JPH05129211A - Vertical vacuum vapor growth device - Google Patents

Vertical vacuum vapor growth device

Info

Publication number
JPH05129211A
JPH05129211A JP31389691A JP31389691A JPH05129211A JP H05129211 A JPH05129211 A JP H05129211A JP 31389691 A JP31389691 A JP 31389691A JP 31389691 A JP31389691 A JP 31389691A JP H05129211 A JPH05129211 A JP H05129211A
Authority
JP
Japan
Prior art keywords
gas
manifold
tube
phase growth
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31389691A
Other languages
Japanese (ja)
Other versions
JP3072664B2 (en
Inventor
Takashi Ogawa
貴史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3313896A priority Critical patent/JP3072664B2/en
Publication of JPH05129211A publication Critical patent/JPH05129211A/en
Application granted granted Critical
Publication of JP3072664B2 publication Critical patent/JP3072664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To enable formation of a film of a uniform thickness on a wafer without increasing generation of dust. CONSTITUTION:In a vertical vacuum vapor growth device which is provided with an inner tube 2 to contain a wafer 1 mounted on a boat 3, an outer tube 1 to contain the inner tube 2 and an manifold 4 which supports the outer tube 1 and forms an airtight space together with the outer tube 1 and is provided with a gas introducing tube 6 for introducing raw gas of vapor growth and a gas evacuating tube 5 for evacuating remaining gas after vapor growth, a plurality of introduction ports of the gas introducing tube 6 and a plurality of evacuation ports of the gas evacuation tube 5 are formed in an inner wall of the manifold 4, respectively. The introduction ports and evacuation ports can be formed on the same plane of an inner wall of the manifold 4 at an equal interval and the introduction port 15 can be provided with a specified angle to the inner wall of the manifold 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縦型減圧気相成長装置
に関し、特に反応ガスの導入口と排出口の改善に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical reduced pressure vapor phase growth apparatus, and more particularly to improvement of a reaction gas inlet and outlet.

【0002】[0002]

【従来の技術】縦型減圧気相成長装置は、半導体基板
(以下「ウエハ」という。)の表面に多結晶シリコン
膜、二酸化シリコン膜、窒化シリコン膜等の絶縁膜を形
成するCVD(化学気相成長)工程等で用いられる。
2. Description of the Related Art A vertical reduced pressure vapor deposition apparatus is a CVD (chemical vapor deposition) method for forming an insulating film such as a polycrystalline silicon film, a silicon dioxide film or a silicon nitride film on the surface of a semiconductor substrate (hereinafter referred to as "wafer"). Phase growth) process and the like.

【0003】図4は、従来一般に用いられている縦型減
圧気相成長装置の構成を示し、図5(A)、(B)は図
4中のそれぞれA−A断面及びB−B断面を示す。図に
おいて、一端が閉塞した円筒形状の石英外管1はマニホ
ールド4上に固定され、マニホールド4及びその下部に
取り付けられたハッチ7とともに密閉空間を形成する。
この中に石英内管2が石英外管1と同心円となるように
設けられている。石英内管2内には、複数のウエハ10
を載置するボート3が収容されている。このボート3は
保温筒8上に固定され、モータ11により回転駆動され
る。マニホールド4の下方側面には、気相成長用の原料
ガスを供給するためのガス導入管6がマニホールド4の
側壁を貫通して取り付けられ、石英内管2内に原料ガス
を供給する。一方、マニホールド4の上方側面には、気
相成長反応後に生成した生成ガス及び未反応ガスを排出
するためのガス排出管5がマニホールド4の側壁を貫通
して取り付けられている。また、石英外管1の外側には
ヒータ9が設けられ、前記密閉空間を所定の温度に加熱
する。
FIG. 4 shows a structure of a vertical type reduced pressure vapor phase growth apparatus generally used in the past, and FIGS. 5 (A) and 5 (B) respectively show an AA cross section and a BB cross section in FIG. Show. In the figure, a cylindrical quartz outer tube 1 having one end closed is fixed on a manