JPH05141939A - Method and device for measuring change quantity of small angle - Google Patents

Method and device for measuring change quantity of small angle

Info

Publication number
JPH05141939A
JPH05141939A JP10225291A JP10225291A JPH05141939A JP H05141939 A JPH05141939 A JP H05141939A JP 10225291 A JP10225291 A JP 10225291A JP 10225291 A JP10225291 A JP 10225291A JP H05141939 A JPH05141939 A JP H05141939A
Authority
JP
Japan
Prior art keywords
angle
crystal
measuring
polarizer
change quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225291A
Other languages
Japanese (ja)
Inventor
Ryo Sugiyama
僚 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP10225291A priority Critical patent/JPH05141939A/en
Publication of JPH05141939A publication Critical patent/JPH05141939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the change quantity of a small angle by utilizing the double-refraction property of a crystal. CONSTITUTION:The polarization state of a laser beam after transmitting a crystal is changed by the interaction quantity between the normal light and the abnormal light, and the interaction quantity corresponds to the angle of a rotary stage 5 fixed with the crystal. The laser beam after transmitting the crystal transmits a polarizer 6, and the angle is measured when a polarizer holder 7 is rotated so that the output of the light is made the maximum after transmitting the polarizer 6. The change quantity of this angle becomes a value larger by several digits than the change quantity of the angle of the rotary stage 5, thus the change quantity of the small angle of the rotary stage 5 is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小角度の変化量を測定
する方法及び装置に関する。詳しくは、本発明は、従来
の角度測定器に付加して使用することによって、さらに
微小な回転角度を高い精度で測定することが可能な微小
角度の変化量を測定する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a minute angle change amount. More specifically, the present invention relates to a method and an apparatus for measuring a minute angle change amount that can be used in addition to a conventional angle measuring device to measure a further minute rotation angle with high accuracy.

【0002】[0002]

【従来の技術】従来、回転角度の測定には、円筒状に、
はめあいを持つ二つの回転体が利用されている。このは
めあい部の円周方向に沿って目盛を刻印し、外側の回転
体を固定して、内側の回転体を基準となる位置から回転
させ、その時の回転角度を目盛から読み取る。
2. Description of the Related Art Conventionally, a cylindrical shape has been used for measuring a rotation angle.
Two rotating bodies with fits are used. A scale is marked along the circumferential direction of the fitting portion, the outer rotating body is fixed, the inner rotating body is rotated from the reference position, and the rotation angle at that time is read from the scale.

【0003】この方法の欠点は、回転体のはめあい部分
の加工精度によって、回転角度の測定精度が決まること
である。従って、測定精度が高くなる程、より高い加工
精度が要求され、また構造も複雑になると共に高価にな
る。更に、測定装置を使用する環境の変化(温度変化
等)や、使用年数によるはめあい部分の摩耗等により、
測定精度が異なる場合がある。
The drawback of this method is that the accuracy of measurement of the rotation angle is determined by the processing accuracy of the fitting portion of the rotating body. Therefore, the higher the measurement accuracy, the higher the processing accuracy required, the more complicated the structure, and the more expensive. Furthermore, due to changes in the environment in which the measuring device is used (temperature changes, etc.) and wear of the fitting parts due to years of use,
The measurement accuracy may differ.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、微少
な回転角度の測定において、このような問題点を解消し
た方法及び装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for solving such a problem in measuring a minute rotation angle.

【0005】[0005]

【課題を解決するための手段】本願発明者は、この目的
達成のため鋭意研究の結果、結晶の回転角度が、結晶を
透過したレーザー光の偏光状態に与える影響を考察する
ことにより、簡素にしてコンパクトな微小回転角度の測
定方法及び装置を発明するに至った。
As a result of earnest research aimed at achieving this object, the inventor of the present invention simplified the study by considering the effect of the rotation angle of the crystal on the polarization state of the laser beam transmitted through the crystal. And invented a compact and compact method and apparatus for measuring a minute rotation angle.

【0006】本発明の測定方法及び装置を図1によって
説明する。本発明の結晶の複屈折性を利用した微少角度
を測定する装置は、レーザー光源1、レーザー光を所定
の方向に進行させるための反射鏡2及び3、複屈折性を
有する光学結晶素子4、これを紙面に垂直な軸のまわり
回転させるための回転ステージ5、該結晶素子透過後の
レーザー光の偏光状態を調べるための偏光子6、これを
光の進行方向に平行な軸の周りに回転させるための回転
ホルダー7、偏光子透過後のレーザー光の出力を測定す
るための出力測定器8、結晶に入射させる光の偏光度が
低い場合に、これを改善するための波長板9によって構
成される。
The measuring method and apparatus of the present invention will be described with reference to FIG. The apparatus for measuring a minute angle utilizing the birefringence of crystals of the present invention includes a laser light source 1, reflecting mirrors 2 and 3 for advancing a laser beam in a predetermined direction, an optical crystal element 4 having birefringence, A rotating stage 5 for rotating this around an axis perpendicular to the plane of the paper, a polarizer 6 for examining the polarization state of the laser light after passing through the crystal element, and rotating this about an axis parallel to the light traveling direction. A rotating holder 7 for controlling the output, an output measuring device 8 for measuring the output of the laser light after passing through the polarizer, and a wavelength plate 9 for improving the polarization of the light incident on the crystal when the polarization is low. To be done.

【0007】レーザー光が結晶素子4に入射すると、常
光線及び異常光線に分れて、結晶内部を進む。結晶透過
後のレーザー光の偏光状態は、これら常光線及び異常光
線の相互作用量によって変化する。この作用量は、結晶
回転ステージ5の角度θに対応している。
When the laser light is incident on the crystal element 4, it is divided into an ordinary ray and an extraordinary ray and travels inside the crystal. The polarization state of the laser light after passing through the crystal changes depending on the amount of interaction between these ordinary rays and extraordinary rays. This amount of action corresponds to the angle θ of the crystal rotation stage 5.

【0008】結晶透過後の光の偏光状態の把握は、偏光
子6と出力測定器8を用いて行う。偏光子透過後の光出
力が最大になるように、偏光子回転ホルダー7を回転さ
せた時の角度φを測定すると、回転ステージ5の角度θ
に対して、φは周期的に変化する値となる。更に、θの
変化量に対するφの変化量は数桁大きな値をとる。
The polarization state of the light after passing through the crystal is grasped by using the polarizer 6 and the output measuring device 8. When the angle φ when the polarizer rotation holder 7 is rotated is measured so that the light output after passing through the polarizer is maximized, the angle θ of the rotation stage 5 is measured.
On the other hand, φ is a value that changes periodically. Furthermore, the amount of change in φ with respect to the amount of change in θ takes a value that is several orders of magnitude larger.

【0009】この結果、偏光子回転ホルダー7の回転角
度φを測定することにより、結晶回転ステージ5の回転
角度θを知ることが可能になると共に,θ値の微少変化
量をそれよりも大きなφ値で知ることが可能になる。従
って、従来、角度を測定するための回転ステージに結晶
回転ステージ5を接合固定し、この装置を使用すること
によって回転角度の微少変化量を高い精度で測定するこ
とが可能になる。
As a result, it becomes possible to know the rotation angle θ of the crystal rotation stage 5 by measuring the rotation angle φ of the polarizer rotation holder 7, and the minute change amount of the θ value is larger than that φ. It becomes possible to know by the value. Therefore, conventionally, by bonding and fixing the crystal rotation stage 5 to the rotation stage for measuring the angle and using this device, it becomes possible to measure the minute change amount of the rotation angle with high accuracy.

【0010】[0010]

【実施例】本発明の一具体例を実験模式的に図2によっ
て説明する。光源1としてYAGレーザーを用い、結晶
4としてBBOを用いた。レーザー光は、反射鏡2及び
3を通って結晶4に導かれ、更に偏光子6を透過して、
出力測定器8に至る。結晶回転ステージ5の回転角度を
θ、偏光子回転ホルダー7の角度をφとして、測定した
結果は図3に示した。図において、横軸は結晶素子の回
転角度θで、縦軸は偏光子の回転角度φである。実線は
実験値で、破線は計算値を示した。θに対するφの変化
量として、1:350が得られた。この結果、10秒の
測定精度を有する従来の偏光子回転ホルダーを用いれ
ば、8x10−6度までの回転角度微少変化量を測定す
ることが可能になることがわかった。
EXAMPLES A specific example of the present invention will be schematically described by experiment with reference to FIG. A YAG laser was used as the light source 1, and BBO was used as the crystal 4. The laser light is guided to the crystal 4 through the reflecting mirrors 2 and 3, and further passes through the polarizer 6,
It reaches the output measuring device 8. The rotation angle of the crystal rotation stage 5 is θ and the angle of the polarizer rotation holder 7 is φ, and the measurement results are shown in FIG. In the figure, the horizontal axis is the rotation angle θ of the crystal element, and the vertical axis is the rotation angle φ of the polarizer. The solid line is the experimental value, and the broken line is the calculated value. The amount of change of φ with respect to θ was 1: 350. As a result, it was found that it is possible to measure the minute change amount of the rotation angle up to 8 × 10 −6 degrees by using the conventional polarizer rotation holder having the measurement accuracy of 10 seconds.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of the present invention.

【図2】本発明の一具体例の実験模式図である。FIG. 2 is a schematic diagram of an experiment of a specific example of the present invention.

【図3】実施例の実験結果及び計算結果を示すグラフで
ある。
FIG. 3 is a graph showing an experimental result and a calculation result of the example.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 反射鏡 3 反射鏡 4 複屈折性を有する結晶素子 5 回転ステージ 6 偏光子 7 回転ホルダー 8 出力測定器 9 波長板 1 Laser Light Source 2 Reflecting Mirror 3 Reflecting Mirror 4 Birefringent Crystal Element 5 Rotating Stage 6 Polarizer 7 Rotating Holder 8 Output Measuring Instrument 9 Wave Plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複屈折性を有する結晶光学素子を透過し
たレーザー光の結晶回転角度に対する偏光状態の変化か
ら該回転角度を測定することから成る微小角度の変化量
を測定する方法。
1. A method for measuring a minute angle change amount, which comprises measuring a rotation angle of a laser beam transmitted through a crystal optical element having birefringence with respect to a crystal rotation angle.
【請求項2】 レーザー光源、レーザー光を所定の方向
に進行させるための反射鏡、結晶光学素子及び該素子を
固定した回転ステージ、偏光子及び該偏光子をレーザー
光の進行方向に平行な軸の周りに回転させるための回転
ホルダー及び偏光子透過後のレーザー光の出力を測定す
るための出力測定器から成る微小角度の変化量を測定す
る装置。
2. A laser light source, a reflecting mirror for advancing laser light in a predetermined direction, a crystal optical element and a rotary stage on which the element is fixed, a polarizer and an axis parallel to the laser light advancing direction. A device for measuring the amount of change in a minute angle, which comprises a rotating holder for rotating around the lens and an output measuring device for measuring the output of the laser light after passing through the polarizer.
JP10225291A 1991-02-08 1991-02-08 Method and device for measuring change quantity of small angle Pending JPH05141939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10225291A JPH05141939A (en) 1991-02-08 1991-02-08 Method and device for measuring change quantity of small angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225291A JPH05141939A (en) 1991-02-08 1991-02-08 Method and device for measuring change quantity of small angle

Publications (1)

Publication Number Publication Date
JPH05141939A true JPH05141939A (en) 1993-06-08

Family

ID=14322410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225291A Pending JPH05141939A (en) 1991-02-08 1991-02-08 Method and device for measuring change quantity of small angle

Country Status (1)

Country Link
JP (1) JPH05141939A (en)

Similar Documents

Publication Publication Date Title
US6515744B2 (en) Small spot ellipsometer
US5587793A (en) Birefringence distribution measuring method
JP4031643B2 (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
JPS6483135A (en) Measuring apparatus of polarized infrared ray for thin film
US3155762A (en) Spectropolarimeters
JPH05141939A (en) Method and device for measuring change quantity of small angle
US5046850A (en) Driving mechanism for driving an oscillating polarizer
JP2004138618A (en) Instrument for measuring residual stress of optical fiber
JP2003315184A (en) Residual stress measuring device for optical fiber
Psaila et al. Characterization of photoinduced birefringence change in optical fiber rocking filters
Shukla et al. Measurement of birefringence of optical materials using a wedged plate interferometer
TW201623935A (en) A system for measuring anisotropy, a method for measuring anisotropy and a calibration method thereof
JPS6051687B2 (en) Depolarization device in optical system with analyzer
JP4455126B2 (en) Optical sensor and optical sensor assembly method
RU1770849C (en) Optically-transparent uniaxial crystal orientation method
JPS644140B2 (en)
JP2759115B2 (en) Measurement device for third-order nonlinear optical characteristics
JPH06221993A (en) Method and apparatus for measuring extinction ratio of polarizer
JPS61215927A (en) Double refraction measuring instrument
JPS6137569B2 (en)
JPH0713114A (en) Measuring method and measuring instrument for pretilt angle of liquid crystal
JPH1073515A (en) Evaluation method for half-wave plate
Mindlin A reflection polariscope for photoelastic analysis
JPH0387670A (en) Device for measuring electric field by optical system