JPH05155789A - Production of hexafluorotrichloropropanes - Google Patents

Production of hexafluorotrichloropropanes

Info

Publication number
JPH05155789A
JPH05155789A JP3317801A JP31780191A JPH05155789A JP H05155789 A JPH05155789 A JP H05155789A JP 3317801 A JP3317801 A JP 3317801A JP 31780191 A JP31780191 A JP 31780191A JP H05155789 A JPH05155789 A JP H05155789A
Authority
JP
Japan
Prior art keywords
tetrachloromethane
reaction
catalyst
aluminum chloride
anhydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3317801A
Other languages
Japanese (ja)
Inventor
Hiroichi Aoyama
博一 青山
Sei Kono
聖 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3317801A priority Critical patent/JPH05155789A/en
Publication of JPH05155789A publication Critical patent/JPH05155789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the subject compounds useful as a raw material, etc., for substitute compounds with hardly any influence on global environment by reacting tetrachloromethane with dichlorodifluoromethane in the presence of a catalyst in a solvent. CONSTITUTION:Tetrachloromethane is added to anhydrous aluminum chloride or aluminum chloride fluoride expressed by the formula AlClxFy [0<(x)<3; 0<(y)<3; (x+y) is 3], etc., used as a catalyst in a reactional solvent and dichlorodifluoromethane and tetrafluoroethylene are then mixed and introduced from a gas introduction pipe. The outside of a reactor is cooled with ice water and the reactional temperature is kept at 5 to 10 deg.C to carry out reaction for 5hr. Thereby, pentafluorotrichloropropanes such as 1,1,1,2,2-pentafluoro-3,3,3- trichloropropane and 1,1,2,2,3-pentafluoro-1,3,3-trichloropropane are obtained in high yield and selectivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業上重要な1,1,2
−トリクロロ−1,2,2−トリフルオロエタンの地球環
境に及ぼす影響が少ない代替化合物であるペンタフルオ
ロジクロロプロパン類の製造における重要な中間体とな
る、1,1,1,2,2−ペンタフルオロ−3,3,3−トリ
クロロプロパン(以下、「R−215cb」という)及び1,
1,2,2,3−ペンタフルオロ−1,3,3−トリクロロ
プロパン(以下、「R−215ca」という)の製造方法に関
する。
The present invention relates to industrially important 1, 1, 2
-1,1,1,2,2-penta, an important intermediate in the production of pentafluorodichloropropanes, which are alternative compounds of trichloro-1,2,2-trifluoroethane with less effect on the global environment Fluoro-3,3,3-trichloropropane (hereinafter referred to as "R-215cb") and 1,
The present invention relates to a method for producing 1,2,2,3-pentafluoro-1,3,3-trichloropropane (hereinafter referred to as "R-215ca").

【0002】[0002]

【従来の技術】R−215の従来の合成方法としては、
テトラフルオロエチレンとフルオロトリクロロメタンを
塩化アルミ存在下、オートクレーブ中で加圧下に行う方
法(米国特許第2,462,402号)、四塩化炭素を溶媒
として原料であるフルオロトリクロロメタンをテトラフ
ルオロエチレンに対して大過剰となる所定量を仕込んだ
後、塩化アルミニウムを触媒としてテトラフルオロエチ
レンを常圧下、気体状態で仕込んでいくといった方法
[コレクションズ・オブ・チェコスロバク・ケミカル・
コミュニケイションズ(Collections Czechoslov.Ch
em.Commun., 36巻1867、1971年]、四塩化
炭素とテトラフルオロエチレンをフッ化セシウムの存在
下に反応させる方法(米国特許第3,381,042号)が
知られている。
2. Description of the Related Art As a conventional method for synthesizing R-215,
A method of performing tetrafluoroethylene and fluorotrichloromethane under pressure in an autoclave in the presence of aluminum chloride (US Pat. No. 2,462,402), using fluorotetrachloromethane as a raw material in tetrafluoroethylene using carbon tetrachloride as a solvent. On the other hand, after charging a specified amount that is a large excess, tetrafluoroethylene is charged in a gaseous state under atmospheric pressure using aluminum chloride as a catalyst.
[Collections of Czechoslovak Chemical
Communications (Collections Czechoslov. Ch
em. Commun., 36, 1867, 1971], a method of reacting carbon tetrachloride with tetrafluoroethylene in the presence of cesium fluoride (US Pat. No. 3,381,042) is known.

【0003】[0003]

【発明が解決しようとする課題】米国特許第2,462,
402号に記載のようにテトラフルオロエチレン(以
下、「TFE」という。)とフルオロトリクロロメタン(以
下、「R−11」という。)を塩化アルミの存在下、オー
トクレーブ中で加圧下に行う方法では、後記比較例に示
すように、収率が約46%と低い。
Problems to be Solved by the Invention US Pat. No. 2,462,
No. 402, tetrafluoroethylene (hereinafter referred to as “TFE”) and fluorotrichloromethane (hereinafter referred to as “R-11”) are used in the presence of aluminum chloride under pressure in an autoclave. As shown in Comparative Examples below, the yield is low at about 46%.

【0004】また、四塩化炭素を溶媒として常圧下で反
応させる方法では、文献中に記載されているように、大
過剰のR−11が必要である上、転化率も30.5%と
非常に低く、まったく経済的ではない。
Further, in the method of reacting carbon tetrachloride as a solvent under normal pressure, a large excess of R-11 is required as described in the literature, and the conversion rate is as high as 30.5%. Very low and not economical at all.

【0005】また、米国特許第3,381,042号に記
載のように四塩化炭素とTFEをフッ化セシウムの存在
下に反応させる方法では、該米国特許の実施例1に記載
されるように収率が65%と低く、又触媒であるフッ化
セシウムは非常に高価であるので、経済的な方法ではな
い。
Further, in the method of reacting carbon tetrachloride and TFE in the presence of cesium fluoride as described in US Pat. No. 3,381,042, as described in Example 1 of the US patent, The yield is as low as 65%, and the catalyst cesium fluoride is very expensive, so it is not an economical method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記に述
べた特許および文献に記載された製造方法を詳細に検討
し、転化率、選択率および収率を向上させるべく鋭意検
討した結果、反応溶媒中、触媒存在下、テトラクロロメ
タンとジクロロジフルオロメタン(以下R−12と略
す。)とテトラフルオロエチレン(以下TFEと略す。)
と反応させると、1,1,1,2,2−ペンタフルオロ−
3,3,3−トリクロロプロパン及び1,1,2,2,3−ペ
ンタフルオロ−1,3,3−トリクロロプロパンが高収率
で得られることを見いだし、本発明を完成するに至っ
た。すなわち、本発明の要旨は、反応溶媒中、触媒の存
在下、テトラクロロメタンとR−12とTFEを反応さ
せることを特徴とするR−215ca及びR−215cbの
製造方法に存する。
Means for Solving the Problems The present inventors have made detailed studies on the production methods described in the above-mentioned patents and literatures, and as a result of earnest studies to improve the conversion rate, selectivity and yield. , Tetrachloromethane, dichlorodifluoromethane (hereinafter abbreviated as R-12) and tetrafluoroethylene (hereinafter abbreviated as TFE) in a reaction solvent in the presence of a catalyst.
When reacted with 1,1,1,2,2-pentafluoro-
It was found that 3,3,3-trichloropropane and 1,1,2,2,3-pentafluoro-1,3,3-trichloropropane were obtained in high yield, and the present invention was completed. That is, the gist of the present invention resides in a method for producing R-215ca and R-215cb, which comprises reacting tetrachloromethane with R-12 and TFE in a reaction solvent in the presence of a catalyst.

【0007】本発明においては、例えば触媒として無水
塩化アルミニウム、溶媒としてR−215ca、R−21
5cbまたは両者の混合物を用いる場合、この溶媒に所定
量の無水塩化アルミニウムを懸濁させた後、所定の温度
において、テトラクロロメタンとR−12とTFEを所
定のモル比および流速で仕込んでいく。反応の進行に伴
って生成増加したR−215ca及びR−215cbを含む
反応混合物を、懸濁された無水塩化アルミニウムから分
離し、反応容器から抜きだす。
In the present invention, for example, anhydrous aluminum chloride is used as a catalyst, R-215ca and R-21 are used as a solvent.
When using 5 cb or a mixture of both, after suspending a predetermined amount of anhydrous aluminum chloride in this solvent, tetrachloromethane, R-12 and TFE are charged at a predetermined molar ratio and a predetermined flow rate at a predetermined temperature. .. The reaction mixture containing R-215ca and R-215cb, which were produced more as the reaction proceeded, was separated from the suspended anhydrous aluminum chloride and discharged from the reaction vessel.

【0008】この懸濁された無水塩化アルミニウムから
の反応混合物の分離には、通常公知の方法、例えば、濾
過による液状態での分離抜き出しや、蒸留によるガス状
態での分離抜き出しなどが採用される。得られた反応混
合物は、公知の方法、例えば精留などにより分離精製
し、目的とするR−215ca及びR−215cbを得る。
For separating the reaction mixture from the suspended anhydrous aluminum chloride, generally known methods such as separation and extraction in a liquid state by filtration and separation and extraction in a gas state by distillation are adopted. .. The obtained reaction mixture is separated and purified by a known method such as rectification to obtain the desired R-215ca and R-215cb.

【0009】本発明で採用する反応の形態は、経済性を
考慮すれば原料の仕込と生成物の抜き出しを連続的に行
なう反応形態が最も好ましいが、原料を連続で一定量仕
込んだ後、仕込を中断し、一定時間反応後、反応生成物
を抜き出すセミバッチ方式も採用できる。
The reaction mode employed in the present invention is most preferably a reaction mode in which the raw material is continuously charged and the product is continuously withdrawn in consideration of economic efficiency. However, after a constant amount of the raw material is continuously charged, the reaction is performed. A semi-batch method in which the reaction product is withdrawn after the reaction is interrupted and the reaction is continued for a certain period of time can also be employed.

【0010】本発明に用いる触媒としては、無水塩化ア
ルミニウムに代表されるルイス酸、例えば、無水四塩化
チタン、無水四塩化ジルコニウム、無水四塩化スズ、無
水五塩化アンチモン、無水塩化亜鉛、無水塩化鉄、無水
臭化アルミニウム、三フッ化ホウ素などが挙げられる。
また、式: AlClxFy [式中、xおよびyは、x+y=3、0<x<3、0<y<3
を満たす数である。]で表わされる塩素化フッ素化アル
ミニウムであっても良い。
The catalyst used in the present invention is a Lewis acid typified by anhydrous aluminum chloride, for example, anhydrous titanium tetrachloride, anhydrous zirconium tetrachloride, anhydrous tin tetrachloride, anhydrous antimony pentachloride, anhydrous zinc chloride, anhydrous iron chloride. , Anhydrous aluminum bromide, boron trifluoride and the like.
Also, the formula: AlClxFy [where x and y are x + y = 3, 0 <x <3, 0 <y <3
Is a number that satisfies. ] It may be chlorinated aluminum fluoride.

【0011】本発明で使用される無水塩化アルミニウム
は、通常市販されている粒状または粉末状のものであっ
てよい。
The anhydrous aluminum chloride used in the present invention may be in a granular or powder form which is usually commercially available.

【0012】また、塩素化フッ素化アルミニウムは、市
販の無水塩化アルミニウムにフッ化水素、フッ酸、炭素
数4以下、好ましくは炭素数2以下のフルオロ炭化水素
またはクロロフルオロ炭化水素(例えば、トリフルオロ
メタン、テトラフルオロエタン、クロロジフルオロメタ
ン、ジクロロフルオロメタン、トリフルオロジクロロエ
タン、トリフルオロクロロメタン、ジクロロジフルオロ
メタン、トリクロロフルオロメタン、ジフルオロテトラ
クロロエタン、トリフルオロトリクロロエタンなど)を
作用させて調製することができる。この際、フッ化水
素、フッ酸、フルオロ炭化水素またはクロロフルオロ炭
化水素を単独で作用させてもよいし、混合して作用させ
てもよく、また、場合によっては、クロロ炭化水素と混
合して作用させてもよい。
The chlorinated aluminum fluoride is obtained by adding commercially available anhydrous aluminum chloride to hydrogen fluoride, hydrofluoric acid, fluorocarbons having 4 or less carbon atoms, preferably 2 or less carbon atoms or chlorofluorohydrocarbons (eg, trifluoromethane). , Tetrafluoroethane, chlorodifluoromethane, dichlorofluoromethane, trifluorodichloroethane, trifluorochloromethane, dichlorodifluoromethane, trichlorofluoromethane, difluorotetrachloroethane, trifluorotrichloroethane, etc.). At this time, hydrogen fluoride, hydrofluoric acid, fluorohydrocarbon or chlorofluorohydrocarbon may be allowed to act alone, or may be allowed to act as a mixture, and in some cases, may be mixed with chlorohydrocarbon. You may act.

【0013】上記触媒調製時の反応温度は、通常0℃〜
120℃、好ましくは0℃〜100℃の範囲である。無
水塩化アルミニウムとフッ素化剤は、液状態で接触させ
ても良いし、気体を流通させて接触させても良い。
The reaction temperature at the time of preparing the above catalyst is usually from 0 ° C to
It is in the range of 120 ° C, preferably 0 ° C to 100 ° C. The anhydrous aluminum chloride and the fluorinating agent may be brought into contact with each other in a liquid state, or may be brought into contact with each other by circulating a gas.

【0014】本発明の方法において用いられる反応溶媒
は、触媒に対して不活性でありテトラクロロメタン、R
−12及びTFEを溶解するものであれば、特に限定さ
れることはない。例えば本発明の反応の副生成物である
クロロフルオロアルカンとしてのテトラクロロテトラフ
ルオロプロパン類やヒドロクロロフルオロアルカンとし
てのテトラフルオロトリクロロプロパン類やペンタフル
オロプロパン類であっても良いが、目的生成物であるR
−215との分離を考えれば、R−215そのものを用
いるのが好適である。
The reaction solvent used in the process of the present invention is inert to the catalyst and is tetrachloromethane, R
There is no particular limitation as long as it dissolves -12 and TFE. For example, tetrachlorotetrafluoropropanes as chlorofluoroalkanes or tetrafluorotrichloropropanes or pentafluoropropanes as hydrochlorofluoroalkanes, which are by-products of the reaction of the present invention, may be used, but they are the desired products. Some R
Considering the separation from -215, it is preferable to use R-215 itself.

【0015】本発明の製造方法におけるテトラクロロメ
タンとR−12とTFEの仕込みモル比を説明する。テ
トラクロロメタンとR−12のモル比は、1:1以上、
好ましくは1:1〜1:10、R−12とTFEの仕込み
モル比は、1:2以上、好ましくは1:2〜1:10であ
る。すなわち、テトラクロロメタンとR−12とTFE
の比としては、上記の条件を満たしていればよく、例え
ば、テトラクロロメタンとR−12とTFEのモル比と
して1:2:4といった比である。
The molar ratio of tetrachloromethane, R-12 and TFE charged in the production method of the present invention will be described. The molar ratio of tetrachloromethane and R-12 is 1: 1 or more,
The molar ratio of R-12 to TFE is preferably 1: 1 to 1:10, and is 1: 2 or more, preferably 1: 2 to 1:10. That is, tetrachloromethane, R-12 and TFE
As long as the above conditions are satisfied, the molar ratio of tetrachloromethane, R-12 and TFE is, for example, 1: 2: 4.

【0016】仕込方法としては、テトラクロロメタンと
R−12とTFEをそれぞれ予め混合しておいてから加
えても、別々に同時に加えてもよく、場合によっては、
一定量、一定時間テトラクロロメタンを加え、次にR−
12とTFEの混合ガスを加えるといった方法を用いて
も良い。なお、それぞれの原料は、気体状でも、液状で
も仕込むことが可能である。
As a charging method, tetrachloromethane, R-12, and TFE may be mixed in advance and then added, or they may be added separately at the same time.
Tetrachloromethane was added for a fixed amount of time and then R-
A method of adding a mixed gas of 12 and TFE may be used. It should be noted that each of the raw materials can be charged in the form of gas or liquid.

【0017】反応圧力は、特に限定されない。減圧下で
も可能であるが、装置が複雑になる。従って常圧以上で
行なうのが好ましい。反応温度は、−30〜+120
℃、好ましくは−20〜+60℃の範囲の温度である。
反応温度が、120℃より高くなると、副生成物の量が
増加し、目的とするR−215ca及びR−215cbの選
択率が低下する。反応温度が−30℃より低い場合に
は、反応の進行が非常に遅くなり現実的でない。
The reaction pressure is not particularly limited. It is possible under reduced pressure, but the device becomes complicated. Therefore, it is preferable to carry out the treatment at atmospheric pressure or higher. The reaction temperature is -30 to +120.
C., preferably in the range of −20 to + 60 ° C.
When the reaction temperature is higher than 120 ° C., the amount of by-products increases, and the target R-215ca and R-215cb selectivity decreases. When the reaction temperature is lower than −30 ° C., the progress of the reaction becomes very slow, which is not realistic.

【0018】本発明で使用する出発原料であるテトラク
ロロメタン、R−12およびTFEは、いずれも工業的
に製造されている。無水塩化アルミニウム等のルイス酸
は、通常に市販されている物をそのままで使用すること
ができる。
The starting materials tetrachloromethane, R-12 and TFE used in the present invention are all industrially produced. As the Lewis acid such as anhydrous aluminum chloride, a commercially available product can be used as it is.

【0019】[0019]

【発明の効果】本発明の方法によれば、テトラクロロメ
タンとR−12とTFEから、R−215caおよびR−
215cbを高収率及び高選択率で得ることができる。ま
た、連続的な反応形態をとることが可能であるので経済
的である。
INDUSTRIAL APPLICABILITY According to the method of the present invention, R-215ca and R-can be obtained from tetrachloromethane, R-12 and TFE.
215cb can be obtained in high yield and high selectivity. In addition, it is economical because it is possible to take a continuous reaction form.

【0020】さらに、本発明の方法は、R−215ca及
びR−215cbを従来の方法であるR−11とTFEか
ら合成する際に副生成物としてテトラクロロメタンが生
成した場合のテトラクロロメタンの除去方法としても用
いることが出来る。
Further, according to the method of the present invention, when tetrachloromethane is produced as a by-product when R-215ca and R-215cb are synthesized from R-11 and TFE which is a conventional method, tetrachloromethane is produced. It can also be used as a removal method.

【0021】[0021]

【実施例】以下、本発明を実施例により説明する。実施例1 反応系内に水分が混入するのを防ぐためのシリカゲル乾
燥管及びガス導入管を備えた100mlガラス製フラスコ
に、テトラクロロメタン19g、無水塩化アルミニウム
1gを仕込んだ。マグネチックスターラーにより攪拌し
ながら、TFEを20cc/min、R−12を10cc/min
の流速で予め混合した後、ガス導入管よりフラスコに仕
込んだ。このとき、外部を氷水で冷却し、反応温度が5
〜10℃になるように調節した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 19 g of tetrachloromethane and 1 g of anhydrous aluminum chloride were charged into a 100 ml glass flask equipped with a silica gel drying tube and a gas introduction tube for preventing water from entering the reaction system. 20 cc / min of TFE and 10 cc / min of R-12 while stirring with a magnetic stirrer
After premixing at the flow rate of, the flask was charged through a gas introduction tube. At this time, the outside was cooled with ice water and the reaction temperature was 5
It was adjusted to be -10 ° C.

【0022】反応液をガスクロマトグラフィーにより分
析すると、反応時間の経過とともにテトラクロロメタン
が減少し、R−215ca及びR−215cbが増加してい
った。5時間反応後、反応液の量は64gに増加してお
り、このときの反応液の組成は、ガスコロマトグラフィ
による分析によれば、以下の通りであった。なお、テト
ラクロロメタンは検出されなかった。
When the reaction solution was analyzed by gas chromatography, tetrachloromethane decreased and R-215ca and R-215cb increased with the passage of reaction time. After reacting for 5 hours, the amount of the reaction solution had increased to 64 g, and the composition of the reaction solution at this time was as follows according to the analysis by gas coromatography. In addition, tetrachloromethane was not detected.

【0023】なお、得られたR−215は、R−215
caとR−215cbの混合物であり、その比は、R−21
5ca/R−215cb=14/86であった。
The obtained R-215 is R-215.
It is a mixture of ca and R-215cb, the ratio of which is R-21.
It was 5ca / R-215cb = 14/86.

【0024】実施例2 無水塩素化フッ素化アルミニウムを次のようにして調製
した。無水塩化アルミニウム20gとフルオロトリクロ
ロメタン20gを混合した後、0〜5℃で2時間攪拌
し、その後反応溶媒を真空下で除去し、無水塩素化フッ
素化アルミニウムを得た。
Example 2 Anhydrous chlorinated aluminum fluoride was prepared as follows. After mixing 20 g of anhydrous aluminum chloride and 20 g of fluorotrichloromethane, the mixture was stirred at 0 to 5 ° C for 2 hours, and then the reaction solvent was removed under vacuum to obtain anhydrous chlorinated aluminum fluoride.

【0025】実施例1と同様のフラスコに、調製した無
水塩素化フッ素化アルミニウム2gとR−215(ca:cb
=14:86)40gを仕込んだ。フラスコ外部を氷水で
冷却し、マグネチックスターラーで攪拌しながら、テト
ラクロロメタンを液状で4.1g/hrの流量で仕込みなが
ら、TFEを20cc/min、R−12を10cc/minの流
量で予め混合して仕込んだ。6時間後の反応液の重量
は、116gに増加していた。
In a flask similar to that of Example 1, 2 g of the prepared anhydrous chlorinated aluminum fluoride and R-215 (ca: cb
= 14: 86) 40g was charged. The outside of the flask was cooled with ice water, and while stirring with a magnetic stirrer, while charging tetrachloromethane in a liquid state at a flow rate of 4.1 g / hr, TFE was 20 cc / min and R-12 was 10 cc / min in advance. Mixed and prepared. The weight of the reaction solution after 6 hours had increased to 116 g.

【0026】実施例1と同様に分析を行なった結果、R
−215の選択率は94モル%であり、反応の結果得ら
れたR−215の量は76.3gであった。また、R−2
15ca/R−215cbモル比は、14/86であった。
テトラクロロメタンは検出されなかった。
As a result of performing the same analysis as in Example 1, R
The selectivity of -215 was 94 mol%, and the amount of R-215 obtained as a result of the reaction was 76.3 g. Also, R-2
The 15ca / R-215cb molar ratio was 14/86.
Tetrachloromethane was not detected.

【0027】実施例3 無水塩素化フッ素化アルミニウムを次のようにして調製
した。無水塩素化アルミニウム20gとフロロトリクロ
ロメタン20gを混合した後、0〜5℃で2時間攪拌
し、その後反応溶媒を真空下で除去し、無水塩素化フッ
素化アルミニウムを得た。
Example 3 Anhydrous chlorinated aluminum fluoride was prepared as follows. After mixing 20 g of anhydrous aluminum chloride and 20 g of fluorotrichloromethane, the mixture was stirred at 0 to 5 ° C. for 2 hours, and then the reaction solvent was removed under vacuum to obtain anhydrous chlorinated aluminum fluoride.

【0028】実施例1と同様のフラスコに、調製した無
水塩素化フッ素化アルミニウム10gとR−215(ca:c
b=14/86)40gを仕込んだ。さらにテトラクロロ
メタン1gを加えた。フラスコ外部を水で冷却し、マグ
ネチックスターラーで攪拌しながら、TFEを20cc/
min、R−12を10cc/minの流量で予め混合した後仕
込んだ。2時間後、反応液を分析したところ、テトラク
ロロメタンは検出されなかった。
In a flask similar to that of Example 1, 10 g of the prepared anhydrous chlorinated aluminum fluoride and R-215 (ca: c
b = 14/86) 40 g was charged. Further 1 g of tetrachloromethane was added. The outside of the flask was cooled with water, and while stirring with a magnetic stirrer, TFE was added at 20 cc /
min and R-12 were premixed at a flow rate of 10 cc / min and then charged. After 2 hours, the reaction solution was analyzed and tetrachloromethane was not detected.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応溶媒中、触媒の存在下、テトラクロ
ロメタンとジクロロジフルオロメタンとテトラフルオロ
エチレンとを反応させることを特徴とする1,1,1,2,
2−ペンタフルオロ−3,3,3−トリクロロプロパン及
び1,1,2,2,3−ペンタフルオロ−1,3,3−トリク
ロロプロパンの製造方法。
1. A method of reacting tetrachloromethane, dichlorodifluoromethane and tetrafluoroethylene in a reaction solvent in the presence of a catalyst, 1, 1, 1, 2,
A method for producing 2-pentafluoro-3,3,3-trichloropropane and 1,1,2,2,3-pentafluoro-1,3,3-trichloropropane.
【請求項2】 触媒が無水塩化アルミニウムである請求
項1記載の製造方法。
2. The production method according to claim 1, wherein the catalyst is anhydrous aluminum chloride.
【請求項3】 触媒が、式:AlClxFy [式中、xおよびyは、x+y=3、0<x<3、0<y<3
を満たす数である。]で示される塩素化フッ素化アルミ
ニウムである請求項1記載の製造方法。
3. The catalyst has the formula: AlClxFy, where x and y are x + y = 3, 0 <x <3, 0 <y <3.
Is a number that satisfies. ] The manufacturing method of Claim 1 which is chlorinated fluorinated aluminum shown by these.
JP3317801A 1991-12-02 1991-12-02 Production of hexafluorotrichloropropanes Pending JPH05155789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3317801A JPH05155789A (en) 1991-12-02 1991-12-02 Production of hexafluorotrichloropropanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3317801A JPH05155789A (en) 1991-12-02 1991-12-02 Production of hexafluorotrichloropropanes

Publications (1)

Publication Number Publication Date
JPH05155789A true JPH05155789A (en) 1993-06-22

Family

ID=18092193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3317801A Pending JPH05155789A (en) 1991-12-02 1991-12-02 Production of hexafluorotrichloropropanes

Country Status (1)

Country Link
JP (1) JPH05155789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
US6229058B1 (en) 1993-12-14 2001-05-08 E. I. Du Pont De Nemours And Company Preparation of fluorinated propanes and pentanes

Similar Documents

Publication Publication Date Title
JPH0615485B2 (en) Method for producing polyfluorinated ether
JP3248184B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane and method for producing 1,1,1,3,3-pentafluoro-2,3-dichloropropane
JPH0449257A (en) Production of 1-chloro-2,2,2-trifluoroethane
JP2012140397A (en) Method for producing polychloropropane
JPH05155789A (en) Production of hexafluorotrichloropropanes
JP4970681B2 (en) Preparation of halohydrocarbons in the presence of promoters.
JP3839490B2 (en) Process for producing 1,1-difluoroethane
EP0436903B1 (en) Process for preparing pentafluorodichloropropanes
JPH04224527A (en) Production of pentafluorodichloropropane
EP0450584B1 (en) Bromination method
EP0421322B1 (en) Process for preparing penta-fluorodichloropropanes
JPH0525066A (en) Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane
JP2002532445A (en) Method for adding haloalkanes to alkenes contacted with organophosphine compound
US5177274A (en) Process for preparing pentafluorodichloropropanes
US6268540B1 (en) Catalyst and process for the fluorination of hydrohalomethanes
JPH0620560B2 (en) New catalyst for liquid phase fluorination
JP3931448B2 (en) Process for producing bis (3-alkyloxetane-3-ylmethyl) ether
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JPH0717882A (en) Production of difluoromethane
RU2041193C1 (en) Method of synthesis of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane
RU2029757C1 (en) Process for preparing 1,1,1,2,2-pentafluoro-3,3- dichloropropane and 1,1-2,2,3-pentafluoro-1,3- dichloropropane
JP2665804B2 (en) Method for producing halofluoromethane
JPH05186373A (en) Production of pentafluorotrichloropropane compounds
JPH0784398B2 (en) Method for producing pentafluorodichloropropanes
JPH0694425B2 (en) Method for purifying dichloropentafluoropropane