JP2790598B2 - Method for producing hydrogen storage alloy member - Google Patents

Method for producing hydrogen storage alloy member

Info

Publication number
JP2790598B2
JP2790598B2 JP5159937A JP15993793A JP2790598B2 JP 2790598 B2 JP2790598 B2 JP 2790598B2 JP 5159937 A JP5159937 A JP 5159937A JP 15993793 A JP15993793 A JP 15993793A JP 2790598 B2 JP2790598 B2 JP 2790598B2
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
storage alloy
mixed
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5159937A
Other languages
Japanese (ja)
Other versions
JPH06346167A (en
Inventor
国昭 渡辺
政夫 松山
正太郎 諸住
俊樹 兜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEIKOSHO KK
Original Assignee
NIPPON SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEIKOSHO KK filed Critical NIPPON SEIKOSHO KK
Priority to JP5159937A priority Critical patent/JP2790598B2/en
Publication of JPH06346167A publication Critical patent/JPH06346167A/en
Application granted granted Critical
Publication of JP2790598B2 publication Critical patent/JP2790598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素と可逆的に反応し
て、水素を吸収、放出する水素吸蔵合金を用いた水素吸
蔵合金部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention, hydrogen and reversibly react absorb hydrogen, to a method for manufacturing a hydrogen storage alloy member using a hydrogen storage alloy that releases.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金における水素の吸
収、放出を効率的に行なわせるように、水素吸蔵合金を
多孔体状にして使用する方法が提案されている。このよ
うな多孔体を粉末冶金法によって製造する際には、通
常、水素吸蔵合金粉末の粒形や粒度を制御して、特定寸
法の粒径を有する粉末を選別し、必要に応じては重炭酸
アンモニウム(融点(急速加熱)107.5℃、36〜
60℃で分解開始)やステアリン酸亜鉛(融点120
℃、ステアリン酸自身の分解380℃)などの造孔剤を
加えて、加圧力や焼結温度を調整しながら焼結製品の多
孔率を制御している。
2. Description of the Related Art Conventionally, there has been proposed a method in which a hydrogen storage alloy is used in a porous form so as to efficiently absorb and release hydrogen in the hydrogen storage alloy. When such a porous body is manufactured by a powder metallurgy method, usually, the particle shape and the particle size of the hydrogen storage alloy powder are controlled to select a powder having a particle size of a specific size, and if necessary, a weight is selected. Ammonium carbonate (melting point (rapid heating) 107.5 ° C, 36 ~
Decomposition starts at 60 ° C) and zinc stearate (melting point 120
C., 380.degree. C. of decomposition of stearic acid itself), and the porosity of the sintered product is controlled by adjusting the pressing force and the sintering temperature.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の方法
では、加圧力を増した場合には、気孔径が小さくなった
り気孔率が低下したりするので、十分な多孔率を得るた
めには加圧力を低く設定しなければならない。しかし、
原料粉末に十分な圧力を加えることができないと、焼結
前の成形体の強度が低くなり、保型性が悪くて製造が困
難になる場合があり、また、水素吸蔵合金の焼結性が良
好でないことと相まって、得られた焼結製品の機械的性
質は良好ではない。また、水素吸蔵合金は水素の吸収、
放出を繰返すうちに脆くなって微粉化し、さらにこれが
飛散するという問題がある。本願発明は上記事情を背景
としてなされたものであり、水素吸蔵合金をカプセル化
して機械的特性を改善し、さらに耐微粉化性等を向上さ
せた水素吸蔵合金部材およびその製造方法を提供するも
のである。
However, in the conventional method, when the pressure is increased, the pore diameter becomes smaller or the porosity decreases. The pressure must be set low. But,
If sufficient pressure cannot be applied to the raw material powder, the strength of the molded body before sintering will be low, the shape retention will be poor and production may be difficult, and the sinterability of the hydrogen storage alloy may be reduced. Coupled with the poor, the mechanical properties of the resulting sintered product are not good. In addition, hydrogen storage alloy absorbs hydrogen,
There is a problem in that the material becomes brittle during repeated release and becomes finely divided, and this is scattered. The present invention has been made in view of the above circumstances, and provides a hydrogen storage alloy member having a hydrogen storage alloy encapsulated to improve mechanical properties and further improved pulverization resistance and the like, and a method of manufacturing the same. It is.

【0004】[0004]

【課題を解決するための手段】すなわち本願発明の水素
吸蔵合金部材の製造方法は、Mg粉末またはMg合金粉
末を造孔剤として、水素吸蔵合金粉末に適量混合した
後、これを一部が開口した金属製容器内に収容し、さら
に金属製容器の開口部を、Mg粉末またはMg合金粉末
を混合した金属粉末で密閉して、収容物を加圧成形した
後、この成形体を減圧下で加熱処理して水素吸蔵合金に
混合した造孔剤および前記開口部を密閉した金属粉末に
混合したMg粉末またはMg合金粉末を蒸発分離させ、
さらに上記水素吸蔵合金粉末および金属粉末を焼結する
ことを特徴とする。さらに第の発明は、第の発明に
おいて、水素吸蔵合金粉末または金属粉末に混合するM
g粉末またはMg合金粉末が、その混合体積割合が2〜
50%の範囲内にあることを特徴とする。
Means for Solving the Problems A method of manufacturing a Sunawa Chi hydrogen storage alloy of the present applied invention is a Mg powder or Mg alloy powder as a pore former, after appropriate amount to the hydrogen absorbing alloy powder, which an Part is opened in a metal container with an opening, and the opening of the metal container is sealed with a metal powder mixed with Mg powder or Mg alloy powder. Heat treatment under reduced pressure to form hydrogen storage alloy
The mixed pore-forming agent and the metal powder with the opening closed
Evaporate and separate the mixed Mg powder or Mg alloy powder ,
Further, the hydrogen storage alloy powder and the metal powder are sintered. Further, in a second aspect , in the first aspect , M is mixed with the hydrogen storage alloy powder or the metal powder.
g powder or Mg alloy powder, the mixing volume ratio of which is 2 to
It is characterized by being within the range of 50%.

【0005】本願発明で造孔剤として用いるマグネシウ
ム粉末またはマグネシウム合金は、純マグネシウムの沸
点1090℃や融点650℃を大きく変化させず、かつ
原料粉と著しい反応を起こさないものであればよい。原
料粉の種類によっては、反応を抑制するためにマグネシ
ウムに添加元素を加えて合金とするが、添加元素の種類
や量は原料粉の種類や処理温度により適宜決定される。
このマグネシウム粉末とマグネシウム合金粉末とは混合
して使用することも可能であり、2種以上のマグネシウ
ム合金粉末を用いることも可能である。
[0005] The magnesium powder or magnesium alloy used as the pore-forming agent in the present invention may be any as long as it does not significantly change the boiling point of pure magnesium at 1090 ° C or the melting point of 650 ° C and does not cause a significant reaction with the raw material powder. Depending on the type of the raw material powder, an additive element is added to magnesium to suppress the reaction to form an alloy, but the type and amount of the additional element are appropriately determined depending on the type of the raw material powder and the processing temperature.
The magnesium powder and the magnesium alloy powder can be used as a mixture, and two or more magnesium alloy powders can be used.

【0006】これらの粉末の形状や寸法は、原料粉の種
類、形状、寸法、目的の気孔の形状、寸法、分布などに
より大きく左右され、それぞれの目的に合うように適宜
決定される。例えば気孔の形状を制御する場合には、そ
れに合わせてこれら粉末の形状を繊維状、薄片状、球状
などとする。これら粉末の形状は、複数組み合わせるこ
とも可能であり、また、多孔体の位置によって異なる形
状を選定することも可能である。上記造孔剤を混合する
水素吸蔵合金粉末の種別は、特に限定されるものではな
い。また、この混合粉末には、結合剤などの適当な添加
剤を含むものであってもよい。混合粉末は、そのまま金
属製容器に収容する他、ペレット状などに成形すること
も可能である。
[0006] The shape and size of these powders largely depend on the type, shape and size of the raw material powder, the shape, size and distribution of the target pores, and are appropriately determined to suit each purpose. For example, when controlling the shape of the pores, the shape of these powders is made into a fiber shape, a flake shape, a spherical shape, or the like. A plurality of these powder shapes can be combined, and different shapes can be selected depending on the position of the porous body. The type of the hydrogen storage alloy powder mixed with the pore former is not particularly limited. The mixed powder may contain a suitable additive such as a binder. The mixed powder can be stored in a metal container as it is, or can be formed into a pellet or the like.

【0007】金属製容器に用いられる材料は、造孔剤中
のMgとの反応性が低いものが望ましく、例えば、ステ
ンレス鋼などの鉄、鉄基材料などが挙げられる。金属製
容器は、少なくとも一部に開口部を有するものであれば
よく、その形状も特に限定されない。開口部は、混合粉
末の出入口になるとともに、水素吸蔵合金部材製品では
水素の吸収、放出の通気路となる部分であり、形状、
数、形成位置などは適宜選定される。金属製容器内に収
容された収容物は、収容物単独で、または金属製容器と
ともに加圧成形される。なお、成形方法は特に限定され
るものではなく、適宜選定できる。
The material used for the metal container preferably has low reactivity with Mg in the pore-forming agent, and examples thereof include iron such as stainless steel and iron-based materials. The shape of the metal container is not particularly limited as long as it has an opening at least in part. The opening serves as an inlet / outlet for the mixed powder, and in the hydrogen storage alloy member product, serves as a passage for absorbing and releasing hydrogen.
The number, formation position, and the like are appropriately selected. The container contained in the metal container is pressure-formed alone or together with the metal container. The molding method is not particularly limited, and can be appropriately selected.

【0008】得られた成形体中のMg粉末またはMg合
金粉末を蒸発させる加熱処理は、低圧または真空の減圧
下で行う。低圧下では、適当な雰囲気に調整することも
可能である。加熱処理の温度、時間は対象となる成形体
の寸法、材質等によって変化するが、最高加熱温度とし
てはマグネシウムの沸点1070℃を超えることが望ま
しく、その温度に保持する時間は、その温度に達するま
での加熱処理工程などに依存し、通常数分から数十分と
みられる。造孔剤を蒸発・分離した後は、常法による焼
結を行う。なお、焼結は、上記加熱処理に連続して行う
ことも可能である。
[0008] Mg powder or Mg alloy in the obtained compact
The heat treatment for evaporating the gold powder is performed under low pressure or reduced pressure of vacuum. Under low pressure, it is also possible to adjust the atmosphere to an appropriate one. The temperature and time of the heat treatment vary depending on the size, material and the like of the target compact, but the maximum heating temperature is desirably higher than the boiling point of magnesium 1070 ° C., and the time for maintaining the temperature reaches the temperature. Up to several tens of minutes, depending on the heat treatment process up to After evaporating and separating the pore-forming agent, sintering is performed by a conventional method. Note that sintering can be performed continuously to the heat treatment.

【0009】[0009]

【作用】すなわち、本願発明によれば、Mgまたはその
合金粉末を原料粉末と混合し、これを金属製容器に収容
して成形することにより、十分に大きな圧力を加えても
これら粉末による孔用の空間が確実に確保され、適当な
加圧力により適当な強度を有する圧粉体を成形すること
ができる。そして、上記開口部は、金属粉末とMg粉末
またはMg合金粉末との混合粉末で塞がれるので、水素
吸蔵合金は、金属製容器などによって周囲を囲まれてい
る。
According to the present invention, Mg or its alloy powder is mixed with a raw material powder, and the mixed powder is contained in a metal container and molded. Is reliably secured, and a green compact having an appropriate strength can be formed by an appropriate pressing force. Since the opening is closed with a mixed powder of the metal powder and the Mg powder or the Mg alloy powder, the hydrogen storage alloy is surrounded by a metal container or the like.

【0010】なお、水素吸蔵合金、金属粉末とMgとは
殆ど反応しない。したがって、Mgまたはその合金粉末
は、この水素吸蔵合金粉末、金属粉末と高温に至るまで
両立性が保たれる。また、Mgとの反応性が比較的高い
水素吸蔵合金を用いる場合には、Mgまたはその合金粉
末の表面を処理することなどにより、両立性を確保する
ことができる。粉末の表面処理の例として、薄い酸化皮
膜の形成やセラミックによる被覆などを挙げることがで
きる。
[0010] The hydrogen storage alloy and the metal powder hardly react with Mg. Therefore, Mg or its alloy powder maintains compatibility with the hydrogen storage alloy powder and metal powder up to a high temperature. When a hydrogen storage alloy having a relatively high reactivity with Mg is used, compatibility can be ensured by treating the surface of Mg or its alloy powder. Examples of the surface treatment of the powder include formation of a thin oxide film and coating with a ceramic.

【0011】なお、水素吸蔵合金粉末、金属粉末に混合
するMgまたはMg合金粉末は、体積比で5〜50%の
範囲内とするのが望ましい。これは、5%未満である
と、通気路として確保される空間が不十分であり、水素
吸蔵特性を損なうためであり、50%を越えると、水素
吸蔵合金粉末では、水素吸蔵合金量が少なくて、水素吸
蔵特性が不十分であり、金属粉末では、水素吸蔵合金の
耐酸化性、不純物耐久性が低下するためである。
It is desirable that the volume ratio of Mg or Mg alloy powder mixed with the hydrogen storage alloy powder and the metal powder be in the range of 5 to 50%. This is because if it is less than 5%, the space secured as a ventilation path is insufficient and the hydrogen storage properties are impaired. If it exceeds 50%, the amount of the hydrogen storage alloy is small in the hydrogen storage alloy powder. This is because the hydrogen storage properties are insufficient, and the metal powder reduces the oxidation resistance and the impurity durability of the hydrogen storage alloy.

【0012】上記成形体を加熱処理することにより、マ
グネシウムまたはその合金粉末は、良好に蒸発分離して
所望の気孔が形成される。この成形体を焼結することに
より、所望の気孔を有する焼結体が得られる。しかも、
金属製容器の開口部を覆っていた金属粉末も所定の気孔
を有す焼結体となり、水素吸蔵合金は通気路が確保され
た状態で強固かつ確実にカプセル化される。なお、原料
粉末に上記造孔剤用粉末を混合する際に、造孔剤用粉末
の量的比を位置によって変えることにより、成形時に特
別な加圧制御を行うことなく、気孔分布が意図するよう
に変化している焼結体を得ることができる。
By subjecting the compact to heat treatment, magnesium or its alloy powder is favorably evaporated and separated to form desired pores. By sintering this compact, a sintered body having desired pores is obtained. Moreover,
The metal powder covering the opening of the metal container also becomes a sintered body having predetermined pores, and the hydrogen storage alloy is firmly and reliably encapsulated in a state where the ventilation path is secured. In addition, when mixing the above-mentioned pore-forming agent powder with the raw material powder, by changing the quantitative ratio of the pore-forming agent powder depending on the position, the pore distribution is intended without performing special pressurization control during molding. In this way, it is possible to obtain a sintered body that has changed.

【0013】また、造孔剤用粉末の形状を制御して、こ
の粉末を蒸発分離させることにより、この粉末の形状に
合った形状を有する気孔が形成されるので、気孔形状を
容易に制御することができる。そして、本願発明の水素
吸蔵合金部材によれば、水素吸蔵合金は金属製容器に収
容されており、良好な機械特性が得られる。そして、金
属焼結体および水素吸蔵合金焼結体中の孔部分を通し
て、水素の通気路が確保されており、効率よく水素の吸
収、放出がなされ。また、水素吸蔵合金は、必要な通気
路を除いて金属製容器及び金属焼結体で周囲を覆われて
いるので、微分化が防止される。また、不純物ガスなど
との接触が少なくなるので、不純物に対する耐久性が飛
躍的に向上する。
Further, by controlling the shape of the pore-forming agent powder and evaporating and separating the powder, pores having a shape conforming to the shape of the powder are formed, so that the pore shape can be easily controlled. be able to. According to the hydrogen storage alloy member of the present invention, the hydrogen storage alloy is housed in the metal container, and good mechanical properties can be obtained. And, through the holes in the metal sintered body and the hydrogen storage alloy sintered body, an air passage for hydrogen is secured, and hydrogen is absorbed and released efficiently. Further, since the hydrogen storage alloy is covered with a metal container and a metal sintered body except for a necessary ventilation path, differentiation is prevented. Further, since contact with an impurity gas or the like is reduced, durability against impurities is remarkably improved.

【0014】[0014]

【実施例】以下に、水素吸蔵合金としてZrNiを用い
た実施例を以下に説明する。100メッシュ以下の粒径
で、約100Ciのトリチウムを貯蔵可能なZrNi化
合物粉を用意し、このZrNi化合物粉と100メッシ
ュ以下のマグネシウム粉を体積比9:1の割合で混合し
た。この混合粉を750kg/cm2で加圧してペレッ
ト化し、図1に示すように、内径10mm、長さ3m
m、厚さ0.5mmのステンレス鋼製チューブ1にペレ
ット2を収容した。さらにチューブ1の両端を、100
メッシュ以下のステンレス鋼粉と100メッシュ以下の
マグネシウム粉とを混合した混合粉3を約1mm厚で覆
った。なお、この混合粉3におけるステンレス鋼粉とマ
グネシウム粉との体積混合比は、0〜30%の範囲で変
化させた。
EXAMPLES Examples using ZrNi as a hydrogen storage alloy will be described below. A ZrNi compound powder having a particle diameter of 100 mesh or less and capable of storing about 100 Ci of tritium was prepared, and the ZrNi compound powder and a magnesium powder of 100 mesh or less were mixed at a volume ratio of 9: 1. This mixed powder was pressed at 750 kg / cm 2 to form a pellet, and as shown in FIG.
The pellet 2 was placed in a stainless steel tube 1 having a thickness of 0.5 mm and a thickness of 0.5 mm. Further, both ends of the tube 1 are
A mixed powder 3 obtained by mixing a stainless steel powder having a mesh size of not more than a magnesium powder having a mesh size of not more than 100 was covered with a thickness of about 1 mm. In addition, the volume mixing ratio of the stainless steel powder and the magnesium powder in the mixed powder 3 was changed in a range of 0 to 30%.

【0015】上記チューブ1を1130kg/cm2
加圧してカプセル化し、さらに1100℃で20分間真
空中で加熱してチューブ入りの多孔性焼結体を作製し
た。このチューブ入り焼結体を600℃で1時間の加熱
排気処理を施した後、高純度水素を用いて第一回目の水
素吸収特性を測定した。その結果を、ステンレス鋼粉へ
のMg粉混合程度をパラメータとして図2に示した。図
中では、この混合程度は(ステンレス鋼粉+Mg粉)に
対するステンレス鋼粉の体積%で示した。さらに、上記
吸収特性を測定した焼結体の一部について、大気に暴露
して活性を失わせ、再び加熱排気処理を施した後、水素
吸収速度を測定し、その結果を図3に示した。
The above tube 1 was encapsulated by pressurizing at 1130 kg / cm 2 , and further heated at 1100 ° C. for 20 minutes in vacuum to produce a porous sintered body containing the tube. This sintered body in a tube was heated and exhausted at 600 ° C. for 1 hour, and then the first hydrogen absorption characteristics were measured using high-purity hydrogen. The results are shown in FIG. 2 using the degree of mixing of the Mg powder with the stainless steel powder as a parameter. In the figure, the degree of mixing is shown by the volume% of the stainless steel powder relative to (stainless steel powder + Mg powder). Further, a part of the sintered body whose absorption characteristics were measured was exposed to the air to lose its activity, subjected to a heating and exhausting process again, and then measuring a hydrogen absorption rate. The results are shown in FIG. .

【0016】図2の結果から明らかなように、ステンレ
ス粉にMg粉を混合することにより、水素吸収速度が大
きくなっており、試験例中では、95vol%のステン
レス鋼粉(Mg粉;5vol%)を用いた試験材が最も
優れている。また、このように作製した水素吸蔵合金部
材は、水素の吸収によって微分化することはなかった。
また、図3の結果から空気暴露後の再活性化に対するカ
プセル化の効果が判明した。水素吸蔵合金をMg粉を混
合したステンレス粉で覆うことにより、再活性されやす
くなっている。このことは、不純物ガスに対する耐久性
が向上していることを示している。試験例中では、第一
回目の水素吸収特性が最も優れていた95vol%のス
テンレス鋼粉(Mg粉;5vol%)を用いた試験材が
この試験でも最も優れていた。
As is clear from the results shown in FIG. 2, the hydrogen absorption rate is increased by mixing the Mg powder with the stainless powder. In the test example, 95 vol% of the stainless steel powder (Mg powder; 5 vol%) was used. ) Is the most excellent. In addition, the hydrogen storage alloy member manufactured in this manner was not differentiated by absorbing hydrogen.
Further, the effect of the encapsulation on the reactivation after exposure to air was found from the results of FIG. Covering the hydrogen storage alloy with stainless steel powder mixed with Mg powder facilitates reactivation. This indicates that the durability against the impurity gas has been improved. Among the test examples, the test material using 95 vol% of stainless steel powder (Mg powder; 5 vol%), which had the first excellent hydrogen absorption property, was also the best in this test.

【0017】[0017]

【発明の効果】以上説明したように本願発明の水素吸蔵
合金部材の製造方法によれば、Mg粉末またはMg合金
粉末を造孔剤として、水素吸蔵合金粉末に適量混合した
後、この混合粉末を一部が開口した金属製容器内に収容
し、さらに金属製容器の開口部を、Mg粉末またはMg
合金粉末を混合した金属粉末で密閉して、混合粉末を加
圧成形した後、この成形体を減圧下で加熱処理してMg
粉末またはMg合金粉末を蒸発分離させ、さらに成形体
を焼結するので、通気路が確保された状態で水素吸蔵合
金がカプセル化され、機械的特性が優れた水素吸蔵合金
の焼結体が得られる。この焼結体はカプセル化されてい
るので耐微粉化性に優れており、また任意の形状にも容
易に製造することができる。さらに、水素吸蔵合金は、
その周囲が必要な通気性は保った状態で覆われるので、
耐酸化性に優れており、不純物耐久性が向上し、活性化
も容易になる効果がある。
According to the manufacturing method of the hydrogen storage alloy of the present invention, as described above, according to the present invention, the Mg powder or Mg alloy powder as a pore former, after appropriate amount to the hydrogen-absorbing alloy powder, the mixed powder In a partially open metal container, and further open the metal container with Mg powder or Mg powder.
After sealing with a metal powder mixed with an alloy powder and pressing the mixed powder under pressure, the formed body is subjected to a heat treatment under reduced pressure to obtain Mg.
Since the powder or Mg alloy powder is evaporated and separated, and the molded body is sintered, the hydrogen storage alloy is encapsulated in a state where the air passage is secured, and a sintered body of the hydrogen storage alloy having excellent mechanical properties is obtained. Can be Since this sintered body is encapsulated, it has excellent pulverization resistance, and can be easily manufactured into any shape. In addition, hydrogen storage alloys
The surrounding area is covered while maintaining the necessary ventilation,
It is excellent in oxidation resistance, has the effect of improving impurity durability and facilitating activation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の一実施例の水素吸蔵合金部
材の断面図である。
FIG. 1 is a sectional view of a hydrogen storage alloy member according to an embodiment of the present invention.

【図2】図2は、実施例の焼結体の水素吸収特性を示す
グラフである。
FIG. 2 is a graph showing hydrogen absorption characteristics of a sintered body of an example.

【図3】図3は、同じく再活性化後の水素吸収特性を示
すグラフである。
FIG. 3 is a graph showing hydrogen absorption characteristics after reactivation.

【符号の説明】[Explanation of symbols]

1 チューブ 2 水素吸蔵合金粉混合ペレット 3 ステンレス鋼混合粉 1 Tube 2 Hydrogen storage alloy powder mixed pellet 3 Stainless steel mixed powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松山 政夫 富山県婦負郡婦中町田島884の6番地 (72)発明者 諸住 正太郎 宮城県仙台市青葉区広瀬町2番1号− 206 (72)発明者 兜森 俊樹 北海道室蘭市茶津町4番地 株式会社日 本製鋼所内 (56)参考文献 特開 昭59−146901(JP,A) 特開 昭55−126199(JP,A) 特開 昭62−120403(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 3/11,5/00 C22C 1/00,1/04 C01B 3/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masao Matsuyama 684, Tajima 884, Fuchu-cho, Negashi-gun, Toyama Prefecture (72) Inventor Shotaro Morozumi 2-1, Hirose-cho, Aoba-ku, Sendai, Miyagi 206-72 (72) Inventor Toshiki Kabumori 4, Chazu-cho, Muroran-shi, Hokkaido Nihon Steel Works, Ltd. (56) References JP-A-59-146901 (JP, A) JP-A-55-126199 (JP, A) JP-A 62-120403 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 3 / 11,5 / 00 C22C 1 / 00,1 / 04 C01B 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mg粉末またはMg合金粉末を造孔剤と
して、水素吸蔵合金粉末に適量混合した後、これを一部
が開口した金属製容器内に収容し、さらに金属製容器の
開口部を、Mg粉末またはMg合金粉末を混合した金属
粉末で密閉して、収容物を加圧成形した後、この成形体
を減圧下で加熱処理して水素吸蔵合金に混合した造孔剤
および前記開口部を密閉した金属粉末に混合したMg粉
末またはMg合金粉末を蒸発分離させ、さらに上記水素
吸蔵合金粉末および金属粉末を焼結することを特徴とす
る水素吸蔵合金部材の製造方法
An Mg powder or a Mg alloy powder is used as a pore-forming agent, mixed in an appropriate amount with a hydrogen storage alloy powder, and then stored in a partially open metal container. After sealing the container with metal powder mixed with Mg powder or Mg alloy powder and pressing the container, the formed body is heat-treated under reduced pressure and mixed with the hydrogen storage alloy.
And Mg powder mixed with a metal powder having the opening closed
Powder or Mg alloy powder is evaporated separated, further the hydrogen
A method for producing a hydrogen storage alloy member, comprising sintering the storage alloy powder and the metal powder.
【請求項2】 水素吸蔵合金粉末または金属粉末に混合
するMg粉末またはMg合金粉末は、その混合体積割合
が2〜50%の範囲内にあることを特徴とする請求項1
記載の水素吸蔵合金部材の製造方法
2. The Mg powder or the Mg alloy powder mixed with the hydrogen storage alloy powder or the metal powder has a mixing volume ratio in the range of 2 to 50%.
METHOD FOR PRODUCING HYDROGEN STORAGE ALLOY MEMBER
JP5159937A 1993-06-07 1993-06-07 Method for producing hydrogen storage alloy member Expired - Lifetime JP2790598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5159937A JP2790598B2 (en) 1993-06-07 1993-06-07 Method for producing hydrogen storage alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5159937A JP2790598B2 (en) 1993-06-07 1993-06-07 Method for producing hydrogen storage alloy member

Publications (2)

Publication Number Publication Date
JPH06346167A JPH06346167A (en) 1994-12-20
JP2790598B2 true JP2790598B2 (en) 1998-08-27

Family

ID=15704420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5159937A Expired - Lifetime JP2790598B2 (en) 1993-06-07 1993-06-07 Method for producing hydrogen storage alloy member

Country Status (1)

Country Link
JP (1) JP2790598B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224671C1 (en) * 2002-06-03 2003-10-16 Forschungszentrum Juelich Gmbh Making high porosity sintered moldings, mixes metal powder with place holder, presses and processes blank, then removes place holder before sintering

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126199A (en) * 1979-03-23 1980-09-29 Matsushita Electric Ind Co Ltd Hydrogen storage container
JPS59146901A (en) * 1983-02-08 1984-08-23 Sekisui Chem Co Ltd Metallic hydride reaction vessel and its manufacture
JPS62120403A (en) * 1985-11-20 1987-06-01 Permelec Electrode Ltd Titanium composite body having porous surface and its manufacture

Also Published As

Publication number Publication date
JPH06346167A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
EP0969943B1 (en) A method for producing a non-evaporable getter and a getter produced by said method
Zaluski et al. Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi
Guoxian et al. Hydrogen absorption and desorption characteristics of mechanically milled Mg 35wt.% FeTi1. 2 powders
US6277326B1 (en) Process for liquid-phase sintering of a multiple-component material
US9777347B2 (en) Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
US4698096A (en) Sintering process
US2884688A (en) Sintered ni-al-zr compositions
JP2790598B2 (en) Method for producing hydrogen storage alloy member
US4039325A (en) Vacuum smelting process for producing ferromolybdenum
US2671953A (en) Metal body of high porosity
US2657127A (en) Production of chromium-alloyed corrosion-resistant metal powders and related products
US3150975A (en) Method of making intermetallic compound-composition bodies
US6180235B1 (en) Phosphorus-containing iron powders
US3070440A (en) Production of dispersion hardened metals
JP3416654B2 (en) Non-fired molded getter
JP3417217B2 (en) Method for producing titanium carbide particle-dispersed metal matrix composite material
JPH0633111A (en) Production of perforated body
JPS648063B2 (en)
JPH0525563A (en) Production of sintered zn-mn alloy
JP2000233906A (en) Production of metal hydride, utilizing powder-powder solid phase exothermic reaction
JP2003286508A (en) Hydrogen absorbing composite
JP3062743B2 (en) Hydrogen-containing titanium-aluminum alloy powder, method for producing the same alloy powder, sintered titanium-aluminum alloy, and method for producing the same
JPH02294440A (en) Production of porous titanium-nickel alloy
WO1998029334A1 (en) Process for preparing aluminum nitride
JPH0730421B2 (en) Non-evaporable getter alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100612

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 15

EXPY Cancellation because of completion of term