JPH05159697A - Ti-w non-evaporating type getter - Google Patents

Ti-w non-evaporating type getter

Info

Publication number
JPH05159697A
JPH05159697A JP32324591A JP32324591A JPH05159697A JP H05159697 A JPH05159697 A JP H05159697A JP 32324591 A JP32324591 A JP 32324591A JP 32324591 A JP32324591 A JP 32324591A JP H05159697 A JPH05159697 A JP H05159697A
Authority
JP
Japan
Prior art keywords
getter
powder
particle size
binder
type getter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32324591A
Other languages
Japanese (ja)
Inventor
Shigeru Sumikake
繁 角掛
Nobuo Ito
伸夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP32324591A priority Critical patent/JPH05159697A/en
Publication of JPH05159697A publication Critical patent/JPH05159697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To provide a high density Ti-W non-evaporating type getter excellent in gas absorbing performance which can be manufactured without using a binder. CONSTITUTION:A Ti-W non-evaporating type getter is made of a pressurized molded body of 1-30wt.% of Ti powder having a grain size less than 43mum and 99-70wt.% of W powder having a grain size of 104-403mum, or it is formed by baking the pressurized molded body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空容器中のガス吸着
などのために用いられるゲッターに関し、特にゲッター
材としてバインダーを用いなくても、高密度で、しかも
高いガス吸着能力を有するTi−W系非蒸発型ゲッター
について提案する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a getter used for adsorbing a gas in a vacuum container, and in particular, Ti-having a high density and a high gas adsorbing ability without using a binder as a getter material. We propose a W non-evaporable getter.

【0002】[0002]

【従来の技術】一般に、ゲッターは、真空管や魔法瓶な
どのような真空容器内を真空にするために、それらの内
部に直接もしくは間接に取付けて使用されるものであ
る。例えば、ゲッター材を円筒状に成形し、これをラン
プ内の放電電極に被せるようにして取付けた例、ストリ
ップ状に形成したゲッターを、スポット溶接によって魔
法瓶内部に取付けるか、あるいはタブレット状のゲッタ
ーを取付け容器に入れて、魔法瓶の内部に取付けるよう
にした例が汎用的な使途である。
2. Description of the Related Art Generally, getters are used by being directly or indirectly attached to the inside of a vacuum vessel such as a vacuum tube or a thermos to create a vacuum. For example, a getter material is formed into a cylindrical shape, and is attached so as to cover the discharge electrode in the lamp.A strip-shaped getter is attached inside the thermos by spot welding, or a tablet-shaped getter is attached. A general purpose is to put it in a container and attach it inside the thermos.

【0003】このようなゲッターには、バリウム系の如
き真空容器内で蒸発する「蒸発型」と呼ばれるものと、
Zr, Ti系に代表される「非蒸発型」と言われているもの
とがあり、用途に応じて使い分けられている。最近で
は、それの取扱いが簡単で吸着能力が大きく、しかも真
空容器内を汚染することのない非蒸発型ゲッターと呼ば
れているものが重用されつつある。
Such getters include those called "evaporation type" which evaporate in a vacuum container such as barium.
There are some that are called "non-evaporable type" such as Zr and Ti, and they are used properly according to the application. Recently, what is called a non-evaporable getter, which is easy to handle, has a large adsorption capacity, and does not contaminate the inside of a vacuum container, has been increasingly used.

【0004】ところで、この非蒸発型ゲッターに使用さ
れる金属または合金としては、純Ti, Zr2Ni , Fe−Zr,
Zr−V系の金属または合金が知られている。その他、T
i−W系粉末成形体が考慮されている。
By the way, as the metal or alloy used for this non-evaporable getter, pure Ti, Zr 2 Ni, Fe-Zr,
Zr-V type metals or alloys are known. Others, T
iW powder compacts are considered.

【0005】しかしながら、Ti粉末およびW粉末は、共
に2〜30μmまで粉砕すると、粉末の流動性が著しく悪
化し、加圧成型の際に、Ti−W粉末を型枠内に均一か
つ連続的に充填することが不可能になる。一方、これら
の粉末の流動性を確保するために、粉末粒度を 100μm
程度に抑えると、成形体の保型性が悪くなり、また、成
形体の密度が小さくなりすぎるため、ゲッターのガス吸
着能力が低下し実用的ではなかった。
However, when both Ti powder and W powder are pulverized to 2 to 30 μm, the fluidity of the powder is significantly deteriorated, and the Ti-W powder is uniformly and continuously placed in the mold during pressure molding. It becomes impossible to fill. On the other hand, in order to ensure the fluidity of these powders, the powder particle size is 100 μm.
When the content is suppressed to a certain level, the shape retention of the molded product deteriorates, and the density of the molded product becomes too small, so that the gas adsorbing ability of the getter decreases, which is not practical.

【0006】これに対し、従来、Ti−W粉末を高密度
に成型し、ゲッターとして有効に利用する技術として、
ステアリン酸等の有機系バインダーによる混練や整粒工
程を行い、粉末の流動性を確保し、加圧成型し、必要に
より焼成する方法があった。
On the other hand, in the past, as a technique for forming a high density of Ti-W powder and effectively using it as a getter,
There has been a method in which kneading with an organic binder such as stearic acid and a particle size controlling step are performed to secure the fluidity of the powder, pressure molding is performed, and firing is performed as necessary.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述の如き
従来方法によって製造したゲッターは、焼成後にゲッタ
ーに残留した有機系バインダー中のカーボン等が使用開
始後に飛散し、真空容器内のガラス内面を汚染するとい
う問題があった。
However, in the getter manufactured by the conventional method as described above, carbon or the like in the organic binder remaining in the getter after firing scatters after the start of use and contaminates the inner surface of the glass in the vacuum container. There was a problem to do.

【0008】本発明の目的は、上記問題点の原因である
バインダーを使用することなく製造でき、一方でこのよ
うにして製造されたものが、高密度を有し、しかもガス
吸着能力の優れるTi−W系非蒸発型ゲッターを提供す
ることにある。
The object of the present invention is that Ti can be produced without using the binder causing the above problems, while the Ti produced in this way has a high density and is excellent in gas adsorption capacity. -To provide a W-based non-evaporable getter.

【0009】[0009]

【課題を解決するための手段】上述の如き目的実現のた
めに、本発明者らは鋭意研究した結果、バインダーを用
いなくても高密度化できるTi−W混合粉末の好適な粒
度分布を見出し、以下のような発明に想到した。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies and found a suitable particle size distribution of a Ti-W mixed powder that can be densified without using a binder. The present invention has been conceived as follows.

【0010】すなわち、本発明は、粒径43μm以下のT
i 粉末1〜30wt%と、粒径 104〜43μmのW粉末99〜70
wt%との加圧成型体からなるTi−W系非蒸発型ゲッタ
ー、および、前記加圧成型体を焼成してなるTi−W系
非蒸発型ゲッターである。
That is, according to the present invention, T having a particle size of 43 μm or less is used.
i powder 1 ~ 30wt%, W powder 99 ~ 70 with particle size 104 ~ 43μm
The Ti-W-based non-evaporable getter made of a pressure-molded body and the Ti-W-based non-evaporable getter obtained by firing the pressure-molded body.

【0011】[0011]

【作用】本発明の特徴は、Ti−W系ゲッターが、粒径
43μm以下であるTi 粉末1〜30wt%と、粒径104 〜43
μmであるW粉末99〜70wt%の混合物からなることにあ
る。このような粒度構成のTi −W混合粉末によれば、
粉体の流動性が改善され、プレス成型機の型枠への充填
が容易となり、バインダーを使用しなくても高密度のゲ
ッターを得ることができるからである。従って、本発明
のゲッターは、バインダーを用いていないので、有機系
バインダーによる混練や整粒工程を省略することがで
き、しかも、バインダーの蒸発による真空容器内の汚染
も解消できる。
The feature of the present invention is that the Ti-W type getter has
1 to 30 wt% of Ti powder having a size of 43 μm or less and a particle size of 104 to 43
It consists of a mixture of 99-70 wt% W powder which is μm. According to the Ti-W mixed powder having such a particle size configuration,
This is because the fluidity of the powder is improved, it becomes easy to fill the mold of the press molding machine, and a getter having a high density can be obtained without using a binder. Therefore, since the getter of the present invention does not use a binder, it is possible to omit the kneading and sizing steps with an organic binder, and to eliminate the contamination in the vacuum container due to the evaporation of the binder.

【0012】ここで、各粉体が、上記のような粒度分布
のものに限定される理由は、Ti 粉末の粒度が43μmを
超えると、粒子が粗すぎて所望の密度が得られず、ま
た、W粉末の粒度が43μm未満の場合は流動性が悪く、
104 μm超の場合は粒子が粗すぎて所望の密度が得られ
ないからである。
The reason why each powder is limited to the one having the above-mentioned particle size distribution is that if the particle size of the Ti powder exceeds 43 μm, the particles are too coarse and the desired density cannot be obtained. , W powder with a particle size of less than 43 μm has poor fluidity,
This is because if it exceeds 104 μm, the particles are too coarse to obtain the desired density.

【0013】なお、従来のゲッターでは、バインダー成
分の揮散による汚染のため、ガス吸着の使用上限温度が
500℃であったのに対し、本発明のゲッターは、バイン
ダーを使用していないので、800 ℃まで活性化およびガ
ス吸着が可能となる。
In the conventional getter, the upper limit temperature for gas adsorption is higher because of the pollution caused by the volatilization of the binder component.
In contrast to the temperature of 500 ° C, the getter of the present invention does not use a binder, so activation and gas adsorption are possible up to 800 ° C.

【0014】[0014]

【実施例】20wt%のTi 粉末 (純度99.7%, 粒度43μm
ふるい下) と、80wt%のW粉末(純度99.9%, 粒度43〜
104 μm) とを混合し、プレス機を用いて、5t/cm2の圧
力で、外径 1.6mm, 内径0.85mm, 長さ1.4 mmの円筒状の
タブレットを加圧成型し、焼結してTi−W系ゲッター
を得た。図3に、Ti 粉末とW粉末との混合粉末の粒度
分布を示す。本発明の条件を満足する粒度のバラツキを
持つものである。なお、表1に、粒度分布を示す。
Example: 20 wt% Ti powder (purity 99.7%, particle size 43 μm
80% by weight W powder (purity 99.9%, particle size 43 ~
104 μm), and using a press machine, press-mold a cylindrical tablet with an outer diameter of 1.6 mm, an inner diameter of 0.85 mm, and a length of 1.4 mm at a pressure of 5 t / cm 2 , and sinter it. A Ti-W getter was obtained. FIG. 3 shows the particle size distribution of the mixed powder of Ti powder and W powder. It has a variation in particle size that satisfies the conditions of the present invention. Table 1 shows the particle size distribution.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、得られた上記非蒸発型ゲッターを1
Torr以下の真空下、 800℃の温度で10分間加熱し、活性
化し、常温に冷却した。このゲッター成型体について、
単位重量当たりのH2 ガス吸着量およびガスの吸着速度
を測定した。その結果を図1に、得られた成型体の諸特
性と併せて示す。
Next, the obtained non-evaporable getter is
It was heated at a temperature of 800 ° C for 10 minutes under a vacuum of Torr or lower, activated, and cooled to room temperature. About this getter molded body,
The H 2 gas adsorption amount per unit weight and the gas adsorption rate were measured. The results are shown in FIG. 1 together with various characteristics of the obtained molded body.

【0017】また、図2には、上記のゲッターを1Torr
以下の真空下で、 800℃で10分間加熱し、その後、 450
℃まで冷却した後、単位重量当たりのCOガス吸着量お
よびガス吸着速度を測定した。この時、COガスの圧力
は 3.0×10-6Torrとした。
Further, in FIG. 2, the getter described above is 1 Torr.
Heat at 800 ° C for 10 minutes under the following vacuum, then 450
After cooling to 0 ° C, the CO gas adsorption amount per unit weight and the gas adsorption rate were measured. At this time, the pressure of CO gas was 3.0 × 10 −6 Torr.

【0018】表2に、上記ゲッターについての測定した
諸特性を示したが、水素吸着量, CO吸着量ともに、通
常のZr系ゲッターと同等以上の性能を示していることが
明らかである。
Table 2 shows the measured characteristics of the getter, and it is clear that both the hydrogen adsorption amount and the CO adsorption amount show the performance equal to or higher than that of a normal Zr-based getter.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
Ti−W混合粉の粒度分布を所定の範囲に調整すること
により、バインダーを使用しなくとも、ガス吸着量の大
きいTi−W系非蒸発型ゲッターを安定して製造するこ
とができる。
As described above, according to the present invention,
By adjusting the particle size distribution of the Ti-W mixed powder within a predetermined range, a Ti-W-based non-evaporable getter having a large gas adsorption amount can be stably manufactured without using a binder.

【0021】なお、本発明のTi−W系ゲッターは、バ
インダーの揮散がないので、使用開始後、ガラス内面を
汚染することはない。
Since the Ti-W type getter of the present invention does not vaporize the binder, it does not contaminate the inner surface of the glass after the start of use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明Ti−W系ゲッターのH2ガス吸着量と吸
着速度との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the adsorption amount of H 2 gas and the adsorption rate of the Ti—W-based getter of the present invention.

【図2】本発明Ti−W系ゲッターのCOガス吸着量と吸
着速度との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the CO gas adsorption amount and adsorption rate of the Ti—W-based getter of the present invention.

【図3】実施例で用いた混合粉末の粒度分布図である。FIG. 3 is a particle size distribution diagram of the mixed powder used in the examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径43μm以下のTi 粉末1〜30wt%
と、粒径 104〜43μmのW粉末99〜70wt%との加圧成形
体からなるTi−W系非蒸発型ゲッター。
1. Ti powder having a particle size of 43 μm or less 1 to 30 wt%
And a Ti-W-based non-evaporable getter, which is a pressure-molded body of 99-70 wt% W powder having a particle size of 104-43 μm.
【請求項2】 請求項1に記載の加圧成型体を焼成して
なることを特徴とするTi−W系非蒸発型ゲッター。
2. A Ti—W-based non-evaporable getter obtained by firing the pressure-molded body according to claim 1.
JP32324591A 1991-12-06 1991-12-06 Ti-w non-evaporating type getter Pending JPH05159697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32324591A JPH05159697A (en) 1991-12-06 1991-12-06 Ti-w non-evaporating type getter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32324591A JPH05159697A (en) 1991-12-06 1991-12-06 Ti-w non-evaporating type getter

Publications (1)

Publication Number Publication Date
JPH05159697A true JPH05159697A (en) 1993-06-25

Family

ID=18152627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32324591A Pending JPH05159697A (en) 1991-12-06 1991-12-06 Ti-w non-evaporating type getter

Country Status (1)

Country Link
JP (1) JPH05159697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666150C1 (en) * 2017-12-28 2018-09-06 Акционерное общество "Рязанский завод металлокерамических приборов" (АО "РЗМКП") Method of manufacturing of high voltage vacuum contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666150C1 (en) * 2017-12-28 2018-09-06 Акционерное общество "Рязанский завод металлокерамических приборов" (АО "РЗМКП") Method of manufacturing of high voltage vacuum contact

Similar Documents

Publication Publication Date Title
RU2147386C1 (en) Compound of materials for low-temperature initiation of gas-absorbing material activation process and gas-absorbing means containing it
US6277326B1 (en) Process for liquid-phase sintering of a multiple-component material
RU2388839C2 (en) Non evaporating gas absorbing alloys for hydrogen trapping
US3733194A (en) Mercury generation
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
US5830026A (en) Mercury dispensing device
CN104335316B (en) It is particularly well-suited to the non-vapo(u)rability getter alloys of hydrogen and N2 adsorption
US4146497A (en) Supported getter
CN109023004B (en) Plasma tungsten-containing single-phase refractory high-entropy alloy and preparation method thereof
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
US7927167B2 (en) Getter material and evaporable getter device using the same, and electron tube
JPH05159697A (en) Ti-w non-evaporating type getter
JP2007107056A (en) Method for producing metal powder essentially composed of nb or ta
JPH0475304B2 (en)
JP7153729B2 (en) Sputtering target and magnetic film
EP3405591B1 (en) Non-evaporable getter alloys particularly suitable for hydrogen and carbon monoxide sorption
JP4033587B2 (en) Molded product for getter and method for producing the same
CN111342346A (en) Element with functions of absorbing and releasing hydrogen and adsorbing impurity gas and preparation method thereof
JPH05101750A (en) Manufacture of electrode material
JPS648063B2 (en)
KR100721229B1 (en) Fabrication of getter
JP2815124B2 (en) Method for producing hydrogen storage metal body
US3172761A (en) Specimen b of tables
JPH1030136A (en) Manufacture of sintered titanium alloy
JP2790598B2 (en) Method for producing hydrogen storage alloy member