JPH05156439A - Production of transparent conductive film and measuring instrument - Google Patents

Production of transparent conductive film and measuring instrument

Info

Publication number
JPH05156439A
JPH05156439A JP34927691A JP34927691A JPH05156439A JP H05156439 A JPH05156439 A JP H05156439A JP 34927691 A JP34927691 A JP 34927691A JP 34927691 A JP34927691 A JP 34927691A JP H05156439 A JPH05156439 A JP H05156439A
Authority
JP
Japan
Prior art keywords
film
resistance value
transparent conductive
conductive film
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34927691A
Other languages
Japanese (ja)
Other versions
JP3152249B2 (en
Inventor
Naganari Matsuda
修成 松田
Takahiro Kubota
隆弘 窪田
Yozo Yamada
陽三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP34927691A priority Critical patent/JP3152249B2/en
Publication of JPH05156439A publication Critical patent/JPH05156439A/en
Application granted granted Critical
Publication of JP3152249B2 publication Critical patent/JP3152249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the transparent conductive film having a uniform surface resistance value by controlling the operation for film formation by the film surface electric resistance value obtd. by subjecting the measured value of the light transmittance of the transparent conductive film to arithmetic processing. CONSTITUTION:The light transmittance of the transparent conductive film 8 is measured. The measured value is subjected to the arithmetic processing in an arithmetic processing section 12 to obtain the film surface electric resistance value. The operation for film formation in the production state is controlled by using this electric resistance value and a controller 22. The measuring instrument for the film surface electric resistance value is provided with a light source section 1, a spectroscopic section 9, a photodetecting section 10 and the arithmetic processing section 12. The film surface electric resistance value is thus computed by the relational expression between the light transmittance previously inputted to the arithmetic processing section 12 and the film surface electric resistance value and the light transmittance obtd. from the spectroscopic section 10. This value is then outputted. As a result, the production conditions in the film forming stage are controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明基盤上に金属酸化
物被膜を付着させた透明導電膜の製造方法、及び透明導
電膜の膜表面電気抵抗値の測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent conductive film having a metal oxide film deposited on a transparent substrate, and a device for measuring a film surface electric resistance value of the transparent conductive film.

【0002】[0002]

【従来の技術】ガラス又は高分子フイルム等の表面に、
透明であり、かつ膜表面の電気抵抗値の低い金属酸化物
被膜を付着させた透明導電膜は、その導電性を利用した
用途、例えば液晶ディスプレイ、ELディスプレイとい
ったフラットディスプレイや、太陽電池等の透明電極、
ブラウン管の窓の透明静電シールド板、又は透明電磁シ
ールド板、発熱体等の電気、電子分野の用途に広く使用
されている。又このような酸化物透明導電膜の中で、選
択透過性を有するものは、その赤外光反射特性を利用し
て、太陽エネルギー利用のための窓材や、建物、自動車
等の熱線反射用材料として利用されている。これらの透
明導電膜としては、通常、酸化すず、酸化インジウム、
酸化インジウム・酸化すず(ITO)、或は、酸化亜鉛
を被膜として透明基盤上に形成させたものが一般的であ
り、真空蒸着法、スパッター法、CVD法、スプレー法
等により作成できることが知られている。この中でも、
真空蒸着法、スパッター法は被膜の厚みが均一で、かつ
膜表面電気抵抗値(以下表面抵抗値という)の低い透明
導電膜が得られる方法である。この場合、酸化物を原料
とする場合と、金属を原料として、酸素と反応させなが
ら被膜を形成していく方法がある。例えばITOの薄膜
のスパッターによる被膜形成の場合には、ターゲットと
して、ITOの焼結ターゲットを使用する方法と、イン
ジウム・すず合金のターゲットを用い、酸素と反応させ
ながらおこなう反応性スパッターを行なう方法の両者が
知られているが、ターゲットの作成、再生が容易な点
や、製膜速度を早くとれることから、金属ターゲットを
用いる方法の方が有利であると考えられている。真空蒸
着法についても、同様な理由から、金属を原料として反
応性蒸着をおこなうことが有利である。製造される透明
導電膜は、透明度が高く、かつ表面抵抗値が低い膜が好
ましい。表面抵抗値は、二端子、或いは四端子等の接触
式表面抵抗測定法により測定されるが、精度を上げるた
めには四探針法が用いられる。この方法は、透明導電膜
の表面(被膜付着側)の4個所に接触探針を押しあて、
外側の2探針間に一定電圧をかけ、内側の2探針間の電
圧降下を測定することによって、電極間の抵抗値を求め
るもので、接触抵抗の影響をなくすことができる。
2. Description of the Related Art On the surface of glass or polymer film,
A transparent conductive film to which a metal oxide film that is transparent and has a low electric resistance on the film surface is attached is used for applications in which the conductivity is used, for example, a flat display such as a liquid crystal display or an EL display, or a transparent solar cell. electrode,
It is widely used in electric and electronic fields such as a transparent electrostatic shield plate for a cathode ray tube window, a transparent electromagnetic shield plate, and a heating element. Also, among such transparent oxide conductive films, those having selective transparency are utilized for window materials for solar energy use, heat ray reflection of buildings, automobiles, etc. by utilizing their infrared light reflection characteristics. It is used as a material. As these transparent conductive films, tin oxide, indium oxide,
Indium oxide / tin oxide (ITO) or zinc oxide is generally formed as a film on a transparent substrate, and it is known that it can be prepared by a vacuum deposition method, a sputtering method, a CVD method, a spray method or the like. ing. Among these,
The vacuum deposition method and the sputtering method are methods for obtaining a transparent conductive film having a uniform film thickness and a low film surface electric resistance value (hereinafter referred to as surface resistance value). In this case, there are a method using an oxide as a raw material and a method using a metal as a raw material and reacting with oxygen to form a film. For example, in the case of forming a film by sputtering a thin film of ITO, a method of using a sintered target of ITO as a target and a method of using a target of indium-tin alloy and performing reactive sputtering while reacting with oxygen are used. Both methods are known, but it is considered that the method using a metal target is more advantageous because the target can be easily produced and regenerated and the film formation speed can be increased. Also for the vacuum vapor deposition method, it is advantageous to perform reactive vapor deposition using a metal as a raw material for the same reason. The transparent conductive film produced is preferably a film having high transparency and a low surface resistance value. The surface resistance value is measured by a two-terminal or four-terminal contact-type surface resistance measuring method, and the four-probe method is used to improve accuracy. In this method, the contact probe is pressed against four points on the surface (coating adhesion side) of the transparent conductive film,
The resistance value between the electrodes is obtained by applying a constant voltage between the two outer probes and measuring the voltage drop between the two inner probes, and the influence of the contact resistance can be eliminated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ITO
をはじめ酸化物系透明導電膜の表面電気抵抗値に関する
抵抗特性は、その酸化度に大きく依存し、表面抵抗値、
光透過率を共に満足する範囲は非常に狭い。そのため、
特に、反応性スパッター、あるいは、反応性蒸着法で
は、作製時の状態により、材料の酸化条件が変わり、そ
れが透明導電膜の特性、特に抵抗特性に敏感に影響す
る。例えば、真空槽中に残った水の量等が大きく影響
し、バッチ毎に条件が変化し、再現性が良くないという
現象が起こる。このようなことは、ターゲット、或は、
蒸着材料として、酸化物を用いた場合にも、反応性スパ
ッター法あるいは、反応性蒸着法の場合ほど大きくはな
いが、問題になっている。例えば、ITO焼結ターゲッ
トを用いて、スパッターをおこなった場合、ターゲット
表面が黒くなるという黒化現象が起こり、透明度、ある
いは膜表面抵抗値を大きくさせる。CVDにおいても同
様に、原料ガスの供給量、透明基盤温度等の変動による
特性のバラツキが問題になっている。従って、透明導電
膜の製造においては、表面抵抗値を膜の巾方向及び膜の
長さ方向、すなわち連続的な製造方法においては、酸化
物被膜の付着操作の経時的な変動を少なくすることは難
かしい。又接触式抵抗測定法で、求まる値は、端子間の
平均であり、幅方向の斑は判別できない。また、接触抵
抗値は接触端子の押し込み圧、表面形状でバラツキを生
じ、測定精度が良くない。更に、連続製造工程において
接触式測定法を用いる場合にはどうしてもフイルムにき
ずを付けることが多く、その部分を捨ててつかうことに
なり、歩留り率を大きく下げることになる。そこで、非
接触で表面抵抗値を測定し、その値が一定になる様に製
膜操作を制御し、膜の透明度が高く、かつ表面抵抗値の
低い膜の製造方法、及び表面抵抗値の非接触測定装置の
開発が期待されていた。
However, the ITO is
The resistance characteristics related to the surface electric resistance value of the oxide-based transparent conductive film, including, depend largely on the degree of oxidation,
The range where both the light transmittances are satisfied is extremely narrow. for that reason,
Particularly, in the reactive sputtering or the reactive vapor deposition method, the oxidizing condition of the material changes depending on the state of production, which sensitively affects the characteristics of the transparent conductive film, particularly the resistance characteristics. For example, the amount of water remaining in the vacuum chamber greatly affects the conditions for each batch, resulting in poor reproducibility. This is the target, or
Even when an oxide is used as a vapor deposition material, it is not so large as in the case of the reactive sputtering method or the reactive vapor deposition method, but it is a problem. For example, when sputtering is performed using an ITO sintered target, a blackening phenomenon occurs in which the target surface turns black, which increases transparency or film surface resistance. Similarly, in CVD, variations in characteristics due to variations in the amount of raw material gas supplied, the temperature of the transparent substrate, etc. pose a problem. Therefore, in the production of the transparent conductive film, it is possible to reduce the surface resistance value in the width direction of the film and the length direction of the film, that is, in the continuous production method, to reduce the time-dependent fluctuation of the operation of depositing the oxide film. It's difficult. Further, the value obtained by the contact resistance measuring method is the average between the terminals, and the unevenness in the width direction cannot be discriminated. In addition, the contact resistance value varies depending on the pressing force of the contact terminal and the surface shape, resulting in poor measurement accuracy. Furthermore, when the contact measurement method is used in the continuous manufacturing process, the film is often scratched, and that portion is thrown away and used, resulting in a large reduction in the yield rate. Therefore, the surface resistance value is measured in a non-contact manner, the film forming operation is controlled so that the value becomes constant, the method of manufacturing a film having high film transparency and low surface resistance value, and Development of a contact measuring device was expected.

【0004】[0004]

【問題を解決するための手段】本発明者らは、上記の課
題を解決すべく、鋭意検討した結果、透明導電膜の表面
電気抵抗(R)と該膜の光透過率の間に、一定波長の範
囲において、具体的な関係を見出し、非接触法によって
膜の表面電気抵抗値を測定すると共に均質な透明導電膜
を製造する方法を発明するに至った。すなわち本発明は
透明導電膜の光透過率を測定し、得られる測定値から、
あらかじめ求められた表面抵抗値と光透過率の関係式を
用いて表面抵抗値を算出し、その算出された値により製
膜工程における操作を制御することによって、均一な表
面抵抗値を有する透明導電膜の製造方法、及び表面抵抗
値の測定装置に係るものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, have found that the surface electric resistance (R) of the transparent conductive film and the light transmittance of the film are constant. The inventors have found a specific relationship in the wavelength range, and have invented a method of measuring the surface electric resistance value of the film by a non-contact method and manufacturing a homogeneous transparent conductive film. That is, the present invention measures the light transmittance of the transparent conductive film, from the obtained measurement values,
By calculating the surface resistance value using the relational expression between the surface resistance value and the light transmittance obtained in advance, and controlling the operation in the film forming process by the calculated value, the transparent conductive material having a uniform surface resistance value is obtained. The present invention relates to a film manufacturing method and a surface resistance measuring device.

【0005】一般に酸化物系透明導電膜は、酸化が進む
につれて不透明で表面抵抗値の小さい金属質の膜から、
透明だが表面抵抗値の大きい半導体の膜へと変わる途中
に、光透過率が高く、かつ表面抵抗値の小さい領域があ
る。本発明者らは、この領域について詳細に調べたとこ
ろ、表面抵抗値と光透過率の間に一定の関係があること
を見出した。図1は被膜形成時における操作要因の一つ
である酸素供給量の変動に伴う光透過率と表面抵抗値の
関係を示す。さらに詳しくこの関係を調べていくと、図
2に示すように、表面抵抗値、光透過率及び測定波長の
間には、一定の関係があり、特に測定波長が300nm
乃至1000nmにおいて、この傾向が強いことが見出
された。例えば、340nm及び380nmの波長につ
いては、測定波長λ、光透過率T(λ)について、図3
に示す関係が見られ、これを数式化すると一般的に表面
抵抗値Rに関してR=A・EXP(−B・T(λ))の
関係式を得る。式中A・Bは定数であり、いつも一定の
値をとるとは限らない。すなわち、透明導電膜は金属酸
化物被膜を真空蒸着法、スパッタ法等によって透明基盤
上に付着させるため、測定される光透過率は、基盤の光
透過率及び該被膜の光透過率の重ね合わせたものになる
こと、又被膜においてもその光透過率はその酸化度、膜
の厚みにより影響を受けるためである。そのため、上記
の関係式を求めるためには、被膜の厚みや、酸化度の異
った試料についてあらかじめ光透過率と表面電気抵抗値
の関係を求めておくことが必要である。関係式を求める
ための表面抵抗値の測定は従来法による接触式の測定法
によって求めることができる。この場合、測定は関係式
を求めるための試料についてあらかじめ測定するもので
あって、生産工程における膜の損傷とは無関係である。
得られる関係式は上式を簡略化して、折線又は、多次曲
線等によって近似することができる。透過光の波長は、
300nm乃至1000nmが好ましいが、更に好まし
くは、330nm乃至は500nmの範囲である。
Generally, an oxide-based transparent conductive film is a metal film that is opaque and has a small surface resistance value as oxidation progresses.
On the way to a semiconductor film that is transparent but has a high surface resistance value, there is a region having a high light transmittance and a low surface resistance value. The present inventors have investigated this region in detail, and have found that there is a fixed relationship between the surface resistance value and the light transmittance. FIG. 1 shows the relationship between the light transmittance and the surface resistance value due to a change in the oxygen supply amount, which is one of the operating factors during film formation. When this relationship is examined in more detail, as shown in FIG. 2, there is a fixed relationship between the surface resistance value, the light transmittance, and the measurement wavelength, and in particular, the measurement wavelength is 300 nm.
It was found that this tendency is strong in the range from 1000 nm to 1000 nm. For example, for the wavelengths of 340 nm and 380 nm, the measurement wavelength λ and the light transmittance T (λ) are shown in FIG.
The relationship shown in (1) can be seen, and when this is mathematically expressed, a relational expression of R = A · EXP (−B · T (λ)) is generally obtained with respect to the surface resistance value R. In the formula, A and B are constants and do not always take constant values. That is, since the transparent conductive film has a metal oxide film deposited on a transparent substrate by a vacuum deposition method, a sputtering method, or the like, the measured light transmittance is a combination of the light transmittance of the substrate and the light transmittance of the film. This is because the light transmittance of the coating is also affected by the degree of oxidation and the thickness of the coating. Therefore, in order to obtain the above relational expression, it is necessary to obtain the relationship between the light transmittance and the surface electric resistance value in advance for samples having different coating thicknesses and oxidation degrees. The surface resistance value for determining the relational expression can be determined by a contact-type measuring method according to the conventional method. In this case, the measurement is performed in advance on the sample for obtaining the relational expression, and is not related to the film damage in the production process.
The obtained relational expression can be approximated by a polygonal line or a multi-order curve by simplifying the above expression. The wavelength of the transmitted light is
The thickness is preferably 300 nm to 1000 nm, more preferably 330 nm to 500 nm.

【0006】透明導電膜の被膜を形成する金属酸化物と
しては、酸化インジウム、酸化インジウム・酸化すず
(ITO)、酸化すず、酸化亜鉛、酸化亜鉛・酸化アル
ミニウム、酸化カドミウム・酸化すず等があり特にIT
O,酸化すず系が適している。膜の基盤としては、石英
ガラス、ホウケイ酸ガラス、低アルカリガラス等のガラ
ス、アルミナ、マグネシウム、サファイア等のセラミッ
クス、ポリエチレン、ポリプロピレン、ポリエチレンテ
レフタレート、ポリ塩化ビニル等の高分子膜に適用され
るが、特に長尺の被膜形成が可能な高分子膜が好まし
い。
The metal oxide forming the film of the transparent conductive film includes indium oxide, indium oxide / tin oxide (ITO), tin oxide, zinc oxide, zinc oxide / aluminum oxide, cadmium oxide / tin oxide, and the like. IT
O and tin oxide are suitable. As the base of the film, quartz glass, borosilicate glass, glass such as low alkali glass, alumina, magnesium, ceramics such as sapphire, polyethylene, polypropylene, polyethylene terephthalate, is applied to polymer films such as polyvinyl chloride, A polymer film capable of forming a long film is particularly preferable.

【0007】透明導電膜の作成方法としては、種々知ら
れているが、真空蒸着法、スパッター法、イオンプレー
ティング法などの物理蒸着法(PVD)、あるいは化学
蒸着法(CVD)などが適宜用いられる。真空蒸着法と
は、10-3Torr以下の高真空下で、薄膜材料を加熱
蒸発させ、これを基盤上に堆積させる。真空蒸着法は装
置が簡単であり、高い成膜速度が容易に得られる等の長
所をもつが、基盤と膜との付着速度が弱く、組成、膜厚
制御が難しい等の欠点ももつ。スパッター法とは、低圧
気体放電において、イオンや原子等の数+eV以上の高
運動エネルギー粒子が個体(ターゲット)に衝突し、タ
ーゲット表面から、固体構成原子或いは、分子が弾きと
ばされる現象を利用して、被膜を形成する。真空蒸着に
くらべ、被膜と基盤との付着力が大きく、高融点物質の
膜でも製膜可能であり、被膜の組成、膜厚の制御も容易
である。化学蒸着法とは、形成させようとする薄膜材料
を構成する元素からなる1種または2種類以上の化合物
又は、単体のガスを反応領域の基盤上に供給し、気相
中、又は基盤表面上での化学反応により、所望の薄膜を
形成させる方法である。このように透明導電膜の作成法
としては、種々知られているが、本発明においては、こ
れらの方法に適用することができる。例えば、スパッタ
ー法の場合、電源として、直流、高周波又ターゲットと
しては酸化物、金属を用いる等、様々な方法があるが、
どのような場合にも適用できる。スパッター法での制御
パラメーターとしては、スパッター時の真空圧、酸素分
圧、酸素流量、スパッター電流、電圧等があり、例え
ば、スパッター圧としては5×10-4〜8×10-2To
rr、酸素分圧5×10-6〜10-2Torrの範囲が好
ましい。又、スパッター電流は、0.2〜100A、ス
パッター電力0.1〜100Kwの範囲が好ましい。
Various methods have been known for forming a transparent conductive film, but a physical vapor deposition method (PVD) such as a vacuum vapor deposition method, a sputtering method, an ion plating method, or a chemical vapor deposition method (CVD) is appropriately used. Be done. In the vacuum vapor deposition method, a thin film material is heated and evaporated under a high vacuum of 10 −3 Torr or less, and this is deposited on a substrate. The vacuum vapor deposition method has advantages that the apparatus is simple and a high film formation rate can be easily obtained, but it has drawbacks that the adhesion speed between the substrate and the film is weak and composition and film thickness control are difficult. The sputter method uses the phenomenon that high-kinetic energy particles such as ions and atoms + eV or more collide with an individual (target) in low-pressure gas discharge, and solid constituent atoms or molecules are repelled from the target surface. To form a film. Compared to vacuum evaporation, the adhesion between the coating and the substrate is large, and even a film of a high melting point substance can be formed, and the composition and thickness of the coating can be easily controlled. The chemical vapor deposition method is a method of supplying one or more kinds of compounds or elements consisting of elements constituting a thin film material to be formed or a simple substance gas onto the base of the reaction region, in the gas phase or on the surface of the base. This is a method of forming a desired thin film by the chemical reaction in step 1. As described above, various methods for producing a transparent conductive film are known, but the present invention can be applied to these methods. For example, in the case of the sputtering method, there are various methods such as using DC as a power source, high frequency, and using oxide or metal as a target.
It can be applied in any case. The control parameters in the sputter method include vacuum pressure during sputtering, oxygen partial pressure, oxygen flow rate, sputtering current, voltage, etc. For example, the sputtering pressure is 5 × 10 −4 to 8 × 10 −2 To.
The range of rr and oxygen partial pressure of 5 × 10 −6 to 10 −2 Torr is preferable. Further, the sputtering current is preferably in the range of 0.2 to 100 A and the sputtering power is in the range of 0.1 to 100 Kw.

【0008】又、真空蒸着法においては、蒸着源材料と
して、インジウム、すず等の金属、合金や酸化インジウ
ム、酸化すず等の化合物が用いられる。また、加熱方式
としては、抵抗加熱、高周波誘導加熱、電子ビーム加熱
等を用いることができる。また、反応性ガスとして、酸
素、窒素、水蒸気等を導入したり、オゾン添加、イオン
アシスト等の手段を用いた反応性蒸着を用いてもよい。
また、基盤にバイアス等を加えたり、基盤温度を上昇、
あるいは、冷却したり等、本発明の目的を損なわない限
りに於て、製膜時の操作条件を変更することができる。
スパッター法や真空蒸着法等のほかの作成法でも同様で
ある。真空蒸着法での制御パラメーターとしては、上記
の外に蒸着時の真空圧、酸素分圧等があり加熱電力等が
あり、例えば、蒸着時の真空圧としては、1×10-5
5×10-1Torr、加熱電力、0.1〜100Kwの
範囲が好ましい。又各種製膜法に共通する制御パラメー
ターとしては、基盤の送り速度、基盤温度、膜厚制御方
法としては、膜の酸化度の制御と膜厚の制御の2つに分
けられる。酸化度の制御方法としては、酸化雰囲気を調
整するための酸素分圧、酸素流量、アルゴンガス流量等
と反応性を制御するための基盤温度、オゾン添加、バイ
アス付加等がある。又、膜厚の制御のためには、基盤送
り速度、製膜速度、膜厚制限板等の調節等が有効であ
る。例えば、表面抵抗値を下げたいときには、酸化度を
上げるか、膜厚を上げるかの2つの方法があり、酸化度
を上げるには、O2 流量を、例えば100cc/分から
105cc/分と多くする。流量のコントロールとして
は、真空槽の大きさ、製膜条件により多少異なるものの
0.5cc/分程度の感度での制御が好ましい。一方、
膜厚を上げるためには、フイルムの送り速度を下げる
か、製膜速度を上げる方法があり、そのために、例え
ば、スパッター電力を上げる。スパッター電力として
は、例えば2Kwを2.2Kwに上げ、0.01〜0.
05Kw程度の感度での制御が好ましい。
In the vacuum vapor deposition method, metals such as indium and tin, alloys and compounds such as indium oxide and tin oxide are used as vapor deposition source materials. As the heating method, resistance heating, high frequency induction heating, electron beam heating, or the like can be used. Further, as the reactive gas, oxygen, nitrogen, water vapor or the like may be introduced, or reactive vapor deposition using means such as ozone addition or ion assist may be used.
Also, add bias to the board, raise board temperature,
Alternatively, the operating conditions during film formation can be changed as long as the object of the present invention is not impaired, such as cooling.
The same applies to other preparation methods such as the sputter method and the vacuum deposition method. In addition to the above, the control parameters in the vacuum vapor deposition method include vacuum pressure during vapor deposition, oxygen partial pressure, and heating power. For example, the vacuum pressure during vapor deposition is 1 × 10 −5 to
A range of 5 × 10 −1 Torr, heating power, and 0.1 to 100 Kw is preferable. The control parameters common to various film forming methods are divided into two: substrate feed rate, substrate temperature, and film thickness control methods: control of film oxidation degree and film thickness control. As a method of controlling the degree of oxidation, there are oxygen partial pressure for adjusting the oxidizing atmosphere, oxygen flow rate, argon gas flow rate and the like, and base temperature for controlling reactivity, ozone addition, bias addition and the like. Further, for controlling the film thickness, it is effective to adjust the substrate feed speed, the film forming speed, the film thickness limiting plate and the like. For example, when it is desired to lower the surface resistance value, there are two methods of increasing the oxidation degree or increasing the film thickness. To increase the oxidation degree, the O 2 flow rate is increased, for example, from 100 cc / min to 105 cc / min. .. The flow rate is preferably controlled at a sensitivity of about 0.5 cc / min, although it varies depending on the size of the vacuum chamber and the film forming conditions. on the other hand,
In order to increase the film thickness, there is a method of lowering the film feeding speed or increasing the film forming speed. Therefore, for example, the sputtering power is increased. As the sputter power, for example, 2 Kw is increased to 2.2 Kw, and 0.01 to 0.
Control with sensitivity of about 05 Kw is preferable.

【0009】図4は本発明の方法を実施する透明導電膜
の製造装置及び本発明の膜の表面抵抗値を測定する測定
装置の概略図の例示である。図において、巻出しロール
5から送り出される透明基盤膜は、チルロール4に導か
れ、その下方部においてスパッターターゲット7により
金属酸化物被膜が該透明基盤膜面に形成され、巻取りロ
ール6によって巻取られる。一方、光源部1の光源から
の光は光ファイバーによって真空槽11に導かれ、膜を
透過した光は、再び光ファイバーによって、槽外に導か
れ、分光部9のフイルターにより分光され、受光部10
のフォトメーターによって電気信号に変換され、コンピ
ューターを有する演算処理部12により、前述の関係式
により表面抵抗値を表示する値に変換され出力される。
該出力は出力制御装置22に入力され、膜の表面抵抗値
が一定となる様に製膜工程の操作要因であるターゲット
の加熱電流、膜供給速度、酸素ガスの供給速度等の製膜
操作が制御される。制御はPID制御によっておこなう
ことができる。膜面における投光、受光は膜面近くでお
こなうのが好ましく、光ファイバーを用いて膜面近くの
任意の位置においておこなうのが便利である。製膜工程
においてはこの投光端、受光端を一点に固定するのでな
く膜の巾方向に膜を傷つけることなくトラバースさせ巾
方向の表面抵抗値の平均値や、分布を知ることができ
る。膜の巾方向における表面抵抗値の分布が許容範囲を
はずれる場合には、膜の巾を減少させたり、ターゲット
を膜の巾方向に複数個用いたり、スパッターターゲット
と膜面との間に遮蔽板を用いることができる。
FIG. 4 is an illustration of a schematic view of an apparatus for producing a transparent conductive film for carrying out the method of the present invention and a measuring apparatus for measuring the surface resistance value of the film of the present invention. In the figure, the transparent substrate film sent out from the unwinding roll 5 is guided to the chill roll 4, and a metal oxide film is formed on the transparent substrate film surface by the sputter target 7 in the lower part thereof, and is taken up by the winding roll 6. Be done. On the other hand, the light from the light source of the light source unit 1 is guided to the vacuum chamber 11 by the optical fiber, and the light transmitted through the film is again guided to the outside of the chamber by the optical fiber and is dispersed by the filter of the spectroscopic unit 9 to be received by the light receiving unit 10.
Is converted into an electric signal by the photometer, and is converted into a value indicating the surface resistance value by the above-mentioned relational expression by the arithmetic processing unit 12 having a computer and output.
The output is input to the output control device 22, and the film forming operation such as the target heating current, the film supply rate, and the oxygen gas supply rate, which are the operation factors of the film forming process, are performed so that the surface resistance value of the film becomes constant. Controlled. The control can be performed by PID control. It is preferable to perform light projection and light reception on the film surface near the film surface, and it is convenient to perform light projection and light reception at an arbitrary position near the film surface using an optical fiber. In the film forming process, the light emitting end and the light receiving end are not fixed at one point, but the film is traversed in the width direction of the film without being damaged, and the average value and distribution of the surface resistance value in the width direction can be known. If the distribution of surface resistance values in the width direction of the film is out of the allowable range, decrease the film width, use multiple targets in the film width direction, or use a shield plate between the sputter target and the film surface. Can be used.

【0010】光源部1は、真空槽内の透明導電膜に測定
範囲に該当する300nm乃至1000nmの波長の光
を照射する機能が必要であるが、連続投光でも断続投光
でもよく、また、光を絞ったり、平行光にして投光して
もよい。分光部9は、少なくとも透明導電膜の吸収特性
を示す波長に分光する機能があればよい。フィルターに
おいて分光される光は、あらかじめ定めた一つの波長で
も良いが、光源光量の変動等の影響を除くために基準と
なる波長を併せて測定し、その比によって表面抵抗値を
算出し、測定精度の向上をはかることもできる。受光部
10は、透明導電膜の光吸収波長帯の受光感度特性のよ
い光電子増倍管、シリコンフォトダイオード等がある。
演算処理部12は、透明導電膜を透過分光された光を、
その強度に応じた電気信号に変換する受光素子と、得ら
れた電気信号を演算できるレベルまで増幅する増幅回路
と、バックグランドノイズを除去するフィルタ回路と、
演算により、表面抵抗値をもとめる演算回路と結果をモ
ニタする表示回路で構成され、演算は、アナログ演算で
も、デジタル演算でもよい。
The light source unit 1 needs to have a function of irradiating the transparent conductive film in the vacuum chamber with light having a wavelength of 300 nm to 1000 nm corresponding to the measurement range, but continuous light emission or intermittent light emission may be used. The light may be narrowed or collimated and projected. It is sufficient for the spectroscopic unit 9 to have a function of at least splitting into a wavelength exhibiting the absorption characteristic of the transparent conductive film. The light dispersed by the filter may have a single predetermined wavelength, but the reference wavelength is also measured in order to eliminate the effects of fluctuations in the light source light intensity, and the surface resistance value is calculated by the ratio and measured. It is also possible to improve accuracy. The light receiving unit 10 is, for example, a photomultiplier tube having good light receiving sensitivity characteristics in the light absorption wavelength band of the transparent conductive film, a silicon photodiode, or the like.
The arithmetic processing unit 12 converts the light that has been spectrally transmitted through the transparent conductive film into
A light receiving element that converts into an electric signal according to the intensity, an amplifier circuit that amplifies the obtained electric signal to a level at which the electric signal can be calculated, and a filter circuit that removes background noise,
The calculation is composed of a calculation circuit for obtaining the surface resistance value and a display circuit for monitoring the result. The calculation may be analog calculation or digital calculation.

【0011】(実施例1)図4に示す装置において光源
にキセノンランプを用い、紫外線透過型石英光ファイバ
ーで槽内に光を導き、透明導電膜表面から5mm離した
位置にファイバー先端部を固定し、その先端部から透明
導電膜表面に対して垂直に連続光を投光し、透過した光
を膜の裏面から5mm離した位置に固定された上記光フ
ァイバーと同種の光ファイバーで受けて真空槽の外に導
き、該光ファイバーからの光バンドパスフィルタで38
0nmの透過光を通過させ、その光をシリコンフォトダ
イオードで電気信号に変換し、その信号をロックインア
ンプで増幅させた後12ビットアナログ/デジタル変換
器でデジタル値に変換し、マイクロコンピュータ回路で
演算し、表面抵抗値を連続的に測定した。測定波長λと
表面抵抗値Rの関係式はあらかじめ測定された関係式R
=1.45×105 EXP(−10.4T(λ))を使
用した。被膜を形成させるための合金材料としてインジ
ウム・すず(5重量%含有)をターゲットとして用い、
反応性スパッターによって膜厚みが75μmのポリエス
テルフイルムに透明被膜(被膜の厚み300オングスト
ローム)を形成した。製膜条件は真空圧3×10-2To
rr、スパッター電流5A、スパッター電圧300Vと
し、フイルムの送り速度は10m/分で成膜した。酸素
ガスの供給量の制御は、マスフロー流量計の入力電圧を
表面抵抗値の検出装置より得られる出力値により制御す
ることにより、10cc/分乃至100cc/分の間で
制御した。結果を表1に示す。本発明に係る非接触式の
表面抵抗測定装置を使うため、得られた膜には全く損傷
は見られず、生産歩留りが大幅に向上した。又表面抵抗
のバラツキは±3%以内となり、従来の市販品のレベル
である±20%に比べて著しく改善された。
(Example 1) In the apparatus shown in FIG. 4, a xenon lamp was used as a light source, light was guided into the vessel by an ultraviolet-transparent quartz optical fiber, and the fiber tip was fixed at a position 5 mm away from the transparent conductive film surface. , Continuous light is projected perpendicularly to the surface of the transparent conductive film from its tip, and the transmitted light is received by an optical fiber of the same type as the optical fiber fixed at a position 5 mm away from the back surface of the film, outside the vacuum chamber. Optical fiber bandpass filter from the optical fiber to 38
The transmitted light of 0 nm is passed, the light is converted into an electric signal by a silicon photodiode, the signal is amplified by a lock-in amplifier, and then converted into a digital value by a 12-bit analog / digital converter, and then by a microcomputer circuit. Calculation was performed and the surface resistance value was continuously measured. The relational expression between the measurement wavelength λ and the surface resistance value R is the relational expression R measured in advance.
= 1.45 × 10 5 EXP (-10.4T (λ)) was used. Indium tin (containing 5% by weight) is used as a target as an alloy material for forming a film,
A transparent coating (coating thickness of 300 Å) was formed on a polyester film having a film thickness of 75 μm by reactive sputtering. Film forming conditions are vacuum pressure 3 × 10 -2 To
The film was formed at rr, a sputter current of 5 A, a sputter voltage of 300 V, and a film feed rate of 10 m / min. The supply amount of oxygen gas was controlled between 10 cc / min and 100 cc / min by controlling the input voltage of the mass flow meter with the output value obtained from the surface resistance detecting device. The results are shown in Table 1. Since the non-contact type surface resistance measuring device according to the present invention was used, no damage was observed on the obtained film, and the production yield was significantly improved. Further, the variation of the surface resistance was within ± 3%, which was remarkably improved as compared with the conventional level of ± 20% of the commercial product.

【0012】[0012]

【実施例2】実施例1において、使用する装置におい
て、ITO(SnO2 :10wt%)の焼結ターゲット
を用い、マグネトロンスパッターによって膜厚みが75
μmであるポリエステルフィルムに膜厚み200オング
ストロームの被膜を成形した。製膜条件は真空圧3×1
-2Torr、スパッター電流3A、スパッター電圧2
50Vとし、膜の送り速度は3m/分で成膜した。製膜
における制御は膜抵抗測定装置から得られた出力値によ
り、スパッター電流値を3.5A乃至5.0Aの間でフ
ィードバックしながら5回成膜をおこなった。表面抵抗
値の測定結果を表2に示す。一つの膜についての長さ方
向のばらつき、及び膜間のばらつきは従来法に比べ非常
に小さく、目標値の200Ω/口に比べ最大のずれで3
%であった。
[Example 2] In Example 1, in the apparatus used, a sintered target of ITO (SnO2: 10 wt%) was used, and the film thickness was 75 by magnetron sputtering.
A film having a film thickness of 200 Å was formed on a polyester film having a thickness of μm. Film forming conditions are vacuum pressure 3 × 1
0 -2 Torr, sputter current 3A, sputter voltage 2
It was set to 50 V and the film feed rate was 3 m / min. The film formation was controlled five times while feeding back the sputtering current value between 3.5 A and 5.0 A based on the output value obtained from the film resistance measuring device. Table 2 shows the measurement results of the surface resistance value. The variation in the length direction for one membrane and the variation between membranes are much smaller than the conventional method, and the maximum deviation is 3 compared to the target value of 200Ω / port.
%Met.

【0013】[0013]

【比較例1】実施例と同様に、反応性スパッターでIT
O膜を製膜し、その時、製膜した透明導電膜に銅電極を
接触させて、抵抗値のモニターをおこないながら製膜条
件を変えながら製膜をおこなった。このサンプルを取り
出し、表面抵抗値を測定したが、フイルム上に電極の接
触により生ずる傷が入っており、作成した透明導電膜の
良品率は60%であった。表面抵抗値は目標値の200
Ω/口に対し、±20%であった。
[Comparative Example 1] As in the example, IT was performed by reactive sputtering.
An O film was formed, and at that time, a copper electrode was brought into contact with the formed transparent conductive film, and film formation was performed while changing the film formation conditions while monitoring the resistance value. This sample was taken out and the surface resistance value was measured. As a result, it was found that the film had scratches caused by the contact of the electrodes, and the yield rate of the produced transparent conductive film was 60%. The surface resistance is 200, which is the target value.
Ω / mouth was ± 20%.

【0014】[0014]

【比較例2】実施例と同様に反応性スパッターでITO
膜を成膜したが、特にモニターはおこなわなかった。こ
の膜の表面抵抗を測定した。その結果製膜の初期におい
ては表面抵抗値は良好であったが、徐々に酸化度が増
し、表面抵抗値が増大し、最後には導電性も失なってし
まった。
[Comparative Example 2] ITO was formed by reactive sputtering as in the example.
A film was formed, but no particular monitoring was performed. The surface resistance of this film was measured. As a result, the surface resistance was good in the initial stage of film formation, but the degree of oxidation gradually increased, the surface resistance increased, and finally the conductivity was lost.

【0015】[0015]

【発明の効果】透明導電膜の光透過率と膜の表面抵抗値
の関係をあらかじめ測定し、得られる関係式を入力した
演算処理部を有する表面抵抗測定装置を製膜工程にオン
ラインで使用し、製膜工程における生産条件を制御する
ことにより、均一な表面抵抗値を有する透明導電膜を膜
の損傷を伴うことなく製造できる。
The relationship between the light transmittance of the transparent conductive film and the surface resistance value of the film is measured in advance, and a surface resistance measuring device having an arithmetic processing unit in which the obtained relational expression is input is used online in the film forming process. By controlling the production conditions in the film forming step, it is possible to manufacture a transparent conductive film having a uniform surface resistance value without damaging the film.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】透明導電膜における光透過率と表面抵抗値の一
般的な関係を示す。
FIG. 1 shows a general relationship between light transmittance and surface resistance of a transparent conductive film.

【図2】透明導電膜における光の波長、光透過率及び膜
の表面抵抗値を示す。
FIG. 2 shows the wavelength of light, the light transmittance, and the surface resistance value of the film in a transparent conductive film.

【図3】図2における特定の関係を示す。FIG. 3 shows a particular relationship in FIG.

【図4】本発明の方法を実施するための製膜装置の概略
図を本発明の測定装置の概略図と共に例示する。
FIG. 4 illustrates a schematic view of a film forming apparatus for carrying out the method of the present invention together with a schematic view of a measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 光源部 2 真空排気系 3 光ファ
イバー 4 チルロール 5 巻出しロール 6 巻取り
ロール 7 ターゲット 8 膜 9 分光部 10 受光部 11 真空槽 12 演算処理
部 13 変換器 14 質量分析計 15 真空度計 16 温
度センサー 17 速度センサー 18 スパッター電源 1
9 イオン化電源 20 流量計 21 モーター 22 出力制
御装置 23 信号入力装置
1 Light Source 2 Vacuum Evacuation System 3 Optical Fiber 4 Chill Roll 5 Unwinding Roll 6 Winding Roll 7 Target 8 Film 9 Spectroscopic Section 10 Light Receiving Section 11 Vacuum Tank 12 Calculation Processing Section 13 Converter 14 Mass Spectrometer 15 Vacuum Degree 16 Temperature Sensor 17 Speed sensor 18 Sputter power supply 1
9 ionization power source 20 flow meter 21 motor 22 output control device 23 signal input device

【表1】 [Table 1]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透明導電膜の製造工程において、該透明
導電膜の光透過率を測定し、該測定値を演算処理して得
られる膜表面電気抵抗値により上記製造工程における製
膜操作を制御することを特徴とする透明導電膜の製造方
法。
1. A process for producing a transparent conductive film, the light transmittance of the transparent conductive film is measured, and the film forming operation in the above manufacturing process is controlled by the film surface electric resistance value obtained by arithmetically processing the measured value. A method for producing a transparent conductive film, comprising:
【請求項2】 光源部、分光部、受光部及び演算処理部
を有し、あらかじめ該演算処理部に入力された光透過率
と膜表面電気抵抗値の関係式と、分光部より得られる光
透過率により、膜表面電気抵抗値を演算し、出力する膜
表面電気抵抗値の測定装置。
2. A light source section, a spectroscopic section, a light receiving section, and an arithmetic processing section, and a relational expression between the light transmittance and the film surface electrical resistance value inputted in advance to the arithmetic processing section, and the light obtained from the spectroscopic section. A device for measuring the electric resistance of a film surface, which calculates and outputs the electric resistance of the film surface based on the transmittance.
JP34927691A 1991-12-05 1991-12-05 Method and apparatus for producing transparent conductive film Expired - Fee Related JP3152249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34927691A JP3152249B2 (en) 1991-12-05 1991-12-05 Method and apparatus for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34927691A JP3152249B2 (en) 1991-12-05 1991-12-05 Method and apparatus for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JPH05156439A true JPH05156439A (en) 1993-06-22
JP3152249B2 JP3152249B2 (en) 2001-04-03

Family

ID=18402673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34927691A Expired - Fee Related JP3152249B2 (en) 1991-12-05 1991-12-05 Method and apparatus for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP3152249B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237599A (en) * 2011-05-10 2012-12-06 Ulvac Japan Ltd Processed body inspection device
JP2015045037A (en) * 2013-08-27 2015-03-12 日立造船株式会社 Sputtering apparatus and thin film forming method
KR101525767B1 (en) * 2013-08-13 2015-06-04 포톤데이즈(주) Apparatus for Measuring Electrical Property of Film Element with Light Scan and Method for the Same
JP2016191157A (en) * 2013-01-16 2016-11-10 日東電工株式会社 Transparent conductive film and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237599A (en) * 2011-05-10 2012-12-06 Ulvac Japan Ltd Processed body inspection device
JP2016191157A (en) * 2013-01-16 2016-11-10 日東電工株式会社 Transparent conductive film and method for manufacturing the same
KR101525767B1 (en) * 2013-08-13 2015-06-04 포톤데이즈(주) Apparatus for Measuring Electrical Property of Film Element with Light Scan and Method for the Same
JP2015045037A (en) * 2013-08-27 2015-03-12 日立造船株式会社 Sputtering apparatus and thin film forming method

Also Published As

Publication number Publication date
JP3152249B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US4407709A (en) Method and apparatus for forming oxide coating by reactive sputtering technique
US4065600A (en) Metal oxide films
US4170662A (en) Plasma plating
US4166784A (en) Feedback control for vacuum deposition apparatus
GB2085166A (en) Semiconductor gas sensor
JPH07306002A (en) Thin film for strain gage and its manufacture method
JP3152249B2 (en) Method and apparatus for producing transparent conductive film
JP2771208B2 (en) Method for producing transparent conductive film coated with metal oxide thin film
JPH0774444B2 (en) Spatter device
JP2607091B2 (en) Method and apparatus for continuously depositing a metal oxide film on a long film substrate
JPH059728A (en) Formation of thin film
Stocker Cathode sputtering in inert-gas glow discharges
JP2004063271A (en) Manufacturing method of transparent conductive film
US4415602A (en) Reactive plating method and product
US6730351B2 (en) Method and apparatus for forming light absorption film
Schiller et al. Properties of cadmium stannate thin films produced by reactive high rate dc magnetron-plasmatron sputtering
Meng et al. Indium–tin-oxide thin film prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication wavelengths
JP2003217897A (en) Plasma measuring device and method, and sensor probe
EP0421015B1 (en) Process for producing transparent conductive film
Kakati et al. Effect of oxygen on the characteristics of radio frequency planar magnetron sputtering plasma used for aluminum oxide deposition
JP3528930B2 (en) Method for manufacturing transparent conductive film
JPH0370326B2 (en)
JPH04308612A (en) Transparent conductive membrane and manufacture thereof, transparent conductive film, and analog touch-panel
JP3170909B2 (en) Manufacturing method of gas detection element
JP2962336B2 (en) Manufacturing method of gas detection element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110126

LAPS Cancellation because of no payment of annual fees