. After that, it was passed through a water washing tank for 3 minutes and wound on a cassette in a usual manner to obtain a hollow fiber membrane. Water at room temperature was used as the coagulation bath, and water at 70 ° C. was used as the washing bath.

【0028】元素分析により、得られた中空糸膜のPV
P残存量を測定したところ全ポリマー重量に対し36.
5%であった。またこの中空糸膜の純水の透水性能及び
250ppm濃度の各種タンパク質溶液のろ過試験から
求めたタンパク質の阻止率を表1に示した。
The PV of the hollow fiber membrane obtained by elemental analysis
The amount of residual P was measured and found to be 36.
It was 5%. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0029】[0029]

【比較例4】実施例3と同様の製膜原液を注入液に水/
DMAC=1/1を用いて、実施例1と同様の紡口によ
り紡糸を行い、さらに紡口から15mm下方に設置した
凝固浴を通過させた後、水洗槽に3分間通過させ通常の
方法でカセに巻き取り中空糸膜を得た。なお凝固浴槽は
室温の水を使用し、水洗槽は70℃の水を使用した。
[Comparative Example 4] The same film-forming stock solution as in Example 3 was used as an injecting solution in water / water.
Using DMAC = 1/1, spinning was performed by the same spinning method as in Example 1, further passing through a coagulation bath placed 15 mm below the spinning opening, and then passing through a washing tank for 3 minutes by the usual method. A hollow fiber membrane was wound on a cassette. Water at room temperature was used as the coagulation bath, and water at 70 ° C. was used as the washing bath.

【0030】元素分析により、得られた中空糸膜のPV
P残存量を測定したところ全ポリマー重量に対し34.
2%であった。またこの中空糸膜の純水の透水性能及び
250ppm濃度の各種タンパク質溶液のろ過試験から
求めたタンパク質の阻止率を表1に示した。
The PV of the hollow fiber membrane obtained by elemental analysis
The residual amount of P was measured and found to be 34.
It was 2%. Further, Table 1 shows the water permeation performance of pure water of this hollow fiber membrane and the protein inhibition rate obtained from the filtration test of various protein solutions of 250 ppm concentration.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の半透膜の製造方法は迅速、簡便
に高透水性能半透膜を得ることが可能であり、また得ら
れた半透膜は医薬品、食品等の製造工程のみならず広く
一般工業に使用可能な優れた性能を有する膜である。
EFFECTS OF THE INVENTION The method for producing a semipermeable membrane of the present invention can rapidly and easily obtain a semipermeable membrane having high water permeability, and the obtained semipermeable membrane is used only in the manufacturing process of pharmaceuticals, foods, etc. It is a film with excellent performance that can be widely used in general industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材ポリマーと分解性ポリマーを混和溶
解した溶液を主成分とする製膜原液より製造した半透膜
の後処理において、分解剤を用いて分解性ポリマーの一
部または全部を分解除去することを特徴とする高透水半
透膜の製造方法。
1. In a post-treatment of a semipermeable membrane produced from a membrane-forming stock solution containing a base polymer and a degradable polymer as a main component, a part or all of the degradable polymer is decomposed by using a degrading agent. A method for producing a highly permeable semipermeable membrane, which comprises decomposing and removing.
JP30055491A 1991-11-15 1991-11-15 Method for producing semipermeable membrane with high water permeability Expired - Lifetime JP3169404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30055491A JP3169404B2 (en) 1991-11-15 1991-11-15 Method for producing semipermeable membrane with high water permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30055491A JP3169404B2 (en) 1991-11-15 1991-11-15 Method for producing semipermeable membrane with high water permeability

Publications (2)

Publication Number Publication Date
JPH05161833A true JPH05161833A (en) 1993-06-29
JP3169404B2 JP3169404B2 (en) 2001-05-28

Family

ID=17886231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30055491A Expired - Lifetime JP3169404B2 (en) 1991-11-15 1991-11-15 Method for producing semipermeable membrane with high water permeability

Country Status (1)

Country Link
JP (1) JP3169404B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307463A (en) * 2006-05-17 2007-11-29 Asahi Kasei Chemicals Corp Oxidation-resistant hydrophilized polysulphone-based hollow-fiber membrane and its manufacturing method
JP2011156533A (en) * 2011-03-15 2011-08-18 Asahi Kasei Chemicals Corp Oxidation-resistant hydrophilized polysulfone-based hollow-fiber membrane and production method thereof
JP2011200799A (en) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp Method for producing porous membrane and porous membrane
CN106400305A (en) * 2016-10-14 2017-02-15 北京化工大学 Preparation method of macroporous electrostatic spinning nanofiber membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569393B2 (en) * 2009-07-22 2014-08-13 三菱レイヨン株式会社 Method for producing porous membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307463A (en) * 2006-05-17 2007-11-29 Asahi Kasei Chemicals Corp Oxidation-resistant hydrophilized polysulphone-based hollow-fiber membrane and its manufacturing method
JP2011200799A (en) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp Method for producing porous membrane and porous membrane
JP2011156533A (en) * 2011-03-15 2011-08-18 Asahi Kasei Chemicals Corp Oxidation-resistant hydrophilized polysulfone-based hollow-fiber membrane and production method thereof
CN106400305A (en) * 2016-10-14 2017-02-15 北京化工大学 Preparation method of macroporous electrostatic spinning nanofiber membrane

Also Published As

Publication number Publication date
JP3169404B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JPH05212255A (en) Hollow fiber membrane
JPS6214905A (en) Process of manufacturing microporous
JPS5812932B2 (en) Hollow fiber manufacturing method
US20130248441A1 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
JP2000325765A (en) Solvent-resistant microporous polybenzoimidazole thin film
WO2000072950A1 (en) Cellulose derivative hollow fiber membrane
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JP4724914B2 (en) Dry / wet spinning method of porous hollow fiber membrane
JP2000061277A (en) Production of cellulosic crosslinked membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH07163849A (en) Polysulfone hollow fiber membrane and production thereof
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP4803697B2 (en) Method for producing porous membrane
JP2004033854A (en) Method for manufacturing porous film
JPS59166208A (en) Manufacture of gas separating membrane
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JP2011200799A (en) Method for producing porous membrane and porous membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS62160109A (en) Manufacture of microporous filter membrane
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
JP2000061279A (en) Method for controlling structure of cellulosic separation membrane
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
CN115400602A (en) Automatic production method of ultrafiltration membrane
JP2005230811A (en) Production method for porous membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11