JPH05156323A - Production of fine powder - Google Patents

Production of fine powder

Info

Publication number
JPH05156323A
JPH05156323A JP32453891A JP32453891A JPH05156323A JP H05156323 A JPH05156323 A JP H05156323A JP 32453891 A JP32453891 A JP 32453891A JP 32453891 A JP32453891 A JP 32453891A JP H05156323 A JPH05156323 A JP H05156323A
Authority
JP
Japan
Prior art keywords
metal
fine powder
salt
palladium
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32453891A
Other languages
Japanese (ja)
Inventor
Toshio Hidaka
敏雄 日高
Takamasa Kawakami
殷正 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP32453891A priority Critical patent/JPH05156323A/en
Priority to US07/862,218 priority patent/US5250101A/en
Priority to EP92303131A priority patent/EP0508757A1/en
Publication of JPH05156323A publication Critical patent/JPH05156323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and economically produce a fine powder having low agglomeratability and specific surface by thermally decomposing the org. acid salt of the metal such as Mg, Ca, Cr and Mn in the presence of Pd under specified conditions. CONSTITUTION:The org. acid salt of the metal selected from a group consisting of Mg, Ca, Cr, Mn, Fe, Zn, Cd, Ga, In, Ti, Sn, Pb, Sb and Bi is thermally decomposed in the presence of Pd at <=400 deg.C, preferably at about 200-300 deg.C at the heating rate of 0.5 to 20 deg.C/min or preferably at about 2 deg.C/min. In this case, the Pd content is preferably controlled to 100 to 6000ppm based on the org. salt of metal, and palladium acetate, etc., are preferably used. Meanwhile, the anhydrous org. salt of metal is preferably used, and the acetate, oxalate, formate and benzoate are appropriately used. The fine powder of the metal or its oxide having low agglomeratability and 1-250m<2>/g specific surface is obtained by the thermal decomposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、凝集性の小さく比表面
積が 1〜250m2/g の範囲の金属或いはその酸化物の微粉
の製造法である。この微粉は、電子材料、触媒、粉末冶
金、顔料、吸着剤などの分野において好適に使用できる
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine powder of a metal or its oxide having a small cohesive property and a specific surface area of 1 to 250 m 2 / g. This fine powder can be suitably used in the fields of electronic materials, catalysts, powder metallurgy, pigments, adsorbents and the like.

【0002】[0002]

【従来の技術】微粉の製造法としては、電解法、アトマ
イズ法、機械的粉砕などが知られている。これら方法に
よる微粉は粒子径が大きく、製造条件の制御や分別によ
ってより微細な微粉も得られるように成ってきている
が、微細化には限度があり、生産性や経済性に問題があ
った。
2. Description of the Related Art As a method for producing fine powder, an electrolytic method, an atomizing method, mechanical pulverization and the like are known. The fine powders obtained by these methods have a large particle size, and finer fine powders have been obtained by controlling and separating production conditions, but there is a limit to miniaturization and there is a problem in productivity and economic efficiency. ..

【0003】また、より微細な微粉を得る為には熱分解
法、気相還元法、沈殿法、スパッタリング法やガス中蒸
発法などの方法が用いられている。しかし、これらの方
法は大規模で高価な装置を必要としたり、毒性が高く危
険で取扱い難い原料を用いたりするものが殆どであっ
た。この中で有機酸の金属塩の熱分解法が簡便に実施可
能なものである。しかし、従来の有機酸の金属塩の熱分
解法では原料の結晶構造の形髄が残った、凝集性の大き
な微粉を与える場合が殆どであり、又、熱分解の温度も
高いものであった。
Further, in order to obtain finer fine powders, methods such as a thermal decomposition method, a gas phase reduction method, a precipitation method, a sputtering method and a gas evaporation method are used. However, most of these methods require a large-scale and expensive apparatus or use raw materials that are highly toxic and dangerous and are difficult to handle. Among them, the thermal decomposition method of a metal salt of an organic acid can be easily carried out. However, in the conventional thermal decomposition method of a metal salt of an organic acid, in most cases, fine powder having a large cohesive property, in which the shape of the crystal structure of the raw material remains, was given, and the temperature of the thermal decomposition was also high. ..

