JPH0717882A - Production of difluoromethane - Google Patents

Production of difluoromethane

Info

Publication number
JPH0717882A
JPH0717882A JP5191942A JP19194293A JPH0717882A JP H0717882 A JPH0717882 A JP H0717882A JP 5191942 A JP5191942 A JP 5191942A JP 19194293 A JP19194293 A JP 19194293A JP H0717882 A JPH0717882 A JP H0717882A
Authority
JP
Japan
Prior art keywords
reaction
chlorofluoromethane
catalyst
liquid phase
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191942A
Other languages
Japanese (ja)
Inventor
Kunitada Tanaka
邦忠 田中
Takashi Shibanuma
俊 柴沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5191942A priority Critical patent/JPH0717882A/en
Publication of JPH0717882A publication Critical patent/JPH0717882A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a production method of HFC-32 capable of reducing the corrosion caused by catalyst and alleviating reactional conditions such as reactional temperature and having advantages in the cost and yield. CONSTITUTION:This production method of difluoromethane (HFC-32) comprises the first process that dichloromethane (HCC-30) is made to react with hydrofluoric acid in a liquid phase in the presence of antimony catalyst expressed by the formula SbClxFy(x+y=5, 1<=y<=3) and the second process consisting of either a process that chlorofluoromethane (HCFC-31) existing in the reactional product is made to react with itself in the presence of a catalyst in a liquid phase or a gas phase or a process that the chlorofluoromethane is made to react with hydrofluoric acid in the presence of a catalyst in a gas phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フロンガスの代替品と
して有用であって冷媒等としての用途が期待されている
ジフルオロメタン(以下、HFC−32と称する。)の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing difluoromethane (hereinafter referred to as HFC-32) which is useful as a substitute for CFC gas and is expected to be used as a refrigerant or the like.

【0002】[0002]

【従来の技術】HFC−32の製造方法としては、例え
ば、ジクロロメタンのフッ素化反応(DE−1020968 、米
国特許第2749374 及び 2749375号 、米国特許第364454
5 号、米国特許第4147733 号、特開昭59−225132、2310
29及び231030号など)、クロロジフルオロメタンまたは
ジクロロジフルオロメタンの還元反応(EP−508660 Al
など)に記載された方法が知られている。
As a method for producing HFC-32, for example, a fluorination reaction of dichloromethane (DE-1020968, US Pat. Nos. 2749374 and 2749375, US Pat. No. 364454).
5, U.S. Pat.No. 4,147,733, JP-A-59-225132, 2310
29 and 231030), reduction reaction of chlorodifluoromethane or dichlorodifluoromethane (EP-508660 Al
Etc.) is known.

【0003】これらの公知のHFC−32の製造方法に
よれば、液相フッ素化反応として、SbF3を触媒とし、ジ
クロロメタンと塩素及び過剰のフッ化水素とを、 120℃
から150℃の反応温度、40気圧から50気圧の反応圧力で
反応させている(DE−1020968 など)。また、Sb(V)
を含むSbCl3 と塩素にジクロロメタンとフッ酸を 120℃
で反応させる方法もある(米国特許第2749374 及び2749
375 号など)。
According to these known methods for producing HFC-32, the liquid phase fluorination reaction is carried out by using SbF 3 as a catalyst, dichloromethane, chlorine and excess hydrogen fluoride at 120 ° C.
The reaction temperature is from 150 to 150 ° C, and the reaction pressure is from 40 to 50 atmospheres (DE-1020968 etc.). Also, Sb (V)
Dichloromethane and hydrofluoric acid in SbCl 3 and chlorine containing 120 ℃
There is also a method of reacting with (US Pat. Nos. 2749374 and 2749).
No. 375).

【0004】また、気相フッ素化反応は、ジクロロメタ
ンとフッ酸とを酸化クロムなどの触媒を用いて 320℃か
ら 400℃の範囲で反応させたものである(特開昭59−22
5132、231029及び231030号など)。
In the gas phase fluorination reaction, dichloromethane and hydrofluoric acid are reacted in the range of 320 ° C. to 400 ° C. using a catalyst such as chromium oxide (JP-A-59-22).
5132, 231029 and 231030 etc.).

【0005】更に、還元反応として、PdまたはPd+ VII
Ia族金属を活性炭に担持した触媒を用いた水素還元反応
を行っている(EP−508660 Al)。
Further, as a reduction reaction, Pd or Pd + VII
A hydrogen reduction reaction is carried out using a catalyst in which a group Ia metal is supported on activated carbon (EP-508660 Al).

【0006】上記した公知の液相フッ素化反応でジクロ
ロメタン(以下、HCC−30と称する。)よりHFC
−32を効率よく合成するには、アンチモン(V)触媒
(SbClxFy)のy値を約5に、かつ反応温度を80℃以上に
する必要がある。しかし、この触媒の組成では、腐食性
が非常に強いため、反応器材質の選定が困難となってく
る。
In the above-mentioned known liquid phase fluorination reaction, HFC was added to dichloromethane (hereinafter referred to as HCC-30).
In order to synthesize -32 efficiently, it is necessary to set the y value of the antimony (V) catalyst (SbClxFy) to about 5 and the reaction temperature to 80 ° C or higher. However, with this catalyst composition, the corrosiveness is so strong that it becomes difficult to select the reactor material.

【0007】また、気相反応では、反応器が大きくな
り、かつ反応温度を高くする必要があるため、コスト及
び副生成物の問題が生ずる。さらに、反応の性質上、反
応器の大きさに比例してHFC−32を得ることが困難
である。
Further, in the gas phase reaction, the reactor becomes large and it is necessary to raise the reaction temperature, which causes problems of cost and by-products. Furthermore, due to the nature of the reaction, it is difficult to obtain HFC-32 in proportion to the size of the reactor.

【0008】更に、クロロジフルオロメタンの還元反応
では、クロロジフルオロメタンは還元されにくく、か
つ、転化率を上げるために反応温度を高くすると、選択
率の低下を招く。ジクロロジフルオロメタンでは、それ
自身が規制フロンであるため、近い将来に生産されなく
なるという欠点を持つ。
Further, in the reduction reaction of chlorodifluoromethane, chlorodifluoromethane is not easily reduced, and if the reaction temperature is raised to increase the conversion rate, the selectivity is lowered. Dichlorodifluoromethane has a drawback that it will not be produced in the near future because it is a regulated CFC itself.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、触媒
による腐食性を低下させ、反応温度等の反応条件を緩和
でき、コスト、収率の面で有利なHFC−32の製造方
法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing HFC-32, which is capable of reducing corrosiveness by a catalyst, relaxing reaction conditions such as reaction temperature, and advantageous in terms of cost and yield. To do.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記の問題
を解決するために、まず、アンチモン(V)触媒(SbCl
xFy)のy値を低く(3以下)した状態でHCC−30を
反応させ(以下、第1工程と称する。)、このときに生
じたクロロフルオロメタン(以下、HCFC−31と称
する。)をさらにフッ素化反応させて(以下、第2工程
と称する。)、HFC−32を得る方法を見出した。
In order to solve the above-mentioned problems, the present inventor firstly conducted an antimony (V) catalyst (SbCl 2
HCC-30 was reacted with the y value of xFy) kept low (3 or less) (hereinafter referred to as the first step), and chlorofluoromethane (hereinafter referred to as HCFC-31) generated at this time was reacted. Further, a method for obtaining HFC-32 by performing a fluorination reaction (hereinafter referred to as the second step) was found.

【0011】即ち、本発明は、ジクロロメタン(HCC
−30)をSbClxFy(但し、x+y=5、1≦y≦3であ
る。)で表されるアンチモン触媒の存在下にフッ化水素
と液相で反応させてクロロフルオロメタン(HCFC−
31)を得る第1工程と;次いで、反応生成物中のHC
FC−31を単独で液相又は気相で触媒と接触させるこ
と、又は、反応生成物中のHCFC−31をフッ化水素
と気相で触媒の存在下に接触させることによって、ジフ
ルオロメタン(HFC−32)を得る第2工程と;から
なるHFC−32の製造方法に係るものである。
That is, the present invention relates to dichloromethane (HCC
-30) is reacted with hydrogen fluoride in the liquid phase in the presence of an antimony catalyst represented by SbClxFy (where x + y = 5, 1 ≦ y ≦ 3) to obtain chlorofluoromethane (HCFC-
31) in the first step; and then HC in the reaction product
By contacting FC-31 alone with a catalyst in a liquid phase or a gas phase, or by contacting HCFC-31 in a reaction product with hydrogen fluoride in a gas phase in the presence of a catalyst, difluoromethane (HFC And a second step of obtaining -32).

【0012】本発明の方法によれば、HFC−32の製
造プロセスを主として上記の第1工程及び第2工程の2
段階に分け、第1工程(液相フッ素化反応)を腐食性の
弱い条件で、即ち、上記アンチモン触媒のフッ素の割合
を1≦y≦3と小さくして行うことを特徴としている。
これによって、反応器材質の制約を軽減し、その材質選
定が容易となり、従って既存の反応器を使用することが
できる。
According to the method of the present invention, the manufacturing process of HFC-32 is mainly performed by the above-mentioned first step and second step.
It is characterized in that the first step (liquid phase fluorination reaction) is performed under weakly corrosive conditions, that is, the proportion of fluorine in the antimony catalyst is set as small as 1 ≦ y ≦ 3.
This alleviates the restrictions on the material of the reactor and facilitates the selection of the material, so that the existing reactor can be used.

【0013】また、第2工程での反応、つまりHCFC
−31のフッ素化反応をフッ化水素(HF)を用いて気
相で行う場合は、HCC−30とHFを気相中のみで反
応させ、HFC−32を生成させる場合に比べて、より
緩和された反応条件(例えば、より低い反応温度)を採
用できる。結果として触媒寿命を長く保てるとともに、
気相反応器を小さくすることができ、副生成物も減少さ
せることができる。
The reaction in the second step, that is, HCFC
When the fluorination reaction of −31 is carried out in the gas phase using hydrogen fluoride (HF), it is more relaxed than the case where HCC-30 and HF are reacted only in the gas phase to produce HFC-32. The reaction conditions described (eg, lower reaction temperature) can be employed. As a result, the catalyst life can be maintained for a long time,
The gas phase reactor can be made smaller and byproducts can be reduced.

【0014】さらに、第2工程でのHCFC−31のフ
ッ素化反応は、HFの非存在下で(即ち、HCFC−3
1単独で)気相又は液相で反応させてHFC−32を得
ることができるので、プロセス上や、触媒寿命、反応器
材質、反応条件の点で有利となる。
Further, the fluorination reaction of HCFC-31 in the second step is conducted in the absence of HF (that is, HCFC-3).
Since HFC-32 can be obtained by reacting in a gas phase or a liquid phase (alone 1), it is advantageous in terms of process, catalyst life, reactor material, and reaction conditions.

【0015】本発明の方法に基づくHFC−32の製造
工程の一例を示すと、図1に示す通りである。
An example of the manufacturing process of HFC-32 based on the method of the present invention is shown in FIG.

【0016】本発明によるHCC−30のフッ素化反応
の1例として、次のようなプロセスが挙げられる。
An example of the fluorination reaction of HCC-30 according to the present invention is the following process.

【0017】第1工程の反応器内にアンチモン触媒を調
製してHCC−30とHFを連続的に仕込み、反応出口
より生成ガスを抜き出す。この際、未反応HCC−30
の反応器からの放出を防止するために、反応圧力を調節
すること又は出口側に蒸留塔を設けること、或いはその
両方を行うことがよい。
An antimony catalyst is prepared in the reactor of the first step, HCC-30 and HF are continuously charged, and the produced gas is extracted from the reaction outlet. At this time, unreacted HCC-30
It is advisable to adjust the reaction pressure or to provide a distillation column at the outlet side, or both, in order to prevent the release of the above-mentioned from the reactor.

【0018】第1工程の出口ガス(主として、HFC−
32、HCFC−31及びHCl からなる。)から蒸留塔
でHFC−32とHCl を分離することが望ましい。この
時、残りのガスはそのまま第1工程に戻して反応させて
もよいが、本発明では、残りのガス(主としてHCFC
−31とHF)からHCFC−31を分離し、第2工程
で、HCFC−31を気相または液相で触媒の存在下に
不均化反応させてHFC−32を生成させるか、或いは
HF量を調整して気相でHCFC−31をフッ素化反応
させてHFC−32を生成させることが特徴的である。
生成されたHFC−32は分離する。
The outlet gas of the first step (mainly HFC-
32, HCFC-31 and HCl. It is desirable to separate HFC-32 and HCl from a) in a distillation column. At this time, the remaining gas may be directly returned to the first step for reaction, but in the present invention, the remaining gas (mainly HCFC
-31 and HF) to separate HCFC-31, and in the second step, HCFC-31 is disproportionated in the gas or liquid phase in the presence of a catalyst to produce HFC-32, or the amount of HF is increased. Is adjusted to cause fluorination reaction of HCFC-31 in the gas phase to generate HFC-32.
The generated HFC-32 is separated.

【0019】そして、上記の不均化反応で生成したHC
C−30は第1工程に、未反応のHCFC−31は第1
工程又は第2工程に戻せばよい。また、後者の場合(H
CFC−31のHFによる気相フッ素化)も同様であ
る。
The HC produced in the above disproportionation reaction
C-30 is in the first step, unreacted HCFC-31 is in the first step
It may be returned to the process or the second process. In the latter case (H
The same applies to the vapor phase fluorination of CFC-31 with HF).

【0020】第1工程のアンチモン触媒(SbClxFy)は、
少なくともx+y=5の組成の触媒(5価のアンチモ
ン)を含み、1≦y≦3とする。この触媒の調製方法と
しては、SbCl5 とHF又はSbCl5 とSbF5を反応させて
も、SbF3とCl2 を反応させてもよい。
The antimony catalyst (SbClxFy) used in the first step is
It contains at least a catalyst (pentavalent antimony) having a composition of x + y = 5, and 1 ≦ y ≦ 3. As a method for preparing this catalyst, SbCl 5 and HF, SbCl 5 and SbF 5 or SbF 3 and Cl 2 may be reacted.

【0021】第1工程での反応温度は、40から150 ℃、
好ましくは60から120 ℃で行うのがよい。また、反応圧
力は2から80kG、好ましくは3から20kGで行うのがよ
い。反応温度、圧力は、HCC−30から少なくともH
CFC−31が生成するものであればよいが、この反応
条件でHFC−32が生成しても何ら支障はない。
The reaction temperature in the first step is 40 to 150 ° C.,
It is preferably carried out at 60 to 120 ° C. The reaction pressure is 2 to 80 kG, preferably 3 to 20 kG. The reaction temperature and pressure are at least H from HCC-30.
As long as CFC-31 is produced, there is no problem even if HFC-32 is produced under this reaction condition.

【0022】次に、第1工程から得られたHCFC−3
1及びHF(HFは外部から添加してもよい。)もしく
はHCFC−31単独を第2工程において触媒を用いて
気相反応させる。HCFC−31とHFを反応させた場
合は、副生物のうち少なくともHCC−30は液相フッ
素化反応(第1工程)に戻し、未反応のHCFC−31
は再び気相反応を行わせる。HCFC−31単独で反応
する場合は、気相又は液相でHCC−30とHFC−3
2に不均化させ、HFC−32を得る。この時に副生す
るHCC−30は液相フッ素化反応(第1工程)に戻せ
ばよい。
Next, HCFC-3 obtained from the first step
1 and HF (HF may be added from the outside) or HCFC-31 alone is subjected to a gas phase reaction in the second step using a catalyst. When HCFC-31 and HF are reacted, at least HCC-30 among the byproducts is returned to the liquid phase fluorination reaction (first step), and unreacted HCFC-31
Causes the gas phase reaction to occur again. When reacting with HCFC-31 alone, HCC-30 and HFC-3 in gas phase or liquid phase
Disproportionate to 2 to give HFC-32. The HCC-30 produced as a by-product at this time may be returned to the liquid phase fluorination reaction (first step).

【0023】HCFC−31の気相反応は、HCC−3
0のそれと比べて反応温度を下げることができるため、
触媒寿命を長くし、副生成物を減少させることができ
る。
The gas phase reaction of HCFC-31 is HCC-3.
Since the reaction temperature can be lowered compared to that of 0,
The catalyst life can be extended and byproducts can be reduced.

【0024】この気相反応に使用する触媒は、表面積が
好ましくは 170m2/g以上、 300m2/g以下である酸化
クロム、クロムオキシフルオライド、酸化アルミニウ
ム、アルミニウムフルオライド及び塩化フッ化アルミニ
ウム(AlClxFy)から選ばれた少なくとも1種、もしくは
それを担体に担持したものを用いればよい。
The catalyst used in this gas phase reaction preferably has a surface area of 170 m 2 / g or more and 300 m 2 / g or less of chromium oxide, chromium oxyfluoride, aluminum oxide, aluminum fluoride and aluminum chlorofluoride ( At least one selected from AlClxFy), or one obtained by supporting it on a carrier may be used.

【0025】第2工程のHCFC−31単独の反応を液
相で行う場合、使用する触媒は、上記以外にも、AlC
l3 、ZrCl4 、TiCl4 などの金属塩化物系のルイス酸
や、それらのCl原子の一部をF原子に置換した化合物な
どの少なくとも1種、或いはそれを担体に担持したもの
が使用できる。その時の反応温度は10℃から100 ℃が好
ましい。
When the reaction of HCFC-31 alone in the second step is carried out in the liquid phase, the catalyst to be used is AlC
At least one kind of metal chloride-based Lewis acid such as l 3 , ZrCl 4 , and TiCl 4 or a compound in which a part of Cl atoms thereof is replaced with F atoms, or a substance having it supported on a carrier can be used. . The reaction temperature at that time is preferably 10 ° C to 100 ° C.

【0026】第2工程の気相反応温度は、 100℃から35
0 ℃で、好ましくは 120℃から250℃で行うのがよい。
反応圧力は0kGから10kGで行うのがよい。また、HF/
HCFC−31比は0から20がよく、より好ましくは0
から8である。
The gas phase reaction temperature in the second step is from 100 ° C to 35 ° C.
It may be carried out at 0 ° C, preferably 120 ° C to 250 ° C.
The reaction pressure is preferably 0 kG to 10 kG. Also, HF /
The HCFC-31 ratio is preferably 0 to 20, more preferably 0.
To 8.

【0027】[0027]

【発明の作用効果】本発明の方法によれば、HFC−3
2の製造に際し、HCC−30とフッ酸との反応を第1
工程(液相フッ素化反応)において腐食性の弱い条件で
(即ち、Sb(V)ClxFy触媒のフッ素の割合を1≦y≦3と
小さくして)行うので、反応器材質の制約を軽減し、そ
の材質選定が容易となり、従って既存の反応器を使用す
ることができる。
According to the method of the present invention, HFC-3 is used.
In the production of 2, the first reaction of HCC-30 and hydrofluoric acid
Since the process (liquid phase fluorination reaction) is performed under conditions with weak corrosiveness (that is, the fluorine content of the Sb (V) ClxFy catalyst is reduced to 1 ≦ y ≦ 3), the restrictions on the reactor material are reduced. , The material can be easily selected, and thus the existing reactor can be used.

【0028】また、第1工程で得られるHCFC−31
のフッ素化反応を第2工程においてHFを用いて気相で
行うので、HCC−30の気相中のみでのフッ素化と比
べて、より緩和された反応条件(例えば、より低い反応
温度)を採用でき、結果として触媒寿命を長く保てると
ともに、気相反応器を小さくすることができ、副生成物
も減少させることができる。
Also, HCFC-31 obtained in the first step
Since the fluorination reaction of is carried out in the gas phase using HF in the second step, more relaxed reaction conditions (for example, lower reaction temperature) are used as compared with the fluorination of HCC-30 only in the gas phase. As a result, the catalyst life can be maintained for a long time, the gas phase reactor can be downsized, and by-products can be reduced.

【0029】さらに、第2工程でのHCFC−31のフ
ッ素化反応は、HFの非存在下で(即ち、HCFC−31
単独で)気相又は液相で行えるので、プロセス上や、触
媒寿命、反応器材質、反応条件の点で有利にHFC−3
2を得ることができる。
Furthermore, the fluorination reaction of HCFC-31 in the second step is carried out in the absence of HF (that is, HCFC-31).
Since it can be performed (independently) in a gas phase or a liquid phase, it is advantageous in terms of process, catalyst life, reactor material, and reaction conditions.
2 can be obtained.

【0030】[0030]

【実施例】以下、本発明の実施例について更に詳細に説
明するが、以下の実施例は本発明を限定するものではな
く、その技術的思想に基いて種々に変形可能である。
EXAMPLES Examples of the present invention will be described in more detail below, but the following examples do not limit the present invention and can be variously modified based on the technical idea thereof.

【0031】実施例1 蒸留塔付きの 500mlハステロイ製オートクレーブにSbCl
5 598g(2mol)とフッ酸 120g(6mol)を仕込み、80
℃に加熱して、SbCl2F3 を生成し、発生するHCl を系外
に抜き出した。
Example 1 SbCl was added to a 500 ml Hastelloy autoclave equipped with a distillation column.
Charge 5 598 g (2 mol) and hydrofluoric acid 120 g (6 mol)
The mixture was heated to ℃, SbCl 2 F 3 was produced, and generated HCl was extracted out of the system.

【0032】そこに、HCC−30 0.65g/min (7.6
mmol/min)及びフッ酸 0.3g/min(15.2mmol/min)をポ
ンプで仕込んでいった。反応圧力を10kGに保ちながら、
系内のガスを徐々に抜き出し、そのうちHFC−32と
HCl を分離した。
There, HCC-30 0.65 g / min (7.6
(mmol / min) and hydrofluoric acid 0.3 g / min (15.2 mmol / min) were charged by a pump. While keeping the reaction pressure at 10 kG,
The gas in the system was gradually withdrawn, and HFC-32 and
HCl was separated.

【0033】残りのガスからHFを分離して、HCFC
−31を80cc/min の割合で、酸化クロム8gを充填し
て 150℃に加熱した20Aハステロイ反応器に流通した。
この反応器の出口ガスとして、下記の成分を得た。HF
C−32の収率は比較的良好であった。
HF is separated from the remaining gas to produce HCFC
-31 was flowed at a rate of 80 cc / min into a 20A Hastelloy reactor filled with 8 g of chromium oxide and heated to 150 ° C.
The following components were obtained as the outlet gas of this reactor. HF
The yield of C-32 was relatively good.

【0034】HCC−30 35.6cc/min HCFC−31 8.8cc/min HFC−32 35.6cc/minHCC-30 35.6cc / min HCFC-31 8.8cc / min HFC-32 35.6cc / min

【0035】実施例2 実施例1と同様に液相反応(第1工程)を行い、反応圧
力を10kGに保ちながら系内のガスを徐々に抜き出し、そ
のうちHFC−32と塩酸を分離した。残りのガスであ
るHCFC−31とHFをそれぞれ 100cc/min 、 300
cc/min の割合に調整し、酸化クロム5gを充填して 2
10℃に加熱した20Aハステロイ反応器に流通した。この
反応器の出口ガスとして、下記の成分を得た。HFC−
32の収率はかなり向上した。
Example 2 A liquid phase reaction (first step) was carried out in the same manner as in Example 1, and the gas in the system was gradually extracted while maintaining the reaction pressure at 10 kG, and HFC-32 and hydrochloric acid were separated from the gas. The remaining gases, HCFC-31 and HF, are 100cc / min and 300, respectively.
Adjust to cc / min and fill with 5g of chromium oxide. 2
It was passed through a 20A Hastelloy reactor heated to 10 ° C. The following components were obtained as the outlet gas of this reactor. HFC-
The yield of 32 was improved considerably.

【0036】HCC−30 6.9cc/min HCFC−31 12.0cc/min HFC−32 81.1cc/minHCC-30 6.9cc / min HCFC-31 12.0cc / min HFC-32 81.1cc / min

【0037】実施例3 蒸留塔付きの 500mlハステロイ製オートクレーブにSbCl
5 598g(2mol)とフッ酸 120g(6mol)を仕込み、80
℃に加熱して発生するHCl を系外に抜き出し、SbCl2F3
組成の触媒を生成させた。
Example 3 SbCl was added to a 500 ml Hastelloy autoclave equipped with a distillation column.
Charge 5 598 g (2 mol) and hydrofluoric acid 120 g (6 mol)
HCl generated by heating to ℃ is extracted to the outside of the system, and SbCl 2 F 3
A catalyst of composition was produced.

【0038】そこに、HCC−30 0.65g/min (7.6
mmol/min)及びフッ酸 0.3g/min(15.2mmol/min)をポ
ンプで仕込んでいった。反応圧力を10kGに保ちながら、
系内のガスを徐々に抜き出し、そのうちHFC−32と
塩酸を分離した。
HCC-30 0.65 g / min (7.6
(mmol / min) and hydrofluoric acid 0.3 g / min (15.2 mmol / min) were charged by a pump. While keeping the reaction pressure at 10 kG,
The gas in the system was gradually extracted, and HFC-32 and hydrochloric acid were separated from it.

【0039】残りのガスからHFを分離して、凝縮させ
たHCFC−31 50g(0.73mol)を、200ml オートク
レーブに塩化フッ化アルミニウム 2.5gとともに仕込
み、室温で10時間攪拌した。反応生成物として下記の成
分を得た。この例でも、HFC−32の収率は比較的良
好であった。
HF was separated from the remaining gas, and 50 g (0.73 mol) of condensed HCFC-31 was charged into a 200 ml autoclave together with 2.5 g of aluminum fluoride chloride and stirred at room temperature for 10 hours. The following components were obtained as reaction products. Also in this example, the yield of HFC-32 was relatively good.

【0040】HCC−30 29.5g HCFC−31 2.5g HFC−32 18gHCC-30 29.5 g HCFC-31 2.5 g HFC-32 18 g

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に基づくHFC−32(ジフルオ
ロメタン)の製造工程の一例を示すフロー図である。
FIG. 1 is a flow chart showing an example of a manufacturing process of HFC-32 (difluoromethane) based on the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 C09K 5/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // C07B 61/00 300 C09K 5/04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ジクロロメタンをSbClxFy(但し、x+y
=5、1≦y≦3である。)で表されるアンチモン触媒
の存在下にフッ化水素と液相で反応させてクロロフルオ
ロメタンを得る第1工程と;次いで、反応生成物中のク
ロロフルオロメタンを単独で液相又は気相で触媒と接触
させること、又は、反応生成物中のクロロフルオロメタ
ンをフッ化水素と気相で触媒の存在下に接触させること
によって、ジフルオロメタンを得る第2工程と;からな
るジフルオロメタンの製造方法。
1. Dichloromethane is added to SbClxFy (provided that x + y
= 5, 1 ≦ y ≦ 3. A first step of reacting with hydrogen fluoride in a liquid phase in the presence of an antimony catalyst represented by to obtain chlorofluoromethane; and then, chlorofluoromethane in the reaction product alone in a liquid phase or in a gas phase. A second step of obtaining difluoromethane by contacting it with a catalyst or by contacting chlorofluoromethane in the reaction product with hydrogen fluoride in the gas phase in the presence of a catalyst; .
【請求項2】 第2工程におけるクロロフルオロメタン
とフッ化水素との接触における触媒が、酸化クロム、ク
ロムオキシフルオライド、酸化アルミニウム、アルミニ
ウムフルオライド及び塩化フッ化アルミニウムから選ば
れた少なくとも1種、或いはそれを担体に担持したもの
からなっている、請求項1に記載した製造方法。
2. The catalyst in the contact between chlorofluoromethane and hydrogen fluoride in the second step is at least one selected from chromium oxide, chromium oxyfluoride, aluminum oxide, aluminum fluoride and aluminum chlorofluoride, Alternatively, the production method according to claim 1, which comprises the carrier supported on the carrier.
【請求項3】 第2工程におけるクロロフルオロメタン
の気相反応においてフッ化水素とクロロフルオロメタン
との比がモル比で(0〜20):1である、請求項1又は
2に記載した製造方法。
3. The production according to claim 1, wherein the molar ratio of hydrogen fluoride to chlorofluoromethane in the gas phase reaction of chlorofluoromethane in the second step is (0-20): 1. Method.
【請求項4】 第1工程の液相反応器から、反応生成物
のうち少なくともクロロフルオロメタン、ジフルオロメ
タン及び塩酸を抜き出し、これらのうちジフルオロメタ
ンと塩酸を分離し、クロロフルオロメタンを気相または
液相でフッ素化する、請求項1〜3のいずれか1項に記
載した製造方法。
4. At least chlorofluoromethane, difluoromethane and hydrochloric acid are withdrawn from the reaction product from the liquid phase reactor in the first step, and difluoromethane and hydrochloric acid are separated from these to obtain chlorofluoromethane in a gas phase or The manufacturing method according to claim 1, wherein the fluorination is performed in a liquid phase.
【請求項5】 第1工程の液相反応器からの抜き出しガ
スに含まれるフッ化水素を除去若しくは同伴したまま、
さらにフッ化水素を外部から加えて第2工程でクロロフ
ルオロメタンを気相でフッ素化する、請求項1〜4のい
ずれか1項に記載した製造方法。
5. The hydrogen fluoride contained in the gas withdrawn from the liquid-phase reactor in the first step is removed or entrained,
Further, hydrogen fluoride is added from the outside to fluorinate chlorofluoromethane in the gas phase in the second step, the production method according to claim 1.
【請求項6】 第2工程の気相又は液相反応器からの反
応生成物のうち、ジフルオロメタンを分離し、クロロフ
ルオロメタンを第1工程又は第2工程の気相又は液相反
応器に、ジクロロメタンを第1工程の液相反応器に戻
す、請求項1〜5のいずれか1項に記載した製造方法。
6. Of the reaction products from the gas phase or liquid phase reactor of the second step, difluoromethane is separated and chlorofluoromethane is fed to the gas phase or liquid phase reactor of the first step or the second step. The method according to any one of claims 1 to 5, wherein dichloromethane is returned to the liquid phase reactor in the first step.
【請求項7】 第1工程の液相反応の反応温度が40℃か
ら 150℃であり、第2工程の気相反応の反応温度が 100
℃から 350℃である、請求項1〜6のいずれか1項に記
載した製造方法。
7. The reaction temperature of the liquid phase reaction of the first step is 40 to 150 ° C., and the reaction temperature of the gas phase reaction of the second step is 100.
The manufacturing method according to any one of claims 1 to 6, wherein the temperature is from 350C to 350C.
【請求項8】 第1工程の液相反応の反応圧力が2kGか
ら80kGであり、第2工程の気相反応の反応圧力が0kGか
ら10kGである、請求項1〜7のいずれか1項に記載した
製造方法。
8. The reaction pressure of the liquid phase reaction of the first step is 2 kG to 80 kG, and the reaction pressure of the gas phase reaction of the second step is 0 kG to 10 kG. The described manufacturing method.
【請求項9】 第1工程の液相反応器から抜き出したク
ロロフルオロメタンを触媒の存在下に単独で反応させ、
ジフルオロメタンを製造する、請求項4〜8のいずれか
1項に記載した製造方法。
9. The chlorofluoromethane withdrawn from the liquid phase reactor of the first step is reacted alone in the presence of a catalyst,
The manufacturing method according to claim 4, wherein difluoromethane is manufactured.
【請求項10】 触媒が、表面積が 170m2/g以上、 300
m2/g以下である酸化クロム、クロムオキシフルオライ
ド、酸化アルミニウム、アルミニウムフルオライド、塩
化フッ化アルミニウム、金属塩化物系のルイス酸及びこ
のルイス酸の塩素原子の一部をフッ素原子に置換した化
合物から選ばれた少なくとも1種、或いはそれを担体に
担持したものからなっている、請求項9に記載した製造
方法。
10. The catalyst has a surface area of 170 m 2 / g or more, 300
Chromium oxide, chromium oxyfluoride, aluminum oxide, aluminum fluoride, aluminum fluoride chloride, metal chloride-based Lewis acid having a m 2 / g or less and a part of chlorine atoms of this Lewis acid are replaced with fluorine atoms. The production method according to claim 9, comprising at least one selected from the compounds, or one obtained by supporting it on a carrier.
JP5191942A 1993-07-05 1993-07-05 Production of difluoromethane Pending JPH0717882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191942A JPH0717882A (en) 1993-07-05 1993-07-05 Production of difluoromethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191942A JPH0717882A (en) 1993-07-05 1993-07-05 Production of difluoromethane

Publications (1)

Publication Number Publication Date
JPH0717882A true JPH0717882A (en) 1995-01-20

Family

ID=16283025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191942A Pending JPH0717882A (en) 1993-07-05 1993-07-05 Production of difluoromethane

Country Status (1)

Country Link
JP (1) JPH0717882A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015937A1 (en) * 1993-12-09 1995-06-15 Daikin Industries, Ltd. Process for producing difluoromethane and 1,1,1,2-tetrafluoroethane
WO1995035271A1 (en) * 1994-06-20 1995-12-28 Daikin Industries, Ltd. Process for producing difluoromethane
WO1996001241A1 (en) * 1994-07-01 1996-01-18 Daikin Industries, Ltd. Process for producing difluoromethane
EP1542949A1 (en) * 2002-07-10 2005-06-22 Srf Limited A process for the production of difluoromethane
JPWO2005026090A1 (en) * 2003-09-10 2006-11-16 昭和電工株式会社 Production method of hydrofluorocarbon, its product and its use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015937A1 (en) * 1993-12-09 1995-06-15 Daikin Industries, Ltd. Process for producing difluoromethane and 1,1,1,2-tetrafluoroethane
US5849963A (en) * 1993-12-09 1998-12-15 Daikin Industries, Ltd. Method for producing difluoromethane and 1,1,1,2-tetrafluoroethane
WO1995035271A1 (en) * 1994-06-20 1995-12-28 Daikin Industries, Ltd. Process for producing difluoromethane
AU697434B2 (en) * 1994-06-20 1998-10-08 Daikin Industries, Ltd. Process for the preparation of difluoromethane
WO1996001241A1 (en) * 1994-07-01 1996-01-18 Daikin Industries, Ltd. Process for producing difluoromethane
US6407296B1 (en) 1994-07-01 2002-06-18 Daikin Industries Ltd. Process for producing difluoromethane
EP1542949A1 (en) * 2002-07-10 2005-06-22 Srf Limited A process for the production of difluoromethane
EP1542949A4 (en) * 2002-07-10 2006-05-17 Srf Ltd A process for the production of difluoromethane
JPWO2005026090A1 (en) * 2003-09-10 2006-11-16 昭和電工株式会社 Production method of hydrofluorocarbon, its product and its use

Similar Documents

Publication Publication Date Title
JP4322981B2 (en) Preparation of 245fa
EP0451199B1 (en) Processes using aluminum fluoride catalyst compositions for preparing haloethanes containing fluoride
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
US9061957B2 (en) Method for producing fluorinated organic compounds
US6844475B1 (en) Low temperature production of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd)
EP0938461B1 (en) Liquid phase catalytic fluorination of hydrochlorocarbon and hydrochlorofluorocarbon
US20090018377A1 (en) Catalytic process for the preparation of fluorinated halocarbons
JP4077032B2 (en) Process for the preparation of halogenated propane containing fluorine bonded to terminal carbon atoms.
EP0455748B2 (en) Manufacture of 1,1,1,2-tetrafluoroethane
JP3248184B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane and method for producing 1,1,1,3,3-pentafluoro-2,3-dichloropropane
JP3240619B2 (en) Method for producing difluoromethane
JPH11180908A (en) Production of 1,1,1,3,3-pentafluoropropane and intermediate product for producing the same
JPH04211026A (en) Method for preparation of hydrocarbon containing saturated fluorine but not chlorine
JPH0717882A (en) Production of difluoromethane
EP0712826A1 (en) 1,1,1-Trifluoroethane synthesis using a supported lewis acid
JP3572619B2 (en) Method for producing difluoromethane
EP0714874B1 (en) Process for the production of 1,1,1-trifluoroethane
JP4727830B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane
US6841705B2 (en) Method of producing difluoromethane
AU680706B2 (en) Process for producing difluoromethane and 1,1,1,2-tetrafluoroethane
WO1993016973A1 (en) Process for producing 1,1,1,2,2,4,4,5,5,5-decafluoropentane
JP3839490B2 (en) Process for producing 1,1-difluoroethane
US6268540B1 (en) Catalyst and process for the fluorination of hydrohalomethanes
EP1313687A2 (en) Production of hydrofluoroalkanes
JP3164288B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane