JP2005230811A - Production method for porous membrane - Google Patents

Production method for porous membrane Download PDF

Info

Publication number
JP2005230811A
JP2005230811A JP2005005520A JP2005005520A JP2005230811A JP 2005230811 A JP2005230811 A JP 2005230811A JP 2005005520 A JP2005005520 A JP 2005005520A JP 2005005520 A JP2005005520 A JP 2005005520A JP 2005230811 A JP2005230811 A JP 2005230811A
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
porous membrane
porous
polymer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005005520A
Other languages
Japanese (ja)
Other versions
JP4502324B2 (en
Inventor
Satoru Ozawa
覚 小澤
Yoshinori Fukuba
芳則 福場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005005520A priority Critical patent/JP4502324B2/en
Publication of JP2005230811A publication Critical patent/JP2005230811A/en
Application granted granted Critical
Publication of JP4502324B2 publication Critical patent/JP4502324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient production method for obtaining a satisfactory porous membrane in which filtering flow rate and fractionation characteristics are compatible with each other. <P>SOLUTION: This production method for the porous membrane comprises a process (1) for obtaining a coagulation by coagulating a dope containing a hydrophobic polymer and a hydrophilic polymer, and a process (2)for drying the coagulation in the mid of a process (3) for eliminating at least a part of the hydrophilic polymer from the coagulation. In this method, as the hydrophilic polymer is eliminated after moving the hydrophilic polymer remaining in an inner layer of a porous layer to a surface layer, the hydrophilic polymer can be eliminated efficiently. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多孔質膜の製造方法に関するものである。   The present invention relates to a method for producing a porous membrane.

近年、環境汚染に対する関心の高まりと規制の強化により、分離の完全性やコンパクト性などに優れた多孔質膜を用いた水処理、例えば、産業排水、下廃水、浄水などの処理が注目を集めている。   In recent years, due to increasing interest in environmental pollution and stricter regulations, water treatment using porous membranes with excellent separation integrity and compactness, such as treatment of industrial wastewater, sewage wastewater, and purified water, has attracted attention. ing.

多孔質膜の製造方法としては、高温で溶解させた疎水性ポリマー及び親水性ポリマーからなる高分子溶液を冷却することによって相分離を誘起し多孔化する熱誘起相分離現象を利用した製造方法、疎水性ポリマー及び親水性ポリマーからなる高分子溶液を非溶媒の浸入により相分離させ多孔化する非溶媒誘起相分離現象を利用した製造方法などが知られている。
非溶媒相分離法により多孔質膜を製造する方法としては、湿式または乾湿式法(以下、両方法をまとめて湿式法と言う。)が知られており、高いろ過流量と、良好な分画層が得られることから、多量の水処理には好適である(例えば特許文献1、特許文献2)。
As a method for producing a porous membrane, a production method utilizing a heat-induced phase separation phenomenon in which a phase separation is induced to become porous by cooling a polymer solution composed of a hydrophobic polymer and a hydrophilic polymer dissolved at a high temperature, A production method using a non-solvent-induced phase separation phenomenon in which a polymer solution composed of a hydrophobic polymer and a hydrophilic polymer is phase-separated by permeation of a non-solvent to make it porous is known.
As a method for producing a porous membrane by a non-solvent phase separation method, a wet or dry wet method (hereinafter, both methods are collectively referred to as a wet method) is known, and a high filtration flow rate and a good fractionation are obtained. Since a layer is obtained, it is suitable for a large amount of water treatment (for example, Patent Document 1 and Patent Document 2).

湿式紡糸による多孔質膜の製造においては、高分子溶液(以下ドープと言う)や、凝固浴の組成、温度などの製膜条件を変更することによって多孔質構造を調整する。
この際、親水性ポリマーは、紡糸時におけるドープ粘度を適正な範囲に調整し、製膜状態の安定化を図ると共に、多孔体を形成させるための相分離を制御するために添加されており、ポリエチレングリコールやポリビニルピロリドンなどの高分子量の親水性ポリマーを用いることが多い。
湿式法により製造される多孔質膜は、凝固浴を通過して凝固が完了した段階では、膜中に高分子量の親水性ポリマーが多量に残存しているため、このままでは高透水性の膜としての機能を発揮できない。そのため、凝固が完了した後、膜中に残存している高分子量の親水性ポリマーを除去する必要があるが、これをできるだけ効率的に行うことが工業的には要求される。
In the production of a porous membrane by wet spinning, the porous structure is adjusted by changing the polymer solution (hereinafter referred to as “dope”), the film formation conditions such as the composition and temperature of the coagulation bath.
At this time, the hydrophilic polymer is added to adjust the dope viscosity at the time of spinning to an appropriate range, to stabilize the film forming state, and to control the phase separation for forming the porous body, High molecular weight hydrophilic polymers such as polyethylene glycol and polyvinyl pyrrolidone are often used.
A porous membrane manufactured by a wet method has a high molecular weight hydrophilic polymer remaining in the membrane at the stage where the coagulation is completed after passing through the coagulation bath. The function of cannot be demonstrated. Therefore, it is necessary to remove the high molecular weight hydrophilic polymer remaining in the film after the coagulation is completed, but it is industrially required to perform this as efficiently as possible.

