JPH0514153A - Two-phase clock signal generating circuit - Google Patents

Two-phase clock signal generating circuit

Info

Publication number
JPH0514153A
JPH0514153A JP3164300A JP16430091A JPH0514153A JP H0514153 A JPH0514153 A JP H0514153A JP 3164300 A JP3164300 A JP 3164300A JP 16430091 A JP16430091 A JP 16430091A JP H0514153 A JPH0514153 A JP H0514153A
Authority
JP
Japan
Prior art keywords
clock signal
output
signal
phase
phase clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164300A
Other languages
Japanese (ja)
Inventor
Kazuyuki Moritake
一之 森竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3164300A priority Critical patent/JPH0514153A/en
Publication of JPH0514153A publication Critical patent/JPH0514153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

PURPOSE:To generate complementary two-phase clock signals changing simultaneously in which there is no time difference between an output of a noninverting clock signal and an output of an inverting clock signal. CONSTITUTION:An in-phase signal resulting from a signal given to a lock signal input terminal 1 passing through 2-stages of inverse logic elements 4, 5 and an in-phase signal resulting from the signal given to the clock signal input terminal 1 passing through 4-stages of inverse logic elements 4, 6, 7, 8 are synthesized and the in-phase clock signal is generated at an output terminal 2. Simultaneously, an antiphase signal passing through 3-stages of inverse logic elements 4, 6, 7 is outputted to the output terminal 3 as an antiphase clock signal. Thus, the complementary two-phase clock signals changing simultaneously in which there is no time difference between an output of an in-phase clock signal and an output of an antiphase clock signal are generated by receiving a single-phase clock signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディジタル回路におい
て、単相のクロック信号の入力から正相、逆相のコンプ
リメンタリ・クロック信号を生成する二相クロック信号
発生回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-phase clock signal generation circuit for generating a positive-phase and negative-phase complementary clock signal from a single-phase clock signal input in a digital circuit.

【0002】[0002]

【従来の技術】近年、電子機器のディジタル化が進むと
ともに、そのキーデバイスとなるアナログ・ディジタル
変換器(A/D変換器)、ディジタル・アナログ変換器
(D/A変換器)の高精度化が求められるようになって
きた。そして、D/A変換器の高精度化には、その構成
要素である電流スイッチの切り換えタイミングを制御す
る二相クロック信号発生回路の高精度化が必要である。
2. Description of the Related Art In recent years, with the progress of digitization of electronic devices, the accuracy of analog / digital converters (A / D converters) and digital / analog converters (D / A converters), which are the key devices, has been improved. Has come to be required. In order to improve the accuracy of the D / A converter, it is necessary to improve the accuracy of the two-phase clock signal generation circuit that controls the switching timing of the current switch that is a component thereof.

【0003】以下、従来の二相クロック信号発生回路に
ついて図2および図4を参照しながら説明する。図2は
従来の二相クロック信号発生回路の構成の一例を、ま
た、図4は従来の二相クロック信号発生回路の各ノード
の波形をそれぞれ示した図である。
A conventional two-phase clock signal generation circuit will be described below with reference to FIGS. 2 and 4. FIG. 2 is a diagram showing an example of the configuration of a conventional two-phase clock signal generation circuit, and FIG. 4 is a diagram showing waveforms at respective nodes of the conventional two-phase clock signal generation circuit.

【0004】図2において、1はクロック信号入力端
子、2、3はクロック信号出力端子、4〜7は反転論理
素子である。図4において、9は図2のクロック信号出
力端子3に得られる出力信号の波形、10は図2のクロ
ック信号出力端子2に得られる出力信号の波形である。
In FIG. 2, 1 is a clock signal input terminal, 2 and 3 are clock signal output terminals, and 4 to 7 are inverting logic elements. In FIG. 4, 9 is the waveform of the output signal obtained at the clock signal output terminal 3 of FIG. 2, and 10 is the waveform of the output signal obtained at the clock signal output terminal 2 of FIG.

【0005】図2に示した二相クロック信号発生回路に
おいて、まず、クロック信号入力端子1の信号がハイレ
ベル(VH)からローレベル(VL)に変化すると、反転
論理素子4の出力はその伝搬遅延分(τd)の時間遅れ
でローレベル(VL)からハイレベル(VH)に変化す
る。そして、クロック信号出力端子2に出力される信号
は、反転論理素子4,5の計二段分の伝搬遅延による時
間遅れ(2τd)でハイレベル(VH)からローレベル
(VL)に変化する。一方、クロック信号出力端子3に
出力される信号は、反転論理素子4,6,7の計三段分
の伝搬遅延による時間遅れ(3τd)でローレベル
(VL)からハイレベル(VH)に変化する。つまり、ク
ロック信号入力端子1の信号に対して、クロック信号出
力端子2には2τ dの時間差で同相信号10が出力さ
れ、クロック信号出力端子3には3τdの時間差で逆相
信号9が出力される。
In the two-phase clock signal generation circuit shown in FIG.
First, the signal at the clock signal input terminal 1 goes high
Bell (VH) To low level (VL) Changes to reverse
The output of the logic element 4 is the propagation delay (τd) Time delay
At low level (VL) To high level (VH)
It The signal output to the clock signal output terminal 2
Is the time due to the propagation delay of a total of two stages of inverting logic elements 4 and 5.
Delay (2τd) At high level (VH) To low level
(VL). On the other hand, the clock signal output terminal 3
The output signal is a total of three stages of inverting logic elements 4, 6 and 7.
Delay due to the propagation delay of (3τd) At low level
(VL) To high level (VH). That is,
Clock signal is output for the lock signal input terminal 1 signal
2τ for force terminal 2 dIn-phase signal 10 is output due to the time difference of
And 3τ at the clock signal output terminal 3.dOpposite phase due to time difference
The signal 9 is output.

【0006】以上の動作で、単相クロック信号入力信号
からコンプリメンタリ二相クロック信号が生成される。
By the above operation, the complementary two-phase clock signal is generated from the single-phase clock signal input signal.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
従来の構成では、クロック信号入力端子1とクロック信
号出力端子2(正相)との間にある反転論理素子の段数
と、クロック信号出力端子3(逆相)との間にある反転
論理素子の段数とが異なるために、それぞれの信号の伝
搬遅延に差ができる。つまり、正相クロック信号と逆相
クロック信号が同時に変化せず、正相クロック信号出力
と逆相クロック信号出力には反転論理素子一段分の伝搬
遅延差(τd)が発生するという問題があった。
However, in the above-mentioned conventional configuration, the number of inverting logic elements between the clock signal input terminal 1 and the clock signal output terminal 2 (positive phase) and the clock signal output terminal 3 are required. Since there is a difference in the number of inverting logic elements between (reverse phase), there is a difference in the propagation delay of each signal. In other words, there is a problem in that the positive-phase clock signal and the negative-phase clock signal do not change at the same time, and the positive-phase clock signal output and the negative-phase clock signal output have a propagation delay difference (τ d ) corresponding to one stage of the inverting logic element. It was

【0008】本発明は、上記従来の問題を解決するもの
で、正相クロック信号出力と逆相クロック信号出力の時
間差がなく、同時に変化するコンプリメンタリ二相クロ
ック信号を生成することが可能な二相クロック信号発生
回路を提供することを目的とする。
The present invention solves the above-mentioned conventional problem, and there is no time difference between the positive-phase clock signal output and the negative-phase clock signal output, and it is possible to generate a complementary two-phase clock signal that changes simultaneously. An object is to provide a clock signal generation circuit.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の二相クロック信号発生回路は、クロック信
号入力端子に与えられた信号が反転論理素子を二段通っ
た正相信号と反転論理素子を四段通った正相信号を合成
して正相クロック信号を発生させると同時に、反転論理
素子を三段通った逆相信号を逆相クロック信号にすると
いう構成を有している。
To achieve the above object, in a two-phase clock signal generating circuit of the present invention, a signal applied to a clock signal input terminal is a positive-phase signal which passes through two inverting logic elements. A positive phase signal that has passed through four stages of inverting logic elements is synthesized to generate a positive phase clock signal, and at the same time, a negative phase signal that has passed through three stages of inverting logic elements is made into a negative phase clock signal. ..

【0010】[0010]

【作用】この構成によって、単相クロック信号を入力と
して、正相クロック信号出力と逆相クロック信号出力に
時間差がなく同時に変化するコンプリメンタリ二相クロ
ック信号を生成することができる。
With this configuration, it is possible to generate a complementary two-phase clock signal in which the single-phase clock signal is input and the positive-phase clock signal output and the negative-phase clock signal output change simultaneously with no time difference.

【0011】[0011]

【実施例】以下、本発明の一実施例について、図1およ
び図3を参照しながら説明する。図1は本実施例におけ
る二相クロック信号発生回路の構成を示す図であり、図
3は本実施例の各ノードの波形を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a configuration of a two-phase clock signal generation circuit in this embodiment, and FIG. 3 is a diagram showing waveforms at respective nodes in this embodiment.

【0012】本実施例は、図2に示した構成の二相クロ
ック信号発生回路の反転論理素子5,7の出力端間に反
転論理素子8を挿入接続した構成をしている。
In this embodiment, an inversion logic element 8 is inserted and connected between the output terminals of the inversion logic elements 5 and 7 of the two-phase clock signal generating circuit having the configuration shown in FIG.

【0013】図3において、11は反転論理素子8の出
力と反転論理素子5の出力とを結合しない時の反転論理
素子5の出力信号の波形、12はその時の反転論理素子
8の出力信号の波形、13は出力信号11,12を合成
したクロック信号出力端子2に得られる出力信号の波形
である。
In FIG. 3, 11 is the waveform of the output signal of the inverting logic element 5 when the output of the inverting logic element 8 and the output of the inverting logic element 5 are not coupled, and 12 is the output signal of the inverting logic element 8 at that time. A waveform 13 is a waveform of the output signal obtained at the clock signal output terminal 2 which is a combination of the output signals 11 and 12.

【0014】本実施例において、まずクロック信号入力
端子1に印加された入力信号がハイレベル(VH)から
ローレベル(VL)に変化すると、反転論理素子4の出
力はその伝搬遅延分(τd)の時間遅れでローレベル
(VL)からハイレベル(VH)に変化する。クロック信
号出力端子3に得られる出力信号は、反転論理素子4,
6,7の計三段分の伝搬遅延による時間遅れ(3τd
でローレベル(VL)からハイレベル(VH)に変化す
る。一方、図1において転論理素子5の出力と反転論理
素子8の出力とが結合されていないとすると、反転論理
素子5の出力は反転論理素子4,5の計二段分の伝搬遅
延による時間遅れ(2τd)で、図3の信号波形11の
ようにハイレベル(VH)からローレベル(VL)に変化
し、反転論理素子8の出力が反転論理素子4,6,7,
8の計四段分の伝搬遅延による時間遅れ(4τd)で、
図3の信号波形12のようにハイレベル(VH)からロ
ーレベル(VL)に変化する。
In the present embodiment, first, when the input signal applied to the clock signal input terminal 1 changes from the high level (V H ) to the low level (V L ), the output of the inverting logic element 4 corresponds to its propagation delay ( It changes from the low level ( VL ) to the high level ( VH ) with a time delay of τ d ). The output signal obtained at the clock signal output terminal 3 is the inverting logic element 4,
Time delay (3τ d ) due to propagation delay of a total of 3 and 6 stages
Changes from low level ( VL ) to high level ( VH ). On the other hand, in FIG. 1, assuming that the output of the inversion logic element 5 and the output of the inversion logic element 8 are not coupled, the output of the inversion logic element 5 is the time due to the propagation delay of a total of two stages of the inversion logic elements 4 and 5. With a delay (2 τ d ), the output changes from the high level (V H ) to the low level (V L ) as shown by the signal waveform 11 in FIG.
With a time delay (4τ d ) due to a total of four stages of propagation delay,
As shown by the signal waveform 12 in FIG. 3, the high level (V H ) changes to the low level (V L ).

【0015】本実施例では、反転論理素子5と反転論理
素子8の出力がクロック信号出力端子2で結合されてお
り、クロック信号出力端子2の信号は、図3に示すよう
に、反転論理素子5の出力信号と反転論理素子8の出力
信号の合成(平均電圧)信号13となり、等価的に反転
論理素子三段分の伝搬遅延による時間遅れ(3τd)で
ハイレベル(VH)からローレベル(VL)に変化する。
つまり、クロック信号入力端子1の信号に対して、クロ
ック信号出力端子2には3τdの時間差で同相信号が出
力され、同時にクロック信号出力端子3には3τdの等
しい時間差で逆相信号が出力される。
In this embodiment, the outputs of the inverting logic element 5 and the inverting logic element 8 are combined at the clock signal output terminal 2, and the signal at the clock signal output terminal 2 is, as shown in FIG. The output signal of 5 and the output signal of the inverting logic element 8 become a composite (average voltage) signal 13, and equivalently, from a high level (V H ) to a low level with a time delay (3τ d ) due to the propagation delay of three stages of inverting logic elements. It changes to the level ( VL ).
That is, the in-phase signal is output to the clock signal output terminal 2 with a time difference of 3τ d with respect to the signal of the clock signal input terminal 1, and at the same time, the anti-phase signal is output to the clock signal output terminal 3 with an equal time difference of 3τ d. Is output.

【0016】以上のように本実施例によれば、クロック
信号入力端子に与えられた信号が反転論理素子を二段通
った正相信号と反転論理素子を四段通った正相信号を合
成して正相クロック信号を発生させると同時に、反転論
理素子を三段通った逆相信号を逆相クロック信号にする
という構成により、単相クロック信号を入力として、正
相クロック信号出力と逆相クロック信号出力に時間差が
なく同時に変化するコンプリメンタリ二相クロック信号
を生成することができる。
As described above, according to this embodiment, a signal applied to the clock signal input terminal is combined with a positive phase signal having two stages of inverting logic elements and a positive phase signal having four stages of inverting logic elements. Generate a positive-phase clock signal, and at the same time generate a negative-phase clock signal that is a negative-phase signal that has passed through three stages of inverting logic elements, the single-phase clock signal is input and the positive-phase clock signal output and the negative-phase clock signal are input. It is possible to generate a complementary two-phase clock signal in which signal outputs have no time difference and change simultaneously.

【0017】[0017]

【発明の効果】本発明は、クロック信号入力端子に与え
られた信号が反転論理素子を二段通った正相信号と反転
論理素子を四段通った正相信号を合成して正相クロック
信号を発生させると同時に、反転論理素子を三段通った
逆相信号を逆相クロック信号にするという構成により、
単相クロック信号を入力として、正相クロック信号出力
と逆相クロック信号出力に時間差がなく同時に変化する
コンプリメンタリ二相クロック信号を生成することので
きる優れた二相クロック信号発生回路を実現できるもの
である。
According to the present invention, the positive phase clock signal is obtained by synthesizing the positive phase signal in which the signal applied to the clock signal input terminal passes through the inverted logic element in two stages and the positive phase signal in which the signal passed through the inverted logic element in four stages. At the same time as generating the, the configuration in which the anti-phase signal that has passed through three stages of the inverting logic element is the anti-phase clock signal,
It is possible to realize an excellent two-phase clock signal generation circuit that can input a single-phase clock signal and generate a complementary two-phase clock signal in which the positive-phase clock signal output and the negative-phase clock signal output change simultaneously with no time difference. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における二相クロック信号発
生回路の構成図
FIG. 1 is a configuration diagram of a two-phase clock signal generation circuit according to an embodiment of the present invention.

【図2】従来の二相クロック信号発生回路の構成図FIG. 2 is a configuration diagram of a conventional two-phase clock signal generation circuit.

【図3】図1に示した本発明の一実施例における各ノー
ドの波形を示す図
FIG. 3 is a diagram showing waveforms at each node in the embodiment of the present invention shown in FIG.

【図4】従来の二相クロック信号発生回路における各ノ
ードの波形を示す図
FIG. 4 is a diagram showing a waveform of each node in a conventional two-phase clock signal generation circuit.

【符号の説明】[Explanation of symbols]

1 クロック信号入力端子 2,3 クロック信号出力端子 4〜8 反転論理素子 1 clock signal input terminal 2 and 3 clock signal output terminal 4 to 8 inverted logic element

Claims (1)

【特許請求の範囲】 【請求項1】入力端子がクロック信号入力端子に接続さ
れた第一の反転論理素子と、入力端子が前記第一の反転
論理素子の出力端子に接続され、出力端子が第一のクロ
ック信号出力端子に接続された第二の反転論理素子と、
入力端子が前記第一の反転論理素子の出力端子に接続さ
れた第三の反転論理素子と、入力端子が前記第三の反転
論理素子の出力端子に接続され、出力端子が第二のクロ
ック信号出力端子に接続された第四の反転論理素子と、
入力端子が前記第四の反転論理素子の出力端子に接続さ
れ、出力が前記第二の反転論理素子の出力端子に接続さ
れた二相クロック信号発生回路。
Claim: What is claimed is: 1. A first inverting logic element having an input terminal connected to a clock signal input terminal, an input terminal connected to an output terminal of the first inverting logic element, and an output terminal A second inverting logic element connected to the first clock signal output terminal,
A third inverting logic element whose input terminal is connected to the output terminal of the first inverting logic element, and whose input terminal is connected to the output terminal of the third inverting logic element and whose output terminal is the second clock signal. A fourth inverting logic element connected to the output terminal,
A two-phase clock signal generation circuit having an input terminal connected to an output terminal of the fourth inverting logic element and an output connected to an output terminal of the second inverting logic element.
JP3164300A 1991-07-04 1991-07-04 Two-phase clock signal generating circuit Pending JPH0514153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164300A JPH0514153A (en) 1991-07-04 1991-07-04 Two-phase clock signal generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164300A JPH0514153A (en) 1991-07-04 1991-07-04 Two-phase clock signal generating circuit

Publications (1)

Publication Number Publication Date
JPH0514153A true JPH0514153A (en) 1993-01-22

Family

ID=15790503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164300A Pending JPH0514153A (en) 1991-07-04 1991-07-04 Two-phase clock signal generating circuit

Country Status (1)

Country Link
JP (1) JPH0514153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080101A (en) * 2002-08-09 2004-03-11 Seiko Epson Corp Timing regulating circuit, drive circuit, electro-optical device, and electronic apparatus
JP2011239363A (en) * 2010-04-30 2011-11-24 Hynix Semiconductor Inc Differential signal generation circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080101A (en) * 2002-08-09 2004-03-11 Seiko Epson Corp Timing regulating circuit, drive circuit, electro-optical device, and electronic apparatus
JP2011239363A (en) * 2010-04-30 2011-11-24 Hynix Semiconductor Inc Differential signal generation circuit

Similar Documents

Publication Publication Date Title
US6570425B2 (en) Phase difference signal generator and multi-phase clock signal generator having phase interpolator
US4912420A (en) Comparator circuits
KR100344082B1 (en) A pulse-duration modulation wave generating circuit
KR19980080109A (en) Clock signal multiplication method using phase interpolation method and apparatus therefor
JPH1022799A (en) Phase detection circuit
JP3114215B2 (en) Clock frequency doubler
JPH05199089A (en) Clock phase adjustement device
JP3326619B2 (en) PWM circuit
JPH0514153A (en) Two-phase clock signal generating circuit
JP3927478B2 (en) D / A converter
US6642875B2 (en) PWM converting circuit, D/A converter and PWM converting method with improved resolution
JPS5997222A (en) Clock pulse generating circuit
JPH06224708A (en) Pulse width modulation circuit
JPH08265168A (en) Serial-parallel conversion circuit
JP2592522B2 (en) PN code phase modulation circuit
US20040135612A1 (en) Delayed tap signal generating circuit for controlling delay by interpolating two input clocks
JP2959438B2 (en) Phase comparator
JP2932813B2 (en) Output latch circuit
JPH0429248B2 (en)
JP2722919B2 (en) Clock-to-clock delay generation circuit
JPH01236813A (en) N-phase clock generating circuit
JP3158282B2 (en) Pulse signal generation circuit
JPH01220555A (en) Semiconductor integrated circuit
JPH08130413A (en) Multiplier circuit
JPH09284058A (en) Phase comparator circuit