【0004】[0004]

【発明が解決しようとする課題】本発明者等は、凝集性
の小さい微粉の簡便でかつ経済的な工業的に実施可能な
一般的な方法を鋭意検討した結果、有機酸の金属塩をパ
ラジウムの存在下に熱分解する方法を見いだした。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied a general method for producing fine powder having a small cohesive property, which is simple and economical and can be industrially carried out. As a result, the metal salt of an organic acid was converted to palladium. I found a method of pyrolysis in the presence of.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、M
g、Ca、Cr、Mn、Fe、Zn、Cd、Ga、In、Tl、Sn、Pb、Sb
及びBiからなる群から選択された金属の有機酸塩を、パ
ラジウムの存在下、400℃以下の温度範囲で昇温速度0.5
〜20℃/minで熱分解し、凝集性の小さく比表面積が 1〜
250 m2/gの範囲の微粉を得ることを特徴とする微粉の製
造法であり、該パラジウムが金属の有機酸塩に対して重
量基準で 100〜6,000ppmであること、該金属の有機酸塩
が無水物であり、さらに金属の有機酸塩が、酢酸、蓚
酸、蟻酸又は安息香酸の塩である微粉の製造法である。
That is, the present invention is based on M
g, Ca, Cr, Mn, Fe, Zn, Cd, Ga, In, Tl, Sn, Pb, Sb
And an organic acid salt of a metal selected from the group consisting of Bi, in the presence of palladium, in a temperature range of 400 ℃ or less, the heating rate 0.5
Thermal decomposition at ~ 20 ° C / min, small cohesiveness and specific surface area of 1 ~
A method for producing fine powder characterized by obtaining fine powder in the range of 250 m 2 / g, wherein the palladium is 100 to 6,000 ppm on a weight basis with respect to the organic acid salt of the metal, and the organic acid of the metal. This is a method for producing fine powder in which the salt is an anhydride and the organic acid salt of a metal is a salt of acetic acid, oxalic acid, formic acid or benzoic acid.

【0006】以下、本発明について説明する。本発明の
金属の有機酸塩は、Mg、Ca、Cr、Mn、Fe、Zn、Cd、Ga、
In、Tl、Sn、Pb、Sb及びBiからなる群から選択された金
属の、通常、酢酸、蓚酸、蟻酸又は安息香酸などの有機
酸の塩である。
The present invention will be described below. The organic acid salt of the metal of the present invention is Mg, Ca, Cr, Mn, Fe, Zn, Cd, Ga,
It is a salt of a metal selected from the group consisting of In, Tl, Sn, Pb, Sb and Bi, usually an organic acid such as acetic acid, oxalic acid, formic acid or benzoic acid.

【0007】これら金属の有機酸塩は含水物、該含水物
を脱水処理したもの或いは無水物のいずれでも使用可能
であるが、凝集性を小さくし、結晶構造の形髄の残存の
少ない、粒の揃った微粉を得る面からは無水物が好まし
く、特に、実質的に水を含まない系、或いは該有機酸溶
液の濃縮などにより直接無水物として製造したものが好
ましい。
The organic acid salts of these metals can be used in the form of a hydrated substance, a dehydrated product of the hydrated substance, or an anhydrous substance. From the viewpoint of obtaining a fine powder having a uniform composition, an anhydride is preferable, and a system containing substantially no water, or one produced directly as an anhydride by concentrating the organic acid solution is preferable.

【0008】上記の金属の有機酸塩に共存させるパラジ
ウムは、通常、パラジウム塩の形で使用する。パラジウ
ム塩としては、塩化パラジウム、酢酸パラジウム、硝酸
パラジウム、硫酸パラジウムなどが挙げられ、ハロゲ
ン、硫黄、その他の不純物を残留させない面からは酢酸
パラジウムなどの比較的低温で分解する有機酸塩が好適
である。
Palladium which is allowed to coexist with the organic acid salt of the above metal is usually used in the form of a palladium salt. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, and the like. From the viewpoint of not leaving halogen, sulfur, and other impurities, an organic acid salt such as palladium acetate that decomposes at a relatively low temperature is preferable. is there.

【0009】上記において、パラジウムを共存させる方
法としては、機械的に混合して分散或いは付着させる方
法、金属の有機酸塩の製造工程中にパラジウム塩を添加
し、結晶中にパラジウムが内包されたものとして用いる
方法が挙げられる。より少量のパラジウムでより良好な
熱分解特性、より微細な微粉を得る面から、結晶中にパ
ラジウムを含有させるのが好ましく、好適にはパラジウ
ムを重量で 100〜6,000ppmの範囲で含む金属の有機酸塩
の結晶が好ましい。
In the above, as a method of coexisting palladium, a method of mechanically mixing and dispersing or adhering, a palladium salt was added during the process of producing an organic acid salt of a metal, and palladium was included in the crystal. The method used as a thing is mentioned. In order to obtain better thermal decomposition characteristics and finer fine powder with a smaller amount of palladium, it is preferable to include palladium in the crystal, and it is preferable to use a metal organic compound containing palladium in the range of 100 to 6,000 ppm by weight. Crystals of acid salts are preferred.

【0010】本発明の金属の有機酸塩の熱分解は、非酸
化性雰囲気中或いは減圧下に、昇温速度 0.5〜20℃/min
の範囲、保持温度400℃以下、好ましくは 200〜300 ℃
の範囲であり、特に、昇温速度 2℃/minで測定した熱重
量減少のピーク温度付近が好適である。
The thermal decomposition of the organic acid salt of the metal of the present invention is carried out in a non-oxidizing atmosphere or under reduced pressure at a temperature rising rate of 0.5 to 20 ° C./min.
Range, holding temperature 400 ℃ or less, preferably 200 ~ 300 ℃
It is particularly preferable that the vicinity of the peak temperature of thermogravimetric decrease measured at a temperature rising rate of 2 ° C / min.

【0011】昇温速度が20℃/minを超える場合や保持温
度が温度が 300℃以上、特に 400℃を超える場合には、
一次粒子径、凝集粒子径ともに不揃いで大きくなり、し
かも生成粒子の相互融着も促進されるので好ましくな
い。また、熱分解雰囲気は、酸化性、還元性雰囲気或い
は減圧下のいずれでもよいが、通常、操作の容易な常圧
付近の非酸化性雰囲気が好ましい。また、減圧雰囲気の
場合、30mmHg以下、特に 5mmHg以下の圧力範囲を保つの
が好ましい。
When the temperature rising rate exceeds 20 ° C./min and the holding temperature is 300 ° C. or higher, particularly 400 ° C.,
Both the primary particle size and the agglomerated particle size are uneven and large, and the mutual fusion of the produced particles is promoted, which is not preferable. The thermal decomposition atmosphere may be an oxidizing atmosphere, a reducing atmosphere, or a reduced pressure atmosphere, but a non-oxidizing atmosphere in the vicinity of normal pressure where the operation is easy is usually preferable. In the case of a reduced pressure atmosphere, it is preferable to maintain a pressure range of 30 mmHg or less, especially 5 mmHg or less.

【0012】ここで、本発明の金属の有機酸塩にパラジ
ウムを添加したものとしないものの場合の熱分解を、昇
温速度 2℃/minで測定した熱重量減少のピーク温度の例
を下記の表1に示した。
Here, an example of the peak temperature of thermogravimetric reduction measured by thermal decomposition at a temperature rising rate of 2 ° C./min in the thermal decomposition of the metal organic acid salt of the present invention with and without addition of palladium is shown below. The results are shown in Table 1.

【0013】[0013]

【表1】 表 1 (Pd添加による熱分解ピーク温度) 化合物名 Pd添加無し Pd添加 Pd添加量 酢酸マグネシウム 340℃ 280℃ 600ppm 酢酸錫(II) 270〃 210〃 550〃 酢酸インジウム 240〃 190〃 700〃 安息香酸ニッケル 390〃 340〃 450〃 蟻酸亜鉛 290〃 250〃 300〃蓚酸錫 365〃 320〃 400〃 [Table 1] Table 1 (Peak decomposition temperature due to addition of Pd) Compound name Pd not added Pd added Pd addition amount Magnesium acetate 340 ° C 280 ° C 600ppm Tin (II) acetate 270〃 210〃 550〃 Indium acetate 240〃 190〃 700 〃 Nickel benzoate 390〃 340〃 450〃 Zinc formate 290〃 250〃 300〃 Tin oxalate 365〃 320〃 400〃

【0014】以上の方法による本発明の微粉は、凝集性
の小さな、粒子径の揃った、形髄粒子でない、通常、比
表面積 1〜250 の範囲の微粉である。また、不純物の低
減や凝集粒子径の一層の微細化のの目的のためには、該
微粉を水、メタノール、エタノールその他の溶剤や酸、
アルカリの希薄溶液などでの洗浄、機械的な解砕、水素
或いはヒドラジンなどによる気相還元処理などを施すこ
とが出来る。
The fine powder of the present invention obtained by the above method is a fine powder having a small cohesive property, a uniform particle size, and not shaped pulp particles, and usually having a specific surface area of 1 to 250. Further, for the purpose of reducing impurities and further refining the aggregate particle size, the fine powder is water, methanol, ethanol or other solvent or acid,
It is possible to perform washing with a dilute solution of alkali, mechanical disintegration, gas-phase reduction treatment with hydrogen or hydrazine.

【0015】[0015]

【実施例】以下、実施例などによって本発明をさらに具
体的に説明する。 実施例1 酸化マグネシウム 20g と酢酸パラジウム 0.1g を氷酢
酸/メタノール=6/1(重量比) 溶液 300ml(メリリットル)に溶
解し、30分間で65℃に保持した。ついで減圧下、酢酸、
メタノールを留去し、パラジウムを重量で 600ppm 含む
酢酸マグネシウム 63gを得た。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 20 g of magnesium oxide and 0.1 g of palladium acetate were dissolved in 300 ml of a glacial acetic acid / methanol = 6/1 (weight ratio) solution (melliliter) and kept at 65 ° C. for 30 minutes. Then, under reduced pressure, acetic acid,
Methanol was distilled off to obtain 63 g of magnesium acetate containing 600 ppm by weight of palladium.

【0016】上記で得た酢酸マグネシウム 5g を減圧乾
燥機中に入れ、(1mmHgの減圧下に)速度 2℃/minで 280
℃まで昇温し、30分間保持した。ついで室温まで冷却
し、窒素ガスを導入した後取り出して、粉末 1.3g を得
た。この粉末は、酸化マグネシウムであり、レーザー方
式による凝集粒子径は 5,000nm、BET 法による比表面積
は 240m2/gであった。
5 g of the above-obtained magnesium acetate was placed in a vacuum dryer, and under a reduced pressure of 1 mmHg, at a speed of 2 ° C./min.
The temperature was raised to ℃ and kept for 30 minutes. Then, the mixture was cooled to room temperature, introduced with nitrogen gas, and taken out to obtain 1.3 g of powder. This powder was magnesium oxide, and the agglomerated particle size by the laser method was 5,000 nm, and the specific surface area by the BET method was 240 m 2 / g.

【0017】比較例1 実施例1において、市販の酢酸マグネシウム・4水和物
5g を用い、保持温度280℃では完全には分解しないた
め保持温度を 340℃とする他は同様として酸化マグネシ
ウム粉末 0.8g を得た。この粉末は、凝集粒子径 16,00
0 nm、比表面積 190m2/gであった。
Comparative Example 1 In Example 1, commercially available magnesium acetate tetrahydrate
0.8 g of magnesium oxide powder was obtained in the same manner except that the holding temperature was 340 ° C. because 5 g was used and it did not decompose completely at a holding temperature of 280 ° C. This powder has an aggregate particle size of 16,00
The surface area was 0 nm and the specific surface area was 190 m 2 / g.

【0018】実施例2 市販の酢酸マンガン・4水和物 10g と酢酸パラジウム
0.2g を氷酢酸/メタノール=6/1(重量比) 溶液 300ml
(メリリットル)に溶解し、30分間で65℃に保持した。ついで減
圧下、酢酸、メタノールを留去し、パラジウムを重量で
1,000ppm 含む酢酸マンガン 7g を得た。実施例1にお
いて、上記で得た酢酸マンガンを用いる他は同様にして
2g の粉末を得た。この粉末は、酸化マンガンであり、
凝集粒子径は 2,800nm、比表面積は 42m2/g であった。
Example 2 10 g of commercially available manganese acetate tetrahydrate and palladium acetate
0.2 g of glacial acetic acid / methanol = 6/1 (weight ratio) 300 ml of solution
It was dissolved in (Meriliter) and kept at 65 ° C. for 30 minutes. Then, acetic acid and methanol were distilled off under reduced pressure, and palladium was added by weight.
7 g of manganese acetate containing 1,000 ppm was obtained. Example 1 was repeated except that the manganese acetate obtained above was used.
2 g of powder was obtained. This powder is manganese oxide,
The aggregated particle size was 2,800 nm, and the specific surface area was 42 m 2 / g.

【0019】比較例2 実施例2において、市販の酢酸マンガン・4水和物 5g
を用いる他は同様とした。得られた粉末 1.4g の凝集粒
子径 13,400 nm、比表面積 33m2/gであった。
Comparative Example 2 In Example 2, 5 g of commercially available manganese acetate tetrahydrate
Was the same except that was used. The obtained powder (1.4 g) had an aggregate particle size of 13,400 nm and a specific surface area of 33 m 2 / g.

【0020】実施例3 蟻酸鉄 5gと酢酸パラジウム 0.1g を良く混合したもの
を用い、保持温度 300℃とする他は実施例1と同様にし
て 2.2g の粉末を得た。この粉末は、酸化鉄であり、凝
集粒子径は 1,800nm、比表面積は 45m2/g であった。
Example 3 2.2 g of powder was obtained in the same manner as in Example 1 except that 5 g of iron formate and 0.1 g of palladium acetate were mixed well and the holding temperature was 300 ° C. This powder was iron oxide, and had an aggregate particle size of 1,800 nm and a specific surface area of 45 m 2 / g.

【0021】比較例3 実施例3において、市販の蟻酸鉄 5gを用いる他は同様
とした。得られた粉末2.1g の凝集粒子径 20,000 nm、
比表面積 45m2/gであった。
Comparative Example 3 The same procedure as in Example 3 was carried out except that 5 g of commercially available iron formate was used. The obtained powder 2.1g agglomerated particle size 20,000 nm,
The specific surface area was 45 m 2 / g.

【0022】実施例4 蓚酸錫 5gと酢酸パラジウム 0.1g を良く混合したもの
を用いる他は実施例3と同様にして 2.8g の粉末を得
た。この粉末は、酸化錫であり、凝集粒子径は 6,000n
m、比表面積は 48m2/g であった。
Example 4 2.8 g of powder was obtained in the same manner as in Example 3 except that 5 g of tin oxalate and 0.1 g of palladium acetate were well mixed. This powder is tin oxide and has an aggregate particle size of 6,000n.
m, the specific surface area was 48 m 2 / g.

【0023】[0023]

【発明の効果】以上、発明の詳細な説明、実施例、比較
例から明瞭なように、本発明の微粉の製造法によれば、
凝集性も小さな、比表面積の大きな微粉がより低い熱分
解温度においてが容易に製造可能であり、微粉を工業的
に製造する新規で実用的な方法を提供するものであり、
その意義は極めて大きいものである。
As is clear from the above detailed description of the invention, Examples and Comparative Examples, according to the method for producing fine powder of the present invention,
Cohesion is also small, fine powder with a large specific surface area can be easily produced at a lower thermal decomposition temperature, and it provides a new and practical method for industrially producing fine powder,
Its significance is extremely large.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg、Ca、Cr、Mn、Fe、Zn、Cd、Ga、In、
Tl、Sn、Pb、Sb及びBiからなる群から選択された金属の
有機酸塩を、パラジウムの存在下、400 ℃以下の温度範
囲で昇温速度 0.5〜20℃/minで熱分解し、凝集性の小さ
く比表面積が1〜250 m2/gの範囲の微粉を得ることを特
徴とする微粉の製造法
1. Mg, Ca, Cr, Mn, Fe, Zn, Cd, Ga, In,
An organic acid salt of a metal selected from the group consisting of Tl, Sn, Pb, Sb, and Bi is pyrolyzed in the presence of palladium at a temperature rising rate of 0.5 to 20 ° C / min in the temperature range of 400 ° C or less to aggregate. Of fine powder having a low specificity and a specific surface area in the range of 1 to 250 m 2 / g.
【請求項2】 該パラジウムが金属の有機酸塩に対して
重量基準で 100〜6,000ppmである請求項1記載の微粉の
製造法
2. The method for producing fine powder according to claim 1, wherein the palladium is 100 to 6,000 ppm on a weight basis with respect to the organic acid salt of the metal.
【請求項3】 該金属の有機酸塩が無水物である請求項
1記載の微粉の製造法
3. The method for producing fine powder according to claim 1, wherein the organic acid salt of the metal is an anhydride.
【請求項4】 該金属の有機酸塩が、酢酸、蓚酸、蟻酸
又は安息香酸の塩である請求項1記載の微粉の製造法
4. The method for producing fine powder according to claim 1, wherein the organic acid salt of the metal is a salt of acetic acid, oxalic acid, formic acid or benzoic acid.
JP32453891A 1991-04-08 1991-12-09 Production of fine powder Pending JPH05156323A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32453891A JPH05156323A (en) 1991-12-09 1991-12-09 Production of fine powder
US07/862,218 US5250101A (en) 1991-04-08 1992-04-02 Process for the production of fine powder
EP92303131A EP0508757A1 (en) 1991-04-08 1992-04-08 Process for the production of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32453891A JPH05156323A (en) 1991-12-09 1991-12-09 Production of fine powder

Publications (1)

Publication Number Publication Date
JPH05156323A true JPH05156323A (en) 1993-06-22

Family

ID=18166925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32453891A Pending JPH05156323A (en) 1991-04-08 1991-12-09 Production of fine powder

Country Status (1)

Country Link
JP (1) JPH05156323A (en)

Similar Documents

Publication Publication Date Title
US5250101A (en) Process for the production of fine powder
JPH03134106A (en) Microcrystalline amorphous metal and/or alloy powder and metal and/or alloy dissolved in organic solvent in the absence of protective colloid
CN110124717B (en) Catalyst for converting benzyl alcohol into benzaldehyde and preparation method thereof
US20040112477A1 (en) Fine powder of metallic copper and process for producing the same
US5094686A (en) Process for producing copper fine powder
CN102464355B (en) Preparation method of superfine manganese oxide
JP6048750B2 (en) Method for producing composite
KR20150081253A (en) Solvent-free syntheses of silver and silver products produced thereby
CN1103257C (en) Process for preparing superfine powder by thermolyzing metal complex
JPH05156323A (en) Production of fine powder
WO2023159698A1 (en) Method for synthesizing highly active catalyst
JPH05156326A (en) Production of fine silver powder
JPH05179317A (en) Production of high purity fine copper powder
US3955961A (en) Carboxylate metals process
JPS638217A (en) Manufacture of aqueous suspension containing high concentration silver salt-tin salt
JP5795195B2 (en) Method for producing porous metal complex
US8680340B2 (en) Precious metal catalysts with low metal loading for oxidative dehydrogenations
CN115722239B (en) Method for preparing vanadium phosphorus oxide catalyst with assistance of eutectic solvent and application of method
JPH05156325A (en) Production of fine metal powder
US1956718A (en) Production of monocarboxylic acids and their derivatives
JPH05156324A (en) Production of superfine nickel aggregated powder
JPH0565511A (en) Production of superfine powder of cobalt
CN115650195B (en) Method for preparing manganese phosphate from tetravalent manganese
JP2018109210A (en) Metal particle production method and metal particle
WO2019150732A1 (en) Silver oxalate