親水性ポリマーを除去する方法としては、水による洗浄が製造コスト等から好ましいが、水のみで親水性ポリマーを充分に除去できない場合には、酸化剤又は加水分解剤を用いて親水性ポリマーを除去することが知られている(特許文献3)。
しかし、特許文献3の方法は、凝固物を単に酸化剤又は加水分解剤と接触させるだけであり、親水性ポリマーの除去効率は依然として充分なものではなかった。
As a method for removing the hydrophilic polymer, washing with water is preferable from the viewpoint of production cost, etc., but when the hydrophilic polymer cannot be sufficiently removed only with water, the hydrophilic polymer is removed using an oxidizing agent or a hydrolyzing agent. It is known to do (Patent Document 3).
However, the method of Patent Document 3 simply contacts the coagulated product with an oxidizing agent or a hydrolyzing agent, and the removal efficiency of the hydrophilic polymer is still not sufficient.

特開平11−319522号公報JP 11-319522 A 特開2000−15066号公報JP 2000-15066 A 特許第3196029号公報Japanese Patent No. 3196029

本発明は、濾過流量と分画特性を両立する良好な多孔質膜を得るための効率的な製造方法を提供することを目的とする。   An object of this invention is to provide the efficient manufacturing method for obtaining the favorable porous membrane which makes a filtration flow rate and a fractionation characteristic compatible.

即ち本発明の要旨は、疎水性ポリマーと親水性ポリマーを含むドープを凝固させて凝固物を得る工程(1)を有するとともに、該凝固物を乾燥させる工程(2)を該凝固物から該親水性ポリマーの少なくとも一部を除去する工程(3)の途中に有する、多孔質膜の製造方法である。   That is, the gist of the present invention is to have a step (1) of solidifying a dope containing a hydrophobic polymer and a hydrophilic polymer to obtain a coagulated product, and a step (2) of drying the coagulated product from the coagulated product to the hydrophilic product. It is a manufacturing method of the porous membrane which has in the middle of the process (3) which removes at least one part of a property polymer.

本発明の多孔質膜の製造方法によって、親水性ポリマーの効率的な除去が可能である。本発明は、例えば膜厚の厚い膜や孔径が小さい膜の製造時のように、水や分解剤を凝固物中に浸透させにくい場合に特に好適である。   By the method for producing a porous membrane of the present invention, the hydrophilic polymer can be efficiently removed. The present invention is particularly suitable when water or a decomposing agent is difficult to permeate into the solidified product, for example, when manufacturing a film having a large film thickness or a film having a small pore diameter.

以下、本発明の実施の形態を説明する。本発明による多孔質膜の製造方法は、膜の形態に限定されるものではなく、平膜、管状膜、中空糸膜などの製造に使用することができる。   Embodiments of the present invention will be described below. The manufacturing method of the porous membrane by this invention is not limited to the form of a membrane, It can use for manufacture of a flat membrane, a tubular membrane, a hollow fiber membrane, etc.

以下、中空糸膜の製造方法を例に、本発明の実施の形態を説明する。
本発明においては、膜基材を形成する疎水性ポリマーと、その相分離を制御するための親水性ポリマーを溶媒に溶解させたドープを、非溶媒中で凝固させることで多孔質膜を得るものである。
疎水性ポリマーと親水性ポリマーをそれぞれのポリマーを溶解することができる共通の良溶媒を用いて、疎水性ポリマーと親水性ポリマーを溶解したポリマー溶液をドープとして使用することができる。ドープには、必要に応じてその他の添加成分を加えてもよい。
Hereinafter, the embodiment of the present invention will be described by taking a hollow fiber membrane production method as an example.
In the present invention, a porous membrane is obtained by coagulating in a non-solvent a dope prepared by dissolving a hydrophobic polymer forming a membrane substrate and a hydrophilic polymer for controlling the phase separation in a solvent. It is.
A polymer solution in which a hydrophobic polymer and a hydrophilic polymer are dissolved can be used as a dope by using a common good solvent capable of dissolving the hydrophobic polymer and the hydrophilic polymer. You may add another additive component to dope as needed.

本発明に使われる疎水性ポリマーは、湿式法により多孔質中空糸膜を形成し得るものであれば特に限定されるものではなく、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなどが挙げられる。また、これらの樹脂の共重合体や一部に置換基を導入したものであってもよい。さらに、分子量などが異なる同種ポリマーをブレンドして用いても構わないし、2種以上の樹脂を混合したものであってもよい。   The hydrophobic polymer used in the present invention is not particularly limited as long as it can form a porous hollow fiber membrane by a wet method. Polysulfone resins such as polysulfone and polyethersulfone, polyacrylonitrile, cellulose derivatives And fluorine resins such as polyvinylidene fluoride, polyamide, polyester, polymethacrylate, polyacrylate and the like. In addition, copolymers of these resins or those having a substituent introduced into a part thereof may be used. Furthermore, the same kind of polymers having different molecular weights may be blended and used, or two or more kinds of resins may be mixed.

特にフッ素系樹脂、中でもポリフッ化ビニリデンは、次亜塩素酸塩などの酸化剤に対する耐久性が強く、本発明の製造方法に好ましく用いることができる。また、フッ化ビリニデン単位と他の単量体を有する共重合体を用いてもよい。   In particular, fluororesins, especially polyvinylidene fluoride, have high durability against oxidizing agents such as hypochlorite and can be preferably used in the production method of the present invention. Moreover, you may use the copolymer which has a vinylidene fluoride unit and another monomer.

また、用いる親水性ポリマーとしては、例えば、ポリエチレングリコールやポリビニルピロリドンなどが挙げられる。親水性ポリマーの選択は、孔径の制御や膜強度の点からポリビニルピロリドンを用いることが好適である。また、ポリビニルピロリドン単体と他の単量体を有する共重合体を用いてもよい。さらに、分子量などが異なる同種ポリマーをブレンドして用いても構わないし、2種以上の樹脂を混合したものであってもよい。   Examples of the hydrophilic polymer to be used include polyethylene glycol and polyvinyl pyrrolidone. For the selection of the hydrophilic polymer, it is preferable to use polyvinyl pyrrolidone from the viewpoint of controlling the pore diameter and film strength. Moreover, you may use the copolymer which has a polyvinyl pyrrolidone simple substance and another monomer. Furthermore, the same kind of polymers having different molecular weights may be blended and used, or two or more kinds of resins may be mixed.

本発明の多孔質膜の製造方法で中空糸膜を製造する場合には、まず工程(1)として、ドープを中空ノズルにより中空状に賦型したのち、疎水性ポリマーに対しては非溶媒であるが親水性ポリマーには対しては良溶媒である溶媒を含む凝固液に吐出させて、疎水性ポリマーと親水性ポリマーとを相分離させ、凝固物を形成する。吐出から凝固液に至るまでの間に、空走区間がある場合を乾湿式、空走区間が無い場合を湿式というが、本発明においてはどちらを用いても構わない。   In the case of producing a hollow fiber membrane by the method for producing a porous membrane of the present invention, as a step (1), first, after forming the dope into a hollow shape with a hollow nozzle, a hydrophobic polymer is used as a non-solvent. On the other hand, the hydrophilic polymer is discharged into a coagulation liquid containing a solvent which is a good solvent, and the hydrophobic polymer and the hydrophilic polymer are phase-separated to form a coagulated product. The case where there is an idle running section between the discharge and the coagulating liquid is referred to as dry and wet, and the case where there is no idle running section is referred to as wet, but either may be used in the present invention.

疎水性ポリマーとして、ポリフッ化ビリニデン、親水性ポリマーとしてポリビニルピロリドンを用いた場合には、共通の溶媒としてはジメチルアセトアミドが好適である。また凝固液としては、マクロボイドが形成されにくいなどの理由から、非溶媒である水と、ジメチルアセトアミドとの混合液が好適である。   When polyvinylidene fluoride is used as the hydrophobic polymer and polyvinylpyrrolidone is used as the hydrophilic polymer, dimethylacetamide is suitable as the common solvent. As the coagulation liquid, a mixed liquid of water, which is a non-solvent, and dimethylacetamide is preferable because it is difficult to form macrovoids.

工程(1)によって得られた凝固物においては、親水性ポリマーは凝固物の表層から内層まで存在しているものと考えられる。
この状態で工程(3)のみを行い、凝固物を単に水洗、あるいは酸化剤を用いた分解を行う場合には、膜内層に存在する親水性ポリマーの除去、あるいは分解・除去に長時間を要する場合がある。
しかし、工程(3)の途中にこの凝固物を乾燥させる工程(2)を導入することによって、これを短時間で効率的に行うことが可能となる。
In the coagulated product obtained by the step (1), it is considered that the hydrophilic polymer is present from the surface layer to the inner layer of the coagulated product.
If only step (3) is performed in this state and the coagulated product is simply washed with water or decomposed using an oxidizing agent, it takes a long time to remove, decompose or remove the hydrophilic polymer present in the inner layer. There is a case.
However, by introducing the step (2) for drying the solidified product in the middle of the step (3), this can be performed efficiently in a short time.

これは、膜内層に残存していた親水性ポリマーが、工程(2)によって、水の移動とともに凝固物の表層付近に移動することによるものと考えられる。この移動の程度は、凝固物の形状や、疎水性ポリマーや親水性ポリマーの性状等によって変化するが、20%以上移動するのが好ましい。より好ましくは30%以上であり、さらに好ましくは40%以上である。   This is considered to be due to the hydrophilic polymer remaining in the inner membrane layer moving to the vicinity of the surface layer of the solidified product along with the movement of water by the step (2). The degree of this movement varies depending on the shape of the solidified product, the properties of the hydrophobic polymer and hydrophilic polymer, etc., but it is preferably moved by 20% or more. More preferably, it is 30% or more, More preferably, it is 40% or more.

ここで言う乾燥とは、凝固物中に含まれる溶剤や貧溶剤などの液体物を実質的に、当初、凝固物に含まれている量に対して70質量%以下に減少させる操作である。本発明の効果を十分に発揮させるためには、これを50質量%以下に減少させることが好ましい。一方、この減少比率は、1質量%以上とするのが好ましい。これは、1質量%以上とすることによって、親水性ポリマーの凝固物表面で固化による洗浄効率の低下を防ぐことができる傾向にあるためである。より好ましくは5質量%以上である。乾燥の操作は、凝固物を加熱あるいは減圧する事により達成できる。加熱温度はポリマーの変性が生じない温度以下で行うのが好ましい。   The term “drying” as used herein refers to an operation of substantially reducing a liquid such as a solvent or a poor solvent contained in the solidified product to 70% by mass or less with respect to the amount initially contained in the solidified product. In order to exhibit the effect of this invention fully, it is preferable to reduce this to 50 mass% or less. On the other hand, this reduction ratio is preferably 1% by mass or more. This is because by setting the content to 1% by mass or more, there is a tendency that it is possible to prevent the cleaning efficiency from being reduced due to solidification on the surface of the solidified polymer. More preferably, it is 5 mass% or more. The drying operation can be achieved by heating or depressurizing the solidified product. The heating temperature is preferably not higher than the temperature at which no modification of the polymer occurs.

なお、疎水性ポリマーとして、ポリフッ化ビニリデン、親水性ポリマーとしてポリビニルピロリドンを用いる場合には、ポリビニルピロリドンの分布は、赤外吸収スペクトルによる測定やバイタルニューレッド(Vital New Red)を用いて染色することから確認できる。
赤外吸収スペクトルは、ポリフッ化ビリニデンとポリビニルピロリドンの特異的な吸収から、両ポリマーの濃度比を算出することができる。したがって凝固物の表層と内層のポリマーを採取し、測定することで、それぞれのポリビニルピロリドンの濃度を算出できる。
When polyvinylidene fluoride is used as the hydrophobic polymer and polyvinyl pyrrolidone is used as the hydrophilic polymer, the distribution of polyvinyl pyrrolidone should be measured by infrared absorption spectrum or stained using Vital New Red. It can be confirmed from.
In the infrared absorption spectrum, the concentration ratio of both polymers can be calculated from specific absorption of polyvinylidene fluoride and polyvinylpyrrolidone. Therefore, the concentration of each polyvinyl pyrrolidone can be calculated by collecting and measuring the polymer of the surface layer and the inner layer of the solidified product.

バイタルニューレッドは、ポリビニルピロリドンに吸着することが知られており、凝固物をバイタルニューレッド水溶液に浸漬させ、余分な溶液を水洗浄して除去すると、ポリビニルピロリドンが存在する箇所が赤く染色される。これを顕微鏡などで観察することで、ポリビニルピロリドンの分布を知ることができる。   Vital new red is known to be adsorbed on polyvinyl pyrrolidone, and when the coagulum is immersed in the aqueous solution of vital neured and the excess solution is washed away with water, the portion where polyvinyl pyrrolidone is present is stained red. . The distribution of polyvinyl pyrrolidone can be known by observing this with a microscope or the like.

上述のように、凝固物を乾燥させる工程(2)によって、当初凝固物の内層に存在していた親水性ポリマーを外層へ移動させることができる。よって本発明は、完全に親水性ポリマーを除去したい場合に好適である。また、連続して生産を行う場合に、処理時間を短縮できるため好適である。
一方、疎水性ポリマーがポリフッ化ビニリデンのような疎水性ポリマーの場合であって、水洗により除去、あるいは酸化剤に次亜塩素酸水溶液のような非溶媒溶液を用いて親水性ポリマーを分解・除去する場合には、除去もしくは分解・除去前に乾燥させてしまうと、親水性ポリマーが膜表層に局在化し、水や酸化剤を含んだ溶液が膜内層へ含浸しにくくなる傾向にあるため好ましくない。したがって、工程(2)は、工程(3)の途中で実施する必要がある。具体的には、まず水や酸化剤等によって凝固物表層に存在する親水性ポリマーの一部を除去もしくは分解・除去した後、これを乾燥し、さらに水や酸化剤等で再度処理するのが好ましい。
As described above, the hydrophilic polymer that was originally present in the inner layer of the coagulated product can be moved to the outer layer by the step (2) of drying the coagulated product. Therefore, the present invention is suitable when it is desired to completely remove the hydrophilic polymer. In addition, it is preferable because the processing time can be shortened when production is continuously performed.
On the other hand, when the hydrophobic polymer is a hydrophobic polymer such as polyvinylidene fluoride, it is removed by washing with water, or the hydrophilic polymer is decomposed and removed using a non-solvent solution such as a hypochlorous acid aqueous solution as an oxidizing agent. In this case, it is preferable to dry before removing or decomposing / removing, because the hydrophilic polymer is localized on the membrane surface layer and the solution containing water or an oxidizing agent tends to be difficult to impregnate the inner membrane layer. Absent. Therefore, step (2) needs to be performed in the middle of step (3). Specifically, first, after removing or decomposing / removing a part of the hydrophilic polymer existing on the surface of the coagulated product with water or an oxidizing agent, it is dried and further treated with water or an oxidizing agent again. preferable.

工程(3)の条件は、親水性ポリマーを除去することができれば特に限定はされず、例えば凝固物を酸化剤と接触させる方法が挙げられる。酸化剤の種類も特に限定はされないが、取扱い性、除去効率、コストの点で次亜塩素酸ナトリウム水溶液を用いることが好ましい。   The conditions for the step (3) are not particularly limited as long as the hydrophilic polymer can be removed, and examples thereof include a method of bringing a coagulated product into contact with an oxidizing agent. The type of the oxidizing agent is not particularly limited, but it is preferable to use a sodium hypochlorite aqueous solution from the viewpoint of handleability, removal efficiency, and cost.

次亜塩素酸ナトリウム水溶液の濃度は10〜120000mg/Lの範囲であることが好ましい。次亜塩素酸ナトリウム水溶液の濃度を10mg/L以上とすることによって、得られる多孔質膜に優れた透水流量を与えることができる傾向にある。次亜塩素酸ナトリウム水溶液の濃度に上限はないが、実用的には120000mg/Lあれば十分である。
工程(3)を行った後、例えば60℃〜100℃の熱水中で洗浄して次亜塩素酸ナトリウム水溶液や親水性ポリマーをさらに除去し、乾燥することによって多孔質膜を得ることができる。
The concentration of the sodium hypochlorite aqueous solution is preferably in the range of 10 to 120,000 mg / L. By setting the concentration of the sodium hypochlorite aqueous solution to 10 mg / L or more, an excellent water flow rate tends to be given to the obtained porous membrane. There is no upper limit to the concentration of the aqueous sodium hypochlorite solution, but 120,000 mg / L is sufficient for practical use.
After performing the step (3), for example, the porous membrane can be obtained by washing in hot water of 60 ° C. to 100 ° C. to further remove the sodium hypochlorite aqueous solution and the hydrophilic polymer and drying. .

以下実施例を基に、本発明の製造方法を更に詳しく説明する。   Hereinafter, the production method of the present invention will be described in more detail based on examples.

<実施例1>
疎水性ポリマーとして、エルフ・アトケム・ノース・アメリカ社製ポリフッ化ビリニデン、商品名:カイナー301F(230℃、5KgにおけるMFR 0.18g/10min.)と、エルフ・アトケム・ノース・アメリカ社製ポリフッ化ビリニデン、商品名:カイナー9000(230℃、5KgにおけるMFR 16−24g/10min.)を301F:9000=3:2(質量比)となるように混合したものを用い、親水性ポリマーとして、I.S.P社製ポリビニルピロリドン、商品名:K90(粘度平均分子量1200000)を用いた。
<Example 1>
As a hydrophobic polymer, poly (vinylidene fluoride) manufactured by Elf Atchem North America, Inc., trade name: Kyner 301F (MFR 0.18 g / 10 min. At 230 ° C., 5 kg), and polyfluoride manufactured by Elf Atchem North America, Inc. Virinidene, trade name: Kyner 9000 (MFR 16-24 g / 10 min. At 230 ° C., 5 kg) mixed at 301 F: 9000 = 3: 2 (mass ratio), I. S. Polyvinylpyrrolidone manufactured by P Company, trade name: K90 (viscosity average molecular weight 1200000) was used.

これらのポリマーを、疎水性ポリマー:親水性ポリマー:ジメチルアセトアミド=18:9:73(質量比)となるように、50℃で4時間攪拌してジメチルアセトアミドに溶解させ、ドープとした。このドープを30℃の温度で、スライドグラス上に固定された、厚さ1mmのシリコンゴムプレートに設けられた直径8mmの穴に流し込み、シリコンゴムプレートと共に、70℃に保持したジメチルアセトアミド10%水溶液(凝固液)に10分間浸漬し、凝固させた。   These polymers were stirred at 50 ° C. for 4 hours so as to be hydrophobic polymer: hydrophilic polymer: dimethylacetamide = 18: 9: 73 (mass ratio) and dissolved in dimethylacetamide to obtain a dope. The dope was poured at a temperature of 30 ° C. into a hole with a diameter of 8 mm provided on a silicon rubber plate having a thickness of 1 mm fixed on a slide glass, and a 10% aqueous solution of dimethylacetamide maintained at 70 ° C. with the silicon rubber plate. It was immersed in (coagulating liquid) for 10 minutes and solidified.

次に凝固液からシリコンゴムプレートを取り出し、これから凝固物を取り出した後、25℃の水に10分間浸漬させ、ジメチルアセトアミドを洗浄した。この凝固物を0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に45分間浸漬させた。
次に、凝固物を乾燥機で70℃、60分間乾燥させ、さらに0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に45分間浸漬させ、その後、2時間注水洗浄(25℃)を行い、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
Next, the silicon rubber plate was taken out from the coagulation solution, and the coagulated product was taken out from the plate, and then immersed in water at 25 ° C. for 10 minutes to wash dimethylacetamide. This solidified product was immersed in a 0.3% by mass aqueous sodium hypochlorite solution (25 ° C.) for 45 minutes.
Next, the coagulated product was dried at 70 ° C. for 60 minutes with a dryer, and further immersed in a 0.3% by mass aqueous sodium hypochlorite solution (25 ° C.) for 45 minutes, and then rinsed with water for 2 hours (25 ° C.). And dried with a dryer at 70 ° C. overnight to obtain a porous film.

こうして得られた多孔質膜内部に残存しているポリビニルピロリドンを、赤外吸収スペクトルを用いて測定した。測定方法は以下の通りである。
1.乾燥させた多孔質膜をジメチルアセトアミドに溶解させ、その一部を採取し、70℃に加熱したスライドグラス上にキャストさせ、ジメチルアセトアミドを蒸発させ、厚さ約20μmの薄膜を作製した。
2.この薄膜を真空乾燥機で一晩乾燥させ、赤外吸収スペクトル(Nicolet社製Magna860使用)を測定し、ポリフッ化ビリニデン・ポリビニルピロリドンに起因する吸光度比から膜内層に残存するポリビニルピロリドン濃度を算出した。
The polyvinylpyrrolidone remaining inside the porous membrane thus obtained was measured using an infrared absorption spectrum. The measuring method is as follows.
1. The dried porous membrane was dissolved in dimethylacetamide, a part of it was collected and cast on a slide glass heated to 70 ° C., and dimethylacetamide was evaporated to produce a thin film having a thickness of about 20 μm.
2. This thin film was dried overnight in a vacuum dryer, an infrared absorption spectrum (using Migna 860 manufactured by Nicolet) was measured, and the concentration of polyvinylpyrrolidone remaining in the inner layer was calculated from the absorbance ratio caused by polyvinylidene fluoride / polyvinylpyrrolidone. .

その結果、多孔質膜に残存したポリビニルピロリドン質量濃度は1.8%であった。   As a result, the mass concentration of polyvinyl pyrrolidone remaining in the porous film was 1.8%.

<実施例2>
実施例1と同様の方法で作製したドープを用い、二環状ノズルから30℃で吐出させ、ノズル上部から導入したポリエステルマルチフィラメント単織組紐(マルチフィラメント:トータルデシテックス830/96フィラメント、16打ち)に塗布した後、ノズル吐出面から4cm下方に設置した、70℃に保持したジメチルアセトアミド10%水溶液(凝固液)に導き凝固させた。
そして、凝固物が付着した組紐を、異なる二環状ノズル上部から導入し、同様の条件でドープをもう一度塗布し、ノズル吐出面から2cm下方に設置した、同条件の凝固液に導き凝固させ、多孔質層を2層有する凝固物を得た。その後、沸水洗浄を行い、ジメチルアセトアミドを除去した。
<Example 2>
Polyester multifilament single woven braid (multifilament: total decitex 830/96 filament, 16 strokes) discharged from a bicyclic nozzle at 30 ° C. using a dope produced by the same method as in Example 1 and introduced from the top of the nozzle After coating, the mixture was introduced into a 10% aqueous solution of dimethylacetamide (coagulation solution) maintained at 70 ° C., which was placed 4 cm below the nozzle discharge surface, and solidified.
Then, the braid to which the coagulated material is adhered is introduced from the upper part of different bicyclic nozzles, and the dope is applied again under the same conditions, and is guided and coagulated to the coagulation liquid of the same conditions placed 2 cm below the nozzle discharge surface. A coagulated product having two quality layers was obtained. Thereafter, boiling water washing was performed to remove dimethylacetamide.

この凝固物を、実施例1と同様の条件で、次亜塩素酸ナトリウム水溶液浸漬、乾燥、次亜塩素酸ナトリウム水溶液浸漬、水洗、乾燥を行って多孔質膜を得た。多孔質膜(組紐を含まない)に残存したポリビニルピロリドン質量濃度は5.5%であった。   Under the same conditions as in Example 1, this coagulated product was immersed in a sodium hypochlorite aqueous solution, dried, immersed in a sodium hypochlorite aqueous solution, washed with water, and dried to obtain a porous membrane. The mass concentration of polyvinyl pyrrolidone remaining in the porous membrane (excluding braid) was 5.5%.

また、上記の多孔質層を2層有する凝固物を用いて、乾燥によるポリビニルピロリドンの移動を測定した(この測定においては、次亜塩素酸ナトリウム水溶液による処理は行わない)。
その結果、得られた凝固物の沸水洗浄直後(乾燥前)においては、内側の多孔質層にポリビニルピロリドンの70%が存在し、外側の多孔質層にはその30%が存在していた。
一方、これをさらに乾燥機により70℃、一晩乾燥させた後においては、ポリビニルピロリドンの存在比率が、内側の多孔質層が38%、外側の多孔質層が62%に変化していた。
Moreover, the movement of polyvinylpyrrolidone by drying was measured using a coagulated product having two porous layers (in this measurement, treatment with an aqueous sodium hypochlorite solution was not performed).
As a result, immediately after the obtained coagulated product was washed with boiling water (before drying), 70% of polyvinylpyrrolidone was present in the inner porous layer, and 30% was present in the outer porous layer.
On the other hand, after this was further dried at 70 ° C. overnight by a dryer, the abundance ratio of polyvinylpyrrolidone was changed to 38% for the inner porous layer and 62% for the outer porous layer.

