JP2004063271A - Manufacturing method of transparent conductive film - Google Patents

Manufacturing method of transparent conductive film Download PDF

Info

Publication number
JP2004063271A
JP2004063271A JP2002220068A JP2002220068A JP2004063271A JP 2004063271 A JP2004063271 A JP 2004063271A JP 2002220068 A JP2002220068 A JP 2002220068A JP 2002220068 A JP2002220068 A JP 2002220068A JP 2004063271 A JP2004063271 A JP 2004063271A
Authority
JP
Japan
Prior art keywords
surface resistance
conductive film
resistance value
transparent conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002220068A
Other languages
Japanese (ja)
Inventor
Yuji Kakita
柿田 裕次
Toshiyuki Otani
大谷 寿幸
Hideo Murakami
村上 英生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002220068A priority Critical patent/JP2004063271A/en
Publication of JP2004063271A publication Critical patent/JP2004063271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a transparent conductive film capable of improving the yield of a product by directly measuring a surface resistance value of the conductive film in an in-line manner without contacting it to promptly determine an optimum oxygen introduction amount (oxygen partial pressure), and by forming the conductive film having a stable surface resistance value. <P>SOLUTION: In this manufacturing method of a transparent conductive film with a metal oxide thin film formed on a substrate, its manufacturing process for the transparent conductive film comprises: a measurement means for measuring the surface resistance value of the transparent conductive film in an in-line manner without contacting it; a control means for determining a film formation condition based on the surface resistance value obtained from the measurement means. The measurement means is used for measuring the surface resistance value from an eddy current induced in the conductive film by using a ferrite coil. The control means is used for continuously changing the oxygen introduction amount so as to minimize the surface resistance value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は基板上に金属酸化物薄膜を形成させた透明導電膜の製造方法に関し、詳しくは、透明導電膜の表面抵抗値をインラインで測定しながら薄膜形成を制御する方法に関する。
【0002】
【従来の技術】
ガラス、セラミックあるいは高分子フィルムなどの表面に電気抵抗の低い金属被膜または金属酸化物被膜を付着させた導電基板は、その導電性を利用した用途、たとえば液晶ディスプレイ、ELディスプレイ、プラズマディスプレイといったフラットパネルディスプレイや、太陽電池などの透明電極、ブラウン管の窓の透明静電シールド板、または透明電磁シールド板、発熱体などの電気、電子分野の用途に広く使用されている。
【0003】
また、このような導電膜の中で光の選択透過性を有するものは、その赤外光反射特性を利用して、太陽エネルギー利用のための窓材や、建物・自動車などの熱線反射用材料として利用されている。
【0004】
従来、上記のような導電基板の導電膜の表面抵抗は二端子もしくは二探針または四端子もしくは四探針などの接触式表面抵抗測定法により測定されるのが一般的であった。
【0005】
しかしながら、上記の接触式表面抵抗測定法は破壊測定であり、製品の導電膜表面に傷が発生することによる性能劣化あるいは品位の劣化などの問題があった。
【0006】
さらに、上記の接触式表面抵抗測定法では、成膜後に真空装置から薄膜形成させた基板を取り出して表面抵抗値を測定するために、品質基準から外れていた場合には成膜をやり直すことになり製品の歩留まりが悪くなる。また、接触式表面抵抗測定装置を用いて方法では、成膜開始時の真空装置内への酸素導入量は、前バッチで成膜した透明導電膜の接触式表面抵抗測定法による測定結果をもとに決定していた。しかしながら、これから製造を行うバッチの成膜では前バッチとはターゲットの状態、真空装置内水分率等の変動がおこる場合がある。そのため、前バッチと同一条件で成膜したとしても透明導電膜の表面抵抗値が変動する場合があった。
【0007】
上記のような導電膜表面での傷の発生を防止し、成膜中に表面抵抗値を非接触で測定するために、特開平5−9728号公報では、分光分析装置(分光計)を用いて薄膜形成する金属材料の金属原子と気体原子の発光強度比から表面抵抗値を演算・算出する方法が提案されている。
【0008】
しかしながら、この方法は、後で詳しく述べるが、発光強度比と表面抵抗値との間の相関係数は高いとはいえない。工業的な成膜の場では、表面抵抗値は薄膜の膜厚と酸素導入量(酸素分圧)に応じて変化する。膜厚の変化は発光強度比(分光特性)の変化として発現するが、酸素導入量(酸素分圧)の変化は発光強度比(分光特性)の変化として現われにくい。そのため、分光特性の変化が少ないにもかかわらず、表面抵抗値が数十%も変化するというトラブルが発生する場合がある。
【0009】
【発明が解決しようとする課題】
本発明は上記の実情に鑑みてなされたもので、その目的は、導電膜の表面抵抗値をインラインでかつ非接触にて直接測定して、最適な酸素導入量(酸素分圧)を早期に決定し、表面抵抗値の安定した導電膜を成膜し、製品の歩留まりを向上させることができる透明導電膜の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
すなわち、本発明は、基板上に金属酸化物薄膜を形成させた透明導電膜の製造方法において、透明導電膜の製造工程が透明導電膜の表面抵抗値をインラインでかつ非接触で測定する測定手段と、前記測定手段から得られる表面抵抗値に基づいて成膜条件を決定する制御手段を含み、前記測定手段はフェライトコイルを用いて導電膜に誘導される渦電流から表面抵抗値を測定してなり、かつ前記制御手段は前記表面抵抗値が最小となるように酸素導入量を連続的に可変させてなることを特徴とする透明導電膜の製造方法である。
【0011】
【発明の実施の形態】
透明導電膜としては、通常、酸化すず、酸化インジウム、酸化インジウム・酸化すず(ITO)、或は、酸化亜鉛を被膜として透明基板上に形成させたものが一般的であり、真空蒸着法、スパッター法、CVD法、スプレー法等により作成できることが知られている。この中でも、真空蒸着法、スパッター法は被膜の厚みが均一で、かつ膜の表面抵抗値が低い透明導電膜が得られる方法である。この場合、酸化物を原料とする場合と、金属を原料として、酸素と反応させながら被膜を形成していく方法がある。
【0012】
例えば、ITO薄膜をスパッターリング法により被膜を形成させる場合には、(1)ITOの焼結ターゲットを使用する方法と、(2)インジウム・すず合金のターゲットを用い酸素と反応させながらおこなう、いわゆる反応性スパッターリング法、が知られている。これらの方法の中で、ターゲットの作成や再生が容易な点や、成膜速度を早くすることができる点から、後者の金属ターゲットを用いる方法が有利であると考えられている。
【0013】
以下の説明では、本発明の実施の一形態として、スパッターリング法によるITO薄膜を基板上に形成させる具体例を示すが、本発明はこの方法に限定されるものではない。
【0014】
巻出しロールから送り出される透明基板膜は、チルロールに導かれ、その下方部においてスパッターターゲットにより金属酸化物薄膜が該透明基板膜面に形成され、巻取りロールによって巻取られる。次いで、このチルロールと巻取りロールの間に、フェライトコイルを用いて透明導電膜に誘導される渦電流から表面抵抗値を非接触にて測定するセンサーを設ける。この際、表面抵抗値の結果に基づき、真空装置内の酸素導入量(酸素分圧)を決定して制御するので、チルロールとセンサーは成膜の長手方向に近い位置に設置することが好ましい。
【0015】
センサーは、透明導電膜に設定間隔をあけて対向させ、前記導電膜に渦電流を流す渦電流発生部と、前記導電膜に流れる渦電流を前記導電膜とは離間した状態で検出する渦電流検出部とによって構成する。
【0016】
【作用】
導電膜に渦電流を流す方法は、導電膜に設定間隔をあけて渦電流発生部ならびに渦電流検出部を対向させる方法と、渦電流発生部と渦電流検出部の両者で導電膜を挟み込む方法がある。例えば、渦電流発生部としてのフェライトコイルなどのコイルに高周波電圧を印加し、前記コイルを導電膜に近づけるか、前記コイルで導電膜を挟み込むことで、導電膜に高周波誘導結合による渦電流を流す。
【0017】
電圧を一定にしておくと、導電膜に流れる渦電流と導電膜の表面抵抗値が逆比例することから、渦電流を検出することで表面抵抗値を求めることができる。
【0018】
スパッター電源をいれ、真空装置内に酸素を少しずつ導入していくと表面抵抗値が変わる。酸素導入量(酸素分圧)と表面抵抗値の関係は、図2より、最小点を一つ有する曲線になることが分かる。この現象を詳しく説明する。
【0019】
酸素導入量(酸素分圧)を増加させると、膜組成が化学量論的な組成に近づき結晶学的欠陥が少なくなる。そのため、キャリア電子の移動度は上昇する。他方、この際に酸素空孔ドナーが減少し、キャリア密度は低下する。したがって、キャリア電子の移動度とキャリア密度の兼合いにより、ある酸素導入量において表面抵抗値は最小値をとる。このときの酸素導入量を最適酸素導入量と呼ぶ。実際の工業スケールでの量産成膜ラインでは、表面抵抗値の変化を少なくするために、前記最適酸素導入量の条件を設定して成膜を開始することが好ましい。
【0020】
スパッタ電源の出力、成膜ライン速度、真空圧等の条件を一定とすれば、最適酸素導入量は固定できることが理想である。しかし、実際の成膜装置では、ターゲットの消耗・黒化や真空装置内水分率等の影響で、バッチ毎に最適な成膜条件が変化してしまうため、表面抵抗値の再現性が良くない。
【0021】
本発明では、スパッタ電源をいれてから酸素導入量を連続的に増加させ、そのときの表面抵抗値を、前記フェライトコイルを用いたセンサーでリアルタイムで測定する。酸素導入量を連続的に増加させていくと、表面抵抗値は次第に低くなり、やがて高くなるので、表面抵抗値の最小値を求めることができる。
【0022】
酸素導入量の可変域は予め決めておく。最小値が決定すると、最適酸素導入量を制御して一定値に保ち、成膜条件が確定した時点で成膜を開始する。なお、最適酸素導入量の決定は、上記のように自動で連続的に導入量を可変する以外に、予め決めておいた酸素導入量毎に表面抵抗値をプロットして最小値を求めるという手動で行う方法でも構わない。
【0023】
以下、本発明の実施の形態を図面に基づきさらに詳しく説明する。
【0024】
図1に、本発明で用いる透明導電膜の製造装置における概略図の構成を示す。図1において、巻出しロール1から送り出される基板は、チルロール2に導かれる。その円周方向の下方部においてチルロール2と対面する位置で、ある間隙をもってスパッターターゲット3を配置する。
【0025】
真空装置外に設けたスパッタ電源4によりプラズマ放電を発生させ、そのプラズマ中の陽イオンが負電極のターゲットに加速されてその表面を衝撃し、その衝撃によってターゲット物質が飛び出す。この飛び出したスパッタ粒子を基板上に堆積させて薄膜を形成する。基板に薄膜が形成されると導電膜5となり、表面抵抗値測定センサー6を経て巻取りロール7によって巻き取られる。
【0026】
表面抵抗値測定センサー6は、導電膜5に設定間隔をあけて渦電流発生部ならびに渦電流検出部を対向させるものと、渦電流発生部と渦電流検出部の両者で導電膜を挟み込むものがある。表面抵抗値測定センサー6は、基板の幅方向に複数個を固定して配置しても良いし、1個を幅方向にスキャン(トラバース)させても良い。表面抵抗値測定センサー6の前後には走行テンションを保ち、基板シートの鉛直方向の位置変動を少なくするために、前記センサーのできるだけ近い位置にロールを設ける。
【0027】
上記巻出しロールから巻取りロールまで真空装置内に収納し、該真空装置は図示しない油回転ポンプやターボポンプによって排気系を構成して、所望の真空圧を得る。また、スパッタでは、放電ガスにアルゴンガスを用いることが多く、これは図示しないガス導入系から流入する。
【0028】
表面抵抗値測定センサー6の信号は高周波であり同軸ケーブルによって真空フランジ14を通って大気側に設置したアンプ8に送信される。アンプ8からの信号を演算部9で表面抵抗値に換算する。演算部9はパソコンが好ましいが、これに限定はされない。演算部9から表面抵抗値がRS232C等の通信手段で制御部10に送信される。
【0029】
制御部10はプログラマブル・コントローラーが好ましいが、これに限定はされない。制御部10には予め可変する酸素導入量を表示設定部11によりプログラムしておく。酸素導入量は電磁弁13の開閉により決定する。制御部は前記プログラムに従い、酸素導入量を徐々に増加させるように操作部12に指令する。操作部12はマスフローコントローラ等で構成する。この間の酸素導入量と表面抵抗値の関係を制御部10で作成する。
【0030】
図2に、本発明の制御手段で作成する酸素導入量と表面抵抗値の関係を示す。スパッタリング法では、図2のように最小値を持つ曲線になることが一般的である。
【0031】
図2において、A点が予め設定された初期の酸素導入量であり、スパッタ電源をいれた時点である。連続的に酸素導入量を図2のように増加させていくとB点を経由してC点に至る。この間、表面抵抗値がリアルタイムに取り込まれるので、表面抵抗値が最小となる点がB点であり、この時の酸素導入量が最適酸素導入量(FO)となる。そこで、C点から酸素導入量を減少させてB点に戻す。最適酸素導入量(FO)が決定すれば、この設定値となるようにPID制御などで一定酸素量を導入する。
【0032】
【実施例】
(実施例1)
図1に示す透明導電膜の製造装置において、巻出しロールには基板として片面に接着改質層を有する高透明二軸延伸ポリエチレンテレフタレートフィルム(東洋紡績製、コスモシャインA4100、厚さ188μm、幅500mm)のフィルムをロール状に巻き取ったものを用いた。薄膜を形成させるための合金材料として、酸化インジウム・すず(酸化すず含有量:5質量%)をターゲットとして用いた。成膜条件は真空圧0.4Pa、スパッタ電源は出力2W/cmでDCマグネトロンスパッタ電源とし、チルロールを冷媒により−10℃に冷却させ、前記巻出しロールから、一定張力を付与させながらライン速度1m/分で前記フィルム基板を送り出した。
【0033】
表面抵抗測定用センサーとして、50mmφフェライトコイルをギャップ4mmでフィルムを挟みこむ形で設置した。表面抵抗測定用センサーの前後にはテンション保持用のロール(100mmφ)を配し、フィルムシートが上記ギャップ中心を通るように設定した。フェライトコイルへの印加周波数は3.7MHzで75Ω同軸ケーブルにて真空装置内を配線した。真空フランジはICF70(12芯導入端子)を使用し、シールド線はフランジコネクタにて接地させた。巻取りロールはACサーボモータにより張力制御をさせた。
【0034】
フェライトコイルの信号変換・増幅には高周波(RF)アンプを用いて、DC5Vの直流信号にする。演算部にパソコン(DELL製 Optiplex GX150)を使用してRS232C通信にて表面抵抗値データを制御部に送信した。制御部はプログラマブル・コントローラ(シーケンサ)で三菱電機製 A3SCPUを使った。表示部・設定部はタッチパネル(デジタル社製 GP2600−TC11)を使い、操作部はマスフローコントローラ(エステック製 SEC−400MK3 20SCCM)を使った。
【0035】
本実施例1による酸素導入量と表面抵抗値の関係を図3に示す。
図3において、初期の酸素導入量は5.5sccmであり、その時の導電膜の表面抵抗値は660Ω/□であった。0.5sccmずつ酸素導入量を増加させて、表面抵抗値をプロットすると、9sccmまで酸素導入量を変更すると、表面抵抗値は410Ω/□で最小となった。よって最適酸素導入量(FO)は7.2sccmである。このFOを酸素導入量設定値として成膜を開始したところ、長手方向にも幅方向にも安定した表面抵抗値を有する導電膜を製造することができた。
【0036】
(比較例1)
本比較例1は、分光測定による透過率から表面抵抗値を換算する方法を用いた例である。
【0037】
本比較例1における酸素導入量と透過率の関係を図4に示す。図4は実施例1の図3で測定した表面抵抗測定装置と同一点の透過率を測定する分光計によるデータであり、表面抵抗測定と同一バッチでの分光測定である。なお、分光計は瞬間マルチ測光システム(大塚電子製 MCPD−3000)を用いた。
【0038】
図4において、酸素導入量が7〜9sccmでは、550nmでの透過率は85%近傍であり、大きな変化はない。しかしながら、このように透過率は安定していても、図3で示すように、表面抵抗値は30%近くも変化している。すなわち、従来のように分光測定による透過率から表面抵抗値を換算する方法では、表面抵抗値の変化が捉えられない場合があることが理解できる。
【0039】
【発明の効果】
本発明によれば、導電膜の表面抵抗値をインラインでかつ非接触にて直接測定する測定手段と、各成膜バッチ毎に成膜前に最適酸素導入量(酸素分圧)を早期に決定することができる制御手段を有しているため、早期に成膜を開始することができる。その結果、表面抵抗値の安定した導電膜を成膜でき、歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】本発明で用いる透明導電膜の製造装置の説明図である。
【図2】酸素導入量と表面抵抗値の関係を示す説明図である。
【図3】本発明の実施例における酸素導入量と表面抵抗値の関係を示す図である。
【図4】本発明の比較例における酸素導入量と透過率の関係を示す図である。
【符号の説明】
1 巻出しロール
2  チルロール
3 ターゲット
4 スパッタ電源
5  導電膜
6  表面抵抗測定センサー
7  巻取りロール
8  アンプ
9  演算部
10  制御部
11  表示設定部
12  操作部
13  電磁弁
14  真空フランジ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a transparent conductive film having a metal oxide thin film formed on a substrate, and more particularly, to a method for controlling thin film formation while measuring the surface resistance of the transparent conductive film in-line.
[0002]
[Prior art]
A conductive substrate in which a metal film or a metal oxide film having low electric resistance is adhered to the surface of glass, ceramic, or a polymer film is used for a flat panel such as a liquid crystal display, an EL display, and a plasma display. It is widely used in electric and electronic fields such as transparent electrodes for displays and solar cells, transparent electrostatic shield plates for cathode ray tube windows, transparent electromagnetic shield plates, and heating elements.
[0003]
Among such conductive films, those having a selective transmittance of light can utilize window characteristics for utilizing solar energy and materials for reflecting heat rays such as buildings and automobiles by utilizing the infrared light reflection characteristics. Has been used as.
[0004]
Conventionally, the surface resistance of a conductive film on a conductive substrate as described above has generally been measured by a contact-type surface resistance measurement method such as a two-terminal or two-probe, or a four-terminal or four-probe.
[0005]
However, the contact-type surface resistance measurement method described above is a destructive measurement, and has problems such as performance deterioration or quality deterioration due to generation of scratches on the conductive film surface of the product.
[0006]
Furthermore, in the contact surface resistance measurement method described above, in order to measure the surface resistance value by taking out the substrate on which the thin film is formed from the vacuum device after the film formation, if the quality is out of the standard, the film formation is repeated. The product yield becomes worse. In the method using a contact-type surface resistance measurement device, the amount of oxygen introduced into the vacuum device at the start of film formation can be determined by measuring the contact surface resistance measurement method of the transparent conductive film formed in the previous batch. Was decided. However, in the film formation of a batch to be manufactured from now on, the state of the target, the moisture content in the vacuum apparatus, and the like may vary from the previous batch. For this reason, the surface resistance of the transparent conductive film sometimes fluctuated even when the film was formed under the same conditions as in the previous batch.
[0007]
In order to prevent the occurrence of scratches on the surface of the conductive film as described above and to measure the surface resistance value in a non-contact manner during film formation, Japanese Patent Application Laid-Open No. 5-9728 uses a spectroscopic analyzer (spectrometer). A method has been proposed in which a surface resistance value is calculated and calculated from the emission intensity ratio between metal atoms and gas atoms of a metal material to be formed into a thin film.
[0008]
However, as will be described in detail later, the correlation coefficient between the emission intensity ratio and the surface resistance value is not high. In the case of industrial film formation, the surface resistance value changes according to the thickness of the thin film and the amount of oxygen introduced (oxygen partial pressure). The change in the film thickness appears as a change in the light emission intensity ratio (spectral characteristics), but the change in the oxygen introduction amount (oxygen partial pressure) hardly appears as a change in the light emission intensity ratio (spectral characteristics). For this reason, a problem may occur in which the surface resistance changes by several tens% even though the change in the spectral characteristics is small.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to directly measure the surface resistance of a conductive film in-line and in a non-contact manner to quickly determine an optimal oxygen introduction amount (oxygen partial pressure). It is an object of the present invention to provide a method for manufacturing a transparent conductive film that can be determined, form a conductive film having a stable surface resistance value, and improve product yield.
[0010]
[Means for Solving the Problems]
That is, the present invention relates to a method for manufacturing a transparent conductive film in which a metal oxide thin film is formed on a substrate, wherein the step of manufacturing the transparent conductive film measures the surface resistance value of the transparent conductive film in-line and in a non-contact manner. And a control means for determining film forming conditions based on the surface resistance value obtained from the measurement means, wherein the measurement means measures a surface resistance value from an eddy current induced in the conductive film using a ferrite coil. Wherein the control means continuously varies the oxygen introduction amount so as to minimize the surface resistance value.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The transparent conductive film is generally formed of tin oxide, indium oxide, indium oxide / tin oxide (ITO), or zinc oxide as a coating film on a transparent substrate. It is known that it can be produced by a method, a CVD method, a spray method or the like. Among them, the vacuum vapor deposition method and the sputtering method are methods for obtaining a transparent conductive film having a uniform film thickness and a low surface resistance value of the film. In this case, there are a method using an oxide as a raw material and a method using a metal as a raw material to form a film while reacting with oxygen.
[0012]
For example, when a thin film of ITO is formed by sputtering, a method of (1) using a sintered target of ITO and a method of (2) using an indium-tin alloy target while reacting with oxygen, so-called, The reactive sputtering method is known. Among these methods, the latter method using a metal target is considered to be advantageous because the target can be easily formed and regenerated, and the film formation rate can be increased.
[0013]
In the following description, as an embodiment of the present invention, a specific example of forming an ITO thin film on a substrate by a sputtering method will be described, but the present invention is not limited to this method.
[0014]
The transparent substrate film sent out from the unwinding roll is guided to a chill roll, a metal oxide thin film is formed on the surface of the transparent substrate film by a sputter target below the chill roll, and is wound up by a winding roll. Next, between the chill roll and the take-up roll, a sensor for measuring a surface resistance value in a non-contact manner from an eddy current induced in the transparent conductive film using a ferrite coil is provided. At this time, since the amount of oxygen introduced (oxygen partial pressure) in the vacuum device is determined and controlled based on the result of the surface resistance value, it is preferable that the chill roll and the sensor are installed at positions near the longitudinal direction of the film formation.
[0015]
The sensor is opposed to the transparent conductive film at a predetermined interval, and an eddy current generating unit for flowing an eddy current to the conductive film, and an eddy current for detecting the eddy current flowing in the conductive film in a state separated from the conductive film It comprises a detection unit.
[0016]
[Action]
An eddy current is caused to flow through the conductive film by a method in which the eddy current generating unit and the eddy current detecting unit are opposed to each other with a set interval between the conductive film and a method in which the conductive film is sandwiched by both the eddy current generating unit and the eddy current detecting unit. There is. For example, by applying a high-frequency voltage to a coil such as a ferrite coil as an eddy current generating unit and bringing the coil close to the conductive film or sandwiching the conductive film between the coils, an eddy current flows through the conductive film by high-frequency inductive coupling. .
[0017]
When the voltage is kept constant, the eddy current flowing through the conductive film is inversely proportional to the surface resistance of the conductive film. Therefore, the surface resistance can be obtained by detecting the eddy current.
[0018]
When a sputter power supply is turned on and oxygen is gradually introduced into the vacuum device, the surface resistance changes. It can be seen from FIG. 2 that the relationship between the oxygen introduction amount (oxygen partial pressure) and the surface resistance value is a curve having one minimum point. This phenomenon will be described in detail.
[0019]
When the oxygen introduction amount (oxygen partial pressure) is increased, the film composition approaches the stoichiometric composition, and crystallographic defects are reduced. Therefore, the mobility of carrier electrons increases. On the other hand, at this time, the number of oxygen vacancy donors decreases, and the carrier density decreases. Therefore, the surface resistance takes a minimum value at a certain amount of oxygen introduction due to the balance between the mobility of carrier electrons and the carrier density. The oxygen introduction amount at this time is referred to as an optimum oxygen introduction amount. In an actual mass-production film-forming line on an industrial scale, it is preferable to start film formation under the conditions of the above-described optimum oxygen introduction amount in order to reduce the change in the surface resistance value.
[0020]
Ideally, if the conditions such as the output of the sputtering power supply, the film forming line speed, and the vacuum pressure are fixed, the optimal oxygen introduction amount can be fixed. However, in the actual film forming apparatus, the optimum film forming conditions change for each batch due to the consumption and blackening of the target and the moisture content in the vacuum apparatus, and the reproducibility of the surface resistance value is not good. .
[0021]
In the present invention, the amount of oxygen introduced is continuously increased after the power supply of the sputter is turned on, and the surface resistance value at that time is measured in real time by a sensor using the ferrite coil. When the oxygen introduction amount is continuously increased, the surface resistance gradually decreases and eventually increases, so that the minimum value of the surface resistance can be obtained.
[0022]
The variable range of the oxygen introduction amount is determined in advance. When the minimum value is determined, the optimum oxygen introduction amount is controlled and maintained at a constant value, and the film formation is started when the film formation conditions are determined. The optimum oxygen introduction amount is determined not only by automatically and continuously varying the introduction amount as described above, but also by manually plotting the surface resistance value for each predetermined oxygen introduction amount to obtain the minimum value. It is also acceptable to use the method described in the above.
[0023]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
[0024]
FIG. 1 shows a schematic configuration of a manufacturing apparatus for a transparent conductive film used in the present invention. In FIG. 1, a substrate sent out from an unwinding roll 1 is guided to a chill roll 2. The sputter target 3 is arranged at a position facing the chill roll 2 at a lower portion in the circumferential direction with a certain gap.
[0025]
A plasma discharge is generated by a sputtering power supply 4 provided outside the vacuum apparatus, and cations in the plasma are accelerated by a target of a negative electrode and bombard the surface thereof, and the bombardment causes the target material to fly out. The sputtered particles are deposited on the substrate to form a thin film. When the thin film is formed on the substrate, it becomes a conductive film 5 and is wound up by a winding roll 7 via a surface resistance value measuring sensor 6.
[0026]
The surface resistance measurement sensor 6 includes a sensor in which the eddy current generation unit and the eddy current detection unit are opposed to each other with a set interval from the conductive film 5 and a sensor in which the conductive film is sandwiched by both the eddy current generation unit and the eddy current detection unit. is there. A plurality of the surface resistance measurement sensors 6 may be fixedly arranged in the width direction of the substrate, or one of them may be scanned (traversed) in the width direction. In order to maintain the running tension before and after the surface resistance measurement sensor 6 and to reduce the vertical position fluctuation of the substrate sheet, a roll is provided as close as possible to the sensor.
[0027]
The above unwinding roll to the winding roll are housed in a vacuum device, and the vacuum device forms an exhaust system by an oil rotary pump or a turbo pump (not shown) to obtain a desired vacuum pressure. In sputtering, an argon gas is often used as a discharge gas, which flows from a gas introduction system (not shown).
[0028]
The signal of the surface resistance measurement sensor 6 is a high frequency signal and transmitted to the amplifier 8 installed on the atmosphere side through a vacuum flange 14 by a coaxial cable. The signal from the amplifier 8 is converted into a surface resistance value by the calculation unit 9. The computing unit 9 is preferably a personal computer, but is not limited to this. The calculation section 9 transmits the surface resistance value to the control section 10 by a communication means such as RS232C.
[0029]
The controller 10 is preferably a programmable controller, but is not limited to this. The display setting unit 11 programs a variable amount of introduced oxygen in the control unit 10 in advance. The amount of introduced oxygen is determined by opening and closing the solenoid valve 13. The control unit instructs the operation unit 12 to gradually increase the oxygen introduction amount according to the program. The operation unit 12 includes a mass flow controller or the like. The relationship between the oxygen introduction amount and the surface resistance value during this time is created by the control unit 10.
[0030]
FIG. 2 shows the relationship between the amount of oxygen introduced and the surface resistance value created by the control means of the present invention. In the sputtering method, it is general that the curve has a minimum value as shown in FIG.
[0031]
In FIG. 2, point A is a preset initial oxygen introduction amount, which is a point in time when a sputtering power supply is turned on. When the oxygen introduction amount is continuously increased as shown in FIG. 2, the oxygen reaches the point C via the point B. During this time, since the surface resistance value is taken in real time, the point at which the surface resistance value becomes the minimum is point B, and the oxygen introduction amount at this time becomes the optimum oxygen introduction amount (FO 2 ). Therefore, the amount of oxygen introduced is reduced from the point C and returned to the point B. When the optimum oxygen introduction amount (FO 2 ) is determined, a constant oxygen amount is introduced by PID control or the like so as to reach this set value.
[0032]
【Example】
(Example 1)
In the apparatus for producing a transparent conductive film shown in FIG. 1, a highly transparent biaxially stretched polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., Cosmoshine A4100, thickness 188 μm, width 500 mm) is provided on the unwinding roll as a substrate. ) Was wound into a roll. Indium tin oxide (tin oxide content: 5% by mass) was used as a target as an alloy material for forming a thin film. The film forming conditions were a vacuum pressure of 0.4 Pa, a sputtering power supply of 2 W / cm 2 , a DC magnetron sputtering power supply, a chill roll cooled to −10 ° C. by a refrigerant, and a line speed while applying a constant tension from the unwinding roll. The film substrate was sent out at 1 m / min.
[0033]
As a sensor for measuring the surface resistance, a 50 mmφ ferrite coil was installed so as to sandwich the film with a gap of 4 mm. Rolls (100 mmφ) for holding tension were arranged before and after the sensor for measuring surface resistance, and the film sheet was set so as to pass through the center of the gap. The frequency applied to the ferrite coil was 3.7 MHz, and the inside of the vacuum device was wired with a 75Ω coaxial cable. The vacuum flange used was ICF70 (12-core introduction terminal), and the shield wire was grounded by a flange connector. The tension of the winding roll was controlled by an AC servomotor.
[0034]
A high-frequency (RF) amplifier is used to convert and amplify the signal of the ferrite coil, and the DC signal is converted to DC 5V. The surface resistance value data was transmitted to the control unit by RS232C communication using a personal computer (Optical GX150 manufactured by DELL) for the calculation unit. The control unit was a programmable controller (sequencer) using Mitsubishi Electric A3SCPU. The display unit / setting unit used a touch panel (GP2600-TC11 manufactured by Digital Corporation), and the operation unit used a mass flow controller (SEC-400MK3 20SCCM manufactured by ESTEC).
[0035]
FIG. 3 shows the relationship between the amount of oxygen introduced and the surface resistance according to the first embodiment.
In FIG. 3, the initial oxygen introduction amount was 5.5 sccm, and the surface resistance value of the conductive film at that time was 660 Ω / □. When the surface resistance value was plotted while increasing the oxygen introduction amount by 0.5 sccm, when the oxygen introduction amount was changed to 9 sccm, the surface resistance value became the minimum at 410 Ω / □. Therefore, the optimal oxygen introduction amount (FO 2 ) is 7.2 sccm. When film formation was started using this FO 2 as the oxygen introduction amount set value, a conductive film having a stable surface resistance value in both the longitudinal direction and the width direction could be manufactured.
[0036]
(Comparative Example 1)
Comparative Example 1 is an example using a method of converting a surface resistance value from a transmittance by spectroscopic measurement.
[0037]
FIG. 4 shows the relationship between the amount of oxygen introduced and the transmittance in Comparative Example 1. FIG. 4 shows data obtained by a spectrometer for measuring the transmittance at the same point as that of the surface resistance measuring device measured in FIG. 3 of Example 1, which is the same batch measurement as the surface resistance measurement. The spectrometer used was an instantaneous multi-photometry system (MCPD-3000 manufactured by Otsuka Electronics Co., Ltd.).
[0038]
In FIG. 4, when the oxygen introduction amount is 7 to 9 sccm, the transmittance at 550 nm is about 85%, and there is no significant change. However, even though the transmittance is stable in this way, as shown in FIG. 3, the surface resistance value changes by nearly 30%. That is, it can be understood that there is a case where the change in the surface resistance value cannot be detected by the conventional method of converting the surface resistance value from the transmittance by the spectroscopic measurement.
[0039]
【The invention's effect】
According to the present invention, a measuring means for directly measuring the surface resistance value of a conductive film in an in-line and non-contact manner, and an optimum oxygen introduction amount (oxygen partial pressure) is determined early before film formation for each film formation batch. Since the control means can perform the film formation, the film formation can be started early. As a result, a conductive film having a stable surface resistance can be formed, and the yield can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus for manufacturing a transparent conductive film used in the present invention.
FIG. 2 is an explanatory diagram showing a relationship between an oxygen introduction amount and a surface resistance value.
FIG. 3 is a diagram showing a relationship between an oxygen introduction amount and a surface resistance value in an example of the present invention.
FIG. 4 is a diagram showing a relationship between an oxygen introduction amount and transmittance in a comparative example of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 unwind roll 2 chill roll 3 target 4 sputter power supply 5 conductive film 6 surface resistance measurement sensor 7 take-up roll 8 amplifier 9 arithmetic unit 10 control unit 11 display setting unit 12 operation unit 13 solenoid valve 14 vacuum flange

Claims (1)

基板上に金属酸化物薄膜を形成させた透明導電膜の製造方法において、透明導電膜の製造工程が透明導電膜の表面抵抗値をインラインでかつ非接触で測定する測定手段と、前記測定手段から得られる表面抵抗値に基づいて成膜条件を決定する制御手段を含み、前記測定手段はフェライトコイルを用いて導電膜に誘導される渦電流から表面抵抗値を測定してなり、かつ前記制御手段は前記表面抵抗値が最小となるように酸素導入量を連続的に可変させてなることを特徴とする透明導電膜の製造方法。In a method for manufacturing a transparent conductive film in which a metal oxide thin film is formed on a substrate, a step of manufacturing the transparent conductive film includes measuring means for measuring the surface resistance value of the transparent conductive film in-line and in a non-contact manner; Control means for determining film forming conditions based on the obtained surface resistance value, wherein the measurement means measures a surface resistance value from an eddy current induced in the conductive film using a ferrite coil, and the control means Is a method for producing a transparent conductive film, wherein the amount of oxygen introduced is continuously varied so that the surface resistance value is minimized.
JP2002220068A 2002-07-29 2002-07-29 Manufacturing method of transparent conductive film Pending JP2004063271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220068A JP2004063271A (en) 2002-07-29 2002-07-29 Manufacturing method of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220068A JP2004063271A (en) 2002-07-29 2002-07-29 Manufacturing method of transparent conductive film

Publications (1)

Publication Number Publication Date
JP2004063271A true JP2004063271A (en) 2004-02-26

Family

ID=31940813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220068A Pending JP2004063271A (en) 2002-07-29 2002-07-29 Manufacturing method of transparent conductive film

Country Status (1)

Country Link
JP (1) JP2004063271A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157409A (en) * 2005-12-02 2007-06-21 Dainippon Printing Co Ltd Ito film forming device and ito film forming method
JP2009235488A (en) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd Vacuum film deposition apparatus, vacuum film deposition method, and electroconductive film
JP2010180432A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Mining Co Ltd Method for producing dielectric oxide film and dual-cathode magnetron sputtering apparatus
CN102751043A (en) * 2011-04-20 2012-10-24 日东电工株式会社 Method of manufacturing conductive laminated film
CN103966560A (en) * 2013-01-31 2014-08-06 日东电工株式会社 Method for producing infrared radiation reflecting film
WO2014119668A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Production method for infrared radiation reflecting film
JP2016191157A (en) * 2013-01-16 2016-11-10 日東電工株式会社 Transparent conductive film and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157409A (en) * 2005-12-02 2007-06-21 Dainippon Printing Co Ltd Ito film forming device and ito film forming method
JP2009235488A (en) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd Vacuum film deposition apparatus, vacuum film deposition method, and electroconductive film
JP2010180432A (en) * 2009-02-03 2010-08-19 Sumitomo Metal Mining Co Ltd Method for producing dielectric oxide film and dual-cathode magnetron sputtering apparatus
CN102751043A (en) * 2011-04-20 2012-10-24 日东电工株式会社 Method of manufacturing conductive laminated film
JP2016191157A (en) * 2013-01-16 2016-11-10 日東電工株式会社 Transparent conductive film and method for manufacturing the same
CN103966560A (en) * 2013-01-31 2014-08-06 日东电工株式会社 Method for producing infrared radiation reflecting film
WO2014119668A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Production method for infrared radiation reflecting film
JP2014167162A (en) * 2013-01-31 2014-09-11 Nitto Denko Corp Method for producing infrared reflection film
EP2952610A4 (en) * 2013-01-31 2016-09-14 Nitto Denko Corp Production method for infrared radiation reflecting film

Similar Documents

Publication Publication Date Title
Guillen et al. High conductivity and transparent ZnO: Al films prepared at low temperature by DC and MF magnetron sputtering
Szyszka et al. Transparent and conductive ZnO: Al films deposited by large area reactive magnetron sputtering
Ruske et al. Properties of SnO2 films prepared by DC and MF reactive sputtering
JP2004063271A (en) Manufacturing method of transparent conductive film
Sujatha et al. Characteristics of indium tin oxide films deposited by bias magnetron sputtering
Rezek et al. Transfer of the sputter technique for deposition of strongly thermochromic VO2-based coatings on ultrathin flexible glass to large-scale roll-to-roll device
JP2771208B2 (en) Method for producing transparent conductive film coated with metal oxide thin film
Enjouji et al. The analysis and automatic control of a reactive dc magnetron sputtering process
JP2002212720A (en) Method and device for sputtering
Zhitomirsky et al. Filtered vacuum arc deposition of transparent conducting Al-doped ZnO films
JP2008032618A (en) Noncontact type surface resistance measuring device for conductive film, and manufacturing method of conductive film using same
Rezek et al. In-Ga-Zn-O thin films with tunable optical and electrical properties prepared by high-power impulse magnetron sputtering
Audronis et al. Unlocking the potential of voltage control for high rate zirconium and hafnium oxide deposition by reactive magnetron sputtering
JP2002371355A (en) Method for manufacturing transparent thin film
JPS62211378A (en) Sputtering device
Jung et al. Process control for low temperature reactive deposition of Al doped ZnO films by ICP-assisted DC magnetron sputtering
JP2002180247A (en) Method and apparatus for manufacturing transparent electrically conductive laminate
JPH09316632A (en) Method for depositing optically transparent and conductive layer on substrate consisting of transparent material
Németh et al. Spectroscopic ellipsometry study of transparent conductive ZnO layers for CIGS solar cell applications
JP3152249B2 (en) Method and apparatus for producing transparent conductive film
JP2607091B2 (en) Method and apparatus for continuously depositing a metal oxide film on a long film substrate
Schiller et al. Properties of cadmium stannate thin films produced by reactive high rate dc magnetron-plasmatron sputtering
JP5347542B2 (en) Oxide dielectric film manufacturing method and dual cathode magnetron sputtering apparatus
JPH11195333A (en) Manufacture of transparent conductive film and this transparent conductive film
JPS596376A (en) Sputtering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080626