JPS644140B2 - - Google Patents

Info

Publication number
JPS644140B2
JPS644140B2 JP12032483A JP12032483A JPS644140B2 JP S644140 B2 JPS644140 B2 JP S644140B2 JP 12032483 A JP12032483 A JP 12032483A JP 12032483 A JP12032483 A JP 12032483A JP S644140 B2 JPS644140 B2 JP S644140B2
Authority
JP
Japan
Prior art keywords
light
sample
polarizing plate
optical anisotropy
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12032483A
Other languages
Japanese (ja)
Other versions
JPS6013245A (en
Inventor
Takashi Nishikawa
Morio Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP12032483A priority Critical patent/JPS6013245A/en
Publication of JPS6013245A publication Critical patent/JPS6013245A/en
Publication of JPS644140B2 publication Critical patent/JPS644140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、高分子材料よりなるフイルム等の光
学異方性測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring optical anisotropy of a film or the like made of a polymeric material.

高分子材料よりなるフイルム等は光学異方性を
有するが、この光学異方性を測定する従来の方法
は、アツベの屈折計等のように測定に時間を要す
るものである。またフイルムの熱処理の場合、フ
イルムにテンシヨンをかけて行なわれるがこの場
合も光学異方性が生ずることになる。この光学異
方性を測定しテンシヨン等をコントロールする場
合も連続測定を行なう必要がある。しかし従来の
測定方法では連続測定が出来ない。
Films and the like made of polymeric materials have optical anisotropy, but conventional methods for measuring this optical anisotropy, such as Atsube's refractometer, require time for measurement. Further, in the case of film heat treatment, the film is subjected to tension, and optical anisotropy also occurs in this case. Continuous measurement is also required when measuring this optical anisotropy to control tension and the like. However, conventional measurement methods cannot perform continuous measurements.

本発明は、偏光面が時間と共に回転変化する直
線偏光の光を測定光として用い、この測定光が被
検物体を通過する時の偏光面のくずれの状態より
被検物体の光学異方性の測定を行なうようにした
もので連続測定も可能にした光学異方性測定装置
を提供するものである。
The present invention uses linearly polarized light whose polarization plane rotates over time as measurement light, and determines the optical anisotropy of the test object based on the state of distortion of the polarization plane when the measurement light passes through the test object. The object of the present invention is to provide an optical anisotropy measuring device that is capable of performing measurements and can also perform continuous measurements.

以下図示する一実施例にもとづいて本発明の連
続光学異方性測定装置の詳細な内容を説明する。
第1図は本発明装置の構成を示す図で、この図に
おいて1は直線偏光のレーザー光を発振するレー
ザー光源、2はビームスプリツター、3はビーム
スプリツターにより分岐された一方の光路中に配
置された1/4波長板、4は同光路中に配置されパ
ルスモーター6により回転される1/4波長板で、
これら二つの1/4波長板により偏光回転装置を構
成している。5はビームスプリツター2により分
岐された他の光路中におかれその光を検出するデ
イテイクター、7は光束を拡げるビームエキスパ
ンダー、8は集光装置、9は前記の二つの1/4波
長板よりなる回転偏光装置を出た直線偏光に常に
直交するようにパルスモーター11により回転さ
れる偏光板、10は偏光板10を透過した光を検
出するデイテイクター、13はパルスモーター6
および11をコントロールするモーターコントロ
ーラー、14はピークホルダー、15はコンピユ
ーター、16は表示装置、17はプリンター、1
8は試料である。
The detailed contents of the continuous optical anisotropy measuring device of the present invention will be explained below based on one embodiment shown in the drawings.
Figure 1 is a diagram showing the configuration of the device of the present invention. In this figure, 1 is a laser light source that oscillates a linearly polarized laser beam, 2 is a beam splitter, and 3 is an optical path split by the beam splitter. The arranged 1/4 wavelength plate 4 is a 1/4 wavelength plate arranged in the same optical path and rotated by a pulse motor 6.
These two quarter-wave plates constitute a polarization rotation device. 5 is a detector placed in the other optical path branched by the beam splitter 2 and detects the light; 7 is a beam expander that expands the light beam; 8 is a condenser; 9 is from the two 1/4 wavelength plates mentioned above. A polarizing plate is rotated by a pulse motor 11 so as to be always orthogonal to the linearly polarized light exiting the rotating polarizer, 10 is a detector that detects the light transmitted through the polarizing plate 10, and 13 is a pulse motor 6.
and a motor controller that controls 11, 14 a peak holder, 15 a computer, 16 a display device, 17 a printer, 1
8 is a sample.

このような構成の本発明の測定装置の作用につ
いて説明する。レーザー光源1より発振される直
線偏光のレーザー光は、ビームスプリツター2に
より二つの光路に分岐され、そのうちのこれを透
過する一方の光は、デイテイクター5に入射し検
出されこれによつて光源の出力変動による影響が
除去される。一方ビームスプリツター2にて反射
されたレーザー光は、二つの1/4波長板3,4よ
りなる偏光回転装置を通過する。前述のように1/
4波長板4はパルスモーター6により一定の回転
速度で回転されるのでこれを出る直線偏光は、そ
の直線性を保ちながら一定速度でその偏光面が回
転する。この直線偏光は、ピームエキスパンダー
7によつてそのビーム径が拡大されてから試料8
を通過する。この時試料の光学異学異方性によつ
て直線偏光がみだされる。続いて集光レンズ8に
よりデイテイクター10に集光されて入射する
が、その時パルスモーター11により回転されて
いる偏光板9を透過する。この偏光板9が前述の
ように1/4波長板4を透過した直線偏光と常に直
交するように回転されるようにモーターコントロ
ーラ13によつてパルスモーター6および11が
制御される。
The operation of the measuring device of the present invention having such a configuration will be explained. A linearly polarized laser beam emitted from a laser light source 1 is split into two optical paths by a beam splitter 2, and one of the beams that passes through this path is incident on a data taker 5 and detected, thereby detecting the light source. The effects of output fluctuations are removed. On the other hand, the laser beam reflected by the beam splitter 2 passes through a polarization rotation device consisting of two quarter-wave plates 3 and 4. 1/ as mentioned above
Since the four-wavelength plate 4 is rotated at a constant speed by the pulse motor 6, the plane of polarization of the linearly polarized light exiting from the plate rotates at a constant speed while maintaining its linearity. The beam diameter of this linearly polarized light is expanded by the beam expander 7, and then the beam diameter is expanded to the sample 8.
pass through. At this time, linearly polarized light is emitted due to the optical anisotropy of the sample. Subsequently, the light is focused by the condenser lens 8 and incident on the data taker 10, but at that time, it is transmitted through the polarizing plate 9 which is being rotated by the pulse motor 11. The pulse motors 6 and 11 are controlled by the motor controller 13 so that the polarizing plate 9 is always rotated so as to be perpendicular to the linearly polarized light transmitted through the quarter-wave plate 4 as described above.

デイテイクター10は検出された光に応じた出
力信号を発しピークホルダー14に入力される。
ピークホルダー14にて得られたピーク値とその
時のモーターの回転角は、コントローラー13よ
りコンピユーター15に入力される。このピーク
値やその時の回転角と光学異方性を示す複屈折や
屈折率楕円体の主軸等との間には次に示す関係が
ある。
The day taker 10 emits an output signal corresponding to the detected light, which is input to the peak holder 14.
The peak value obtained by the peak holder 14 and the rotation angle of the motor at that time are input to the computer 15 from the controller 13. The following relationship exists between this peak value, the rotation angle at that time, birefringence indicating optical anisotropy, the principal axis of the refractive index ellipsoid, etc.

=θ+π/4 p=αA/2e-md(1−cos2π△nd/λ) ここで△nは複屈折、dは膜厚、mは試料の吸
収率、λはレーザー光の波長、Aはレーザー光の
出力、pはピーク値、は主軸と座標軸のなす
角、θはピーク値を得た角、αは比例定数であ
る。
=θ+π/4 p=αA/2e -md (1-cos2π△nd/λ) where △n is birefringence, d is film thickness, m is absorption rate of sample, λ is wavelength of laser light, and A is laser The light output, p is the peak value, is the angle between the principal axis and the coordinate axis, θ is the angle at which the peak value was obtained, and α is the proportionality constant.

したがつてレーザー光の波長、出力等は既知の
値であるので、コンピユーター15に入力された
ピーク値pとピーク値を得た角(モーターの回転
角)θにもとづいて複屈折△nや屈折率楕円体の
主軸と座標軸とのなす角が求められる。これら
の値は表示装置16に表示されプリンター17に
記録される。更に△n、等の値は、図示してな
いが制御系へ出力される。制御系に入力されたデ
ーターにもとづいて、例えば熱処理が行なつてい
るフイルムのテンシヨン等の制御が行なわれる。
Therefore, since the wavelength, output, etc. of the laser beam are known values, birefringence △n and refraction are calculated based on the peak value p input to the computer 15 and the angle (rotation angle of the motor) θ at which the peak value was obtained. The angle between the principal axis of the index ellipsoid and the coordinate axes is found. These values are displayed on the display device 16 and recorded on the printer 17. Furthermore, the values of Δn, etc. are output to the control system, although not shown. Based on the data input to the control system, for example, the tension of the film undergoing heat treatment is controlled.

第1図に示す実施例においては、光源1、デイ
テイクター5よりなる光源部と、1/4波長板3,
4、パルスモーター7よりなる偏光回転装置と、
ビームスプリツター2、ビームエキスパンダー7
が保持台12の上部に保持され、又集光レンズ
8、偏光板9、デイテイクター10、パルスモー
ター11等よりなる検出部は、保持台の下部に保
持されている。そして保持台12は軸12aのま
わりに回動するようにしてあるので、この回動に
より保持台の上部、下部に保持されている前記の
各要素よりなる測定系が移動される。したがつて
試料の幅方向(試料の移動方向に直角な方向)の
各位置での測定が可能である。
In the embodiment shown in FIG.
4. A polarization rotation device consisting of a pulse motor 7;
Beam splitter 2, beam expander 7
is held at the upper part of the holder 12, and a detection section consisting of a condenser lens 8, a polarizing plate 9, a data taker 10, a pulse motor 11, etc. is held at the lower part of the holder. Since the holder 12 is configured to rotate around the shaft 12a, this rotation moves the measurement system made up of the above-mentioned elements held at the upper and lower parts of the holder. Therefore, measurements can be made at each position in the width direction of the sample (direction perpendicular to the direction of movement of the sample).

第2図は前記の様子を示す図で、軸12aを中
心にアーム12が回動することによつて符号20
にて示す測定系は矢印Aにて示す範囲を移動す
る。
FIG. 2 is a diagram showing the above-mentioned state, and as the arm 12 rotates about the shaft 12a, the reference numeral 20
The measurement system shown by arrow A moves within the range shown by arrow A.

この測定系の移動は、試料の移動方向Bに直角
に移動させる他の適宜な移動機構によつてもよ
い。
The measurement system may be moved by any other suitable movement mechanism that moves the measurement system perpendicularly to the sample movement direction B.

以上説明したように本発明の光学異方性測定装
置によれば、被測定試料である例えば高分子材料
よりなるフイルムを移動中に直ちに測定し、コン
ピユーターの処理によつて即座に必要とするデー
ターが得られ表示装置に表示されまたプリンター
に記録される。したがつて極めて短時間に連続し
ての測定が可能である。更にコンピユーターで処
理されたデーターにもとづいて制御系にてコント
ロールするようにすれば、フイルム等の重合や熱
処理等のコントロールが可能である。
As explained above, according to the optical anisotropy measuring device of the present invention, the sample to be measured, for example, a film made of a polymer material, is immediately measured while it is being moved, and the required data is immediately obtained through computer processing. is obtained, displayed on the display device, and recorded on the printer. Therefore, continuous measurements can be carried out in an extremely short period of time. Furthermore, by controlling the control system based on data processed by a computer, it is possible to control the polymerization and heat treatment of films, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定装置の構成を示す図、第
2図は前記測定装置の測定系の回動状態を示す図
である。 1……レーザー光源、2……ビームスプリツタ
ー、3,4……1/4波長板、6……パルスモータ
ー、9……偏光板、10……デイテイクター、1
1……パルスモーター、13……モーターコント
ローラー、14……ピークホルダー、18……試
料。
FIG. 1 is a diagram showing the configuration of a measuring device of the present invention, and FIG. 2 is a diagram showing a rotating state of a measuring system of the measuring device. 1... Laser light source, 2... Beam splitter, 3, 4... 1/4 wavelength plate, 6... Pulse motor, 9... Polarizing plate, 10... Day taker, 1
1... Pulse motor, 13... Motor controller, 14... Peak holder, 18... Sample.

Claims (1)

【特許請求の範囲】[Claims] 1 光源よりの光を回転する直線偏光にするため
の偏光回転装置と、前記偏光回転装置を通過した
直線偏光と常に直交するように回転する偏光板と
デイテイクターとを有する検出装置とを備え、前
記偏光回転装置と検出装置の間の光路中に試料を
配置し該偏光回転装置よりの光で試料および偏光
板を通つてデイテイクターにて検出された光の強
度のピーク値と該ピーク値の時の偏光装置又は偏
光板の回転角にもとづいて試料の光学異方性を測
定することを特徴とする光学異方性測定装置。
1 comprising a polarization rotation device for turning light from a light source into rotated linearly polarized light, and a detection device having a polarizing plate and a day taker that rotate so as to always be orthogonal to the linearly polarized light that has passed through the polarization rotation device, A sample is placed in the optical path between the polarization rotation device and the detection device, and the peak value of the intensity of the light from the polarization rotation device, which passes through the sample and the polarizing plate and is detected by the data taker, and the time of the peak value. An optical anisotropy measuring device characterized by measuring the optical anisotropy of a sample based on the rotation angle of a polarizing device or a polarizing plate.
JP12032483A 1983-07-04 1983-07-04 Optical-anisotropy measuring device Granted JPS6013245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12032483A JPS6013245A (en) 1983-07-04 1983-07-04 Optical-anisotropy measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12032483A JPS6013245A (en) 1983-07-04 1983-07-04 Optical-anisotropy measuring device

Publications (2)

Publication Number Publication Date
JPS6013245A JPS6013245A (en) 1985-01-23
JPS644140B2 true JPS644140B2 (en) 1989-01-24

Family

ID=14783429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12032483A Granted JPS6013245A (en) 1983-07-04 1983-07-04 Optical-anisotropy measuring device

Country Status (1)

Country Link
JP (1) JPS6013245A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157549A (en) * 1985-12-30 1987-07-13 Kanzaki Paper Mfg Co Ltd Anisotropy measuring apparatus for sheet-like light transmitting sample
JPH06100535B2 (en) * 1986-02-05 1994-12-12 ダイセル化学工業株式会社 Birefringence measuring device
JPH05209823A (en) * 1991-12-02 1993-08-20 Kanzaki Paper Mfg Co Ltd Double refraction measuring apparatus
JP2001343329A (en) * 2000-05-31 2001-12-14 Sumitomo Osaka Cement Co Ltd Device and method for inspecting film or film package

Also Published As

Publication number Publication date
JPS6013245A (en) 1985-01-23

Similar Documents

Publication Publication Date Title
US4353650A (en) Laser heterodyne surface profiler
US3994586A (en) Simultaneous determination of film uniformity and thickness
KR100305954B1 (en) Apparatus for developing a profile of a plurality of textured spots and method of determining depth profile
JPS60242308A (en) Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
US4886362A (en) Appratus for measuring the profile of an aspherical surface
US5532488A (en) Apparatus and method for evaluating orientation film
KR960011412A (en) Method and device for retardation of composite layers
JPS644140B2 (en)
JPH08201277A (en) Method and apparatus for measuring double refraction
JP3021338B2 (en) Extinction ratio measurement method and extinction ratio measurement device
JP2787809B2 (en) Method and apparatus for measuring the refractive index of a wafer made of glass material
JP3518313B2 (en) Method and apparatus for measuring retardation
JP3338157B2 (en) Alignment film evaluation system
JP3260565B2 (en) Alignment film evaluation apparatus and alignment film evaluation method
JP2523830B2 (en) Method and apparatus for determining crystal orientation
JP3246040B2 (en) Birefringence measurement device
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JPH0777490A (en) Measuring method for double refraction
JP2000121496A (en) Method and apparatus for evaluating orientation film and recording medium recording orientation film- evaluating program
JPS6029621A (en) Method and device for measuring double refraction
JPH06100535B2 (en) Birefringence measuring device
JPS63103927A (en) Mueller matrix measuring instrument
JPH03218440A (en) Birefringence measuring device
JP3343795B2 (en) Ellipsometer
JPH0569374B2 (en)