<実施例3>
実施例1と同様の疎水性ポリマーを用い、親水性ポリマーとして、I.S.P社製ポリビニルピロリドン、商品名:K30(粘度平均分子量40000)を用いた。
これらのポリマーを、実施例1と同様の方法でドープを作製し、同様の方法で凝固物を得た。
これらの凝固物を、25℃の水に60分間浸漬させ洗浄を行った後に、乾燥機で70℃、60分間乾燥させ、その後25℃の水に60分間浸漬させ洗浄を行った。その後、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。多孔質膜に残存したポリビニルピロリドン質量濃度は5.7%であった。
<Example 3>
The same hydrophobic polymer as in Example 1 was used. S. Polyvinylpyrrolidone manufactured by P Company, trade name: K30 (viscosity average molecular weight 40000) was used.
A dope was produced from these polymers in the same manner as in Example 1, and a coagulated product was obtained in the same manner.
These coagulated materials were washed by immersing them in water at 25 ° C. for 60 minutes, then dried in a dryer at 70 ° C. for 60 minutes, and then immersed in water at 25 ° C. for 60 minutes for washing. Then, it was made to dry at 70 degreeC with a dryer overnight, and the porous membrane was obtained. The mass concentration of polyvinylpyrrolidone remaining in the porous membrane was 5.7%.

<比較例1>
実施例1と同様にして凝固物を得た後、25℃の水に10分間浸漬させ、ジメチルアセトアミドを洗浄した。次に0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に90分間浸漬させた。その後、2時間注水洗浄(25℃)を行い、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
多孔質膜に残存したポリビニルピロリドン質量濃度は6.4%であった。
<Comparative Example 1>
After obtaining a coagulated product in the same manner as in Example 1, it was immersed in water at 25 ° C. for 10 minutes to wash dimethylacetamide. Next, it was immersed for 90 minutes in 0.3 mass% sodium hypochlorite aqueous solution (25 degreeC). Thereafter, water washing (25 ° C.) was performed for 2 hours, followed by drying overnight at 70 ° C. with a dryer to obtain a porous film.
The polyvinylpyrrolidone mass concentration remaining in the porous membrane was 6.4%.

<比較例2>
実施例2と同様にして凝固物を得た後、沸水洗浄を行い、ジメチルアセトアミドを洗浄した。次に0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に90分間浸漬させた。その後、2時間注水洗浄(25℃)を行い、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
この多孔質膜に残存したポリビニルピロリドン質量濃度は8.3%であった。
<Comparative example 2>
After obtaining a coagulated product in the same manner as in Example 2, washing with boiling water was performed to wash dimethylacetamide. Next, it was immersed for 90 minutes in 0.3 mass% sodium hypochlorite aqueous solution (25 degreeC). Thereafter, water washing (25 ° C.) was performed for 2 hours, followed by drying overnight at 70 ° C. with a dryer to obtain a porous film.
The mass concentration of polyvinyl pyrrolidone remaining in the porous membrane was 8.3%.

<比較例3>
実施例3と同様にして凝固物を得た後、水(25℃)に120分間浸漬させ、ジメチルアセトアミドを洗浄した。その後、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
この多孔質膜に残存したポリビニルピロリドン質量濃度は9.6%であった。
<Comparative Example 3>
After obtaining a coagulated product in the same manner as in Example 3, it was immersed in water (25 ° C.) for 120 minutes to wash dimethylacetamide. Then, it was made to dry at 70 degreeC with a dryer overnight, and the porous membrane was obtained.
The mass concentration of polyvinyl pyrrolidone remaining in the porous membrane was 9.6%.

<比較例4>
実施例1と同様にして凝固物を得た後、25℃の水に10分間浸漬させ、ジメチルアセトアミドを洗浄した。次に、乾燥機で70℃、60分間乾燥させた後、0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に90分間浸漬させた。その後、2時間注水洗浄(25℃)を行い、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
この多孔質膜に残存したポリビニルピロリドン質量濃度は11.3%であった。
<Comparative example 4>
After obtaining a coagulated product in the same manner as in Example 1, it was immersed in water at 25 ° C. for 10 minutes to wash dimethylacetamide. Next, after drying at 70 ° C. for 60 minutes with a drier, it was immersed in a 0.3 mass% sodium hypochlorite aqueous solution (25 ° C.) for 90 minutes. Thereafter, water washing (25 ° C.) was performed for 2 hours, followed by drying overnight at 70 ° C. with a dryer to obtain a porous film.
The polyvinylpyrrolidone mass concentration remaining in the porous film was 11.3%.

<比較例5>
実施例2と同様にして凝固物を得た後、沸水洗浄を行い、ジメチルアセトアミドを洗浄した。次に、乾燥機で70℃、60分間乾燥させた後、0.3質量%の次亜塩素酸ナトリウム水溶液(25℃)に90分間浸漬させた。その後、2時間注水洗浄(25℃)を行い、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
この多孔質膜(組紐を含まない)に残存したポリビニルピロリドン質量濃度は13.5%であった。
<Comparative Example 5>
After obtaining a coagulated product in the same manner as in Example 2, washing with boiling water was performed to wash dimethylacetamide. Next, after drying at 70 ° C. for 60 minutes with a drier, it was immersed in a 0.3 mass% sodium hypochlorite aqueous solution (25 ° C.) for 90 minutes. Thereafter, water washing (25 ° C.) was performed for 2 hours, followed by drying overnight at 70 ° C. with a dryer to obtain a porous film.
The polyvinylpyrrolidone mass concentration remaining in this porous membrane (excluding braid) was 13.5%.

<比較例6>
実施例3と同様にして凝固物を得た後、乾燥機で70℃、60分間乾燥させ、さらに25℃の水に120分間浸漬させ洗浄を行った。その後、乾燥機により70℃、一晩乾燥させて多孔質膜を得た。
この多孔質膜に残存したポリビニルピロリドン質量濃度は15.4%であった。


<Comparative Example 6>
After a coagulated product was obtained in the same manner as in Example 3, it was dried with a dryer at 70 ° C. for 60 minutes, and further immersed in water at 25 ° C. for 120 minutes for washing. Then, it was made to dry at 70 degreeC with a dryer overnight, and the porous membrane was obtained.
The mass concentration of polyvinyl pyrrolidone remaining in the porous film was 15.4%.


Claims (3)

疎水性ポリマーと親水性ポリマーを含むドープを凝固させて凝固物を得る工程(1)を有するとともに、該凝固物を乾燥させる工程(2)を該凝固物から該親水性ポリマーの少なくとも一部を除去する工程(3)の途中に有する、多孔質膜の製造方法。 A step (1) of coagulating a dope containing a hydrophobic polymer and a hydrophilic polymer to obtain a coagulated product, and the step (2) of drying the coagulated product from at least a part of the hydrophilic polymer from the coagulated product; A method for producing a porous membrane, which is provided in the middle of the removing step (3). 前記疎水性ポリマーがポリフッ化ビニリデンである、請求項1記載の多孔質膜の製造方法。 The method for producing a porous membrane according to claim 1, wherein the hydrophobic polymer is polyvinylidene fluoride. 前記親水性ポリマーがポリビニルピロリドンである、請求項1または2記載の多孔質膜の製造方法。

The method for producing a porous membrane according to claim 1 or 2, wherein the hydrophilic polymer is polyvinylpyrrolidone.

JP2005005520A 2004-01-19 2005-01-12 Method for producing porous membrane Expired - Fee Related JP4502324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005520A JP4502324B2 (en) 2004-01-19 2005-01-12 Method for producing porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011030 2004-01-19
JP2005005520A JP4502324B2 (en) 2004-01-19 2005-01-12 Method for producing porous membrane

Publications (2)

Publication Number Publication Date
JP2005230811A true JP2005230811A (en) 2005-09-02
JP4502324B2 JP4502324B2 (en) 2010-07-14

Family

ID=35014300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005520A Expired - Fee Related JP4502324B2 (en) 2004-01-19 2005-01-12 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP4502324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010690A1 (en) * 2009-07-22 2011-01-27 三菱レイヨン株式会社 Process for producing porous film
JP2011200799A (en) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp Method for producing porous membrane and porous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317664A (en) * 1992-05-22 1993-12-03 Kuraray Co Ltd Porous hollow fiber membrane
JPH06165926A (en) * 1992-04-29 1994-06-14 Kuraray Co Ltd Polysulfone hollow fabric membrane and production therefor
JP3551971B1 (en) * 2003-11-26 2004-08-11 東洋紡績株式会社 Polysulfone permselective hollow fiber membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165926A (en) * 1992-04-29 1994-06-14 Kuraray Co Ltd Polysulfone hollow fabric membrane and production therefor
JPH05317664A (en) * 1992-05-22 1993-12-03 Kuraray Co Ltd Porous hollow fiber membrane
JP3551971B1 (en) * 2003-11-26 2004-08-11 東洋紡績株式会社 Polysulfone permselective hollow fiber membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010690A1 (en) * 2009-07-22 2011-01-27 三菱レイヨン株式会社 Process for producing porous film
JPWO2011010690A1 (en) * 2009-07-22 2013-01-07 三菱レイヨン株式会社 Method for producing porous membrane
KR101342187B1 (en) * 2009-07-22 2013-12-16 미쯔비시 레이온 가부시끼가이샤 Process for producing porous film
JP5569393B2 (en) * 2009-07-22 2014-08-13 三菱レイヨン株式会社 Method for producing porous membrane
JP2011200799A (en) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp Method for producing porous membrane and porous membrane

Also Published As

Publication number Publication date
JP4502324B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101462939B1 (en) Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
KR102231827B1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
KR101752981B1 (en) Process for production of porous membrane
KR20100114808A (en) Method for asymmetric microporous hollow fiber membrane
KR101738976B1 (en) polyvinylidene fluoride hollow fiber membrane and manufacturing method thereof
EP1080777A1 (en) Ultrafiltration membrane and method for producing the same, dope composition used for the same
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
KR101939328B1 (en) Hollow Fiber Membrane Having Novel Structure and Method of Preparing the Same
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
JP6184049B2 (en) Porous membrane and method for producing the same
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP4502324B2 (en) Method for producing porous membrane
KR101308998B1 (en) The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment
JP4803697B2 (en) Method for producing porous membrane
JP2005296849A (en) Manufacturing method of porous film
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JPH0929078A (en) Production of hollow yarn membrane
KR20070102011A (en) Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes
WO2011010690A1 (en) Process for producing porous film
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
KR20130047226A (en) Pvdf membrane for water treatment improving membrane properties and manufacturing method thereof
KR20070094185A (en) Method for manufacturing hollow fiber membrane
JP2012106235A (en) Porous membrane, resin solution and method for manufacturing porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

R151 Written notification of patent or utility model registration

Ref document number: 4502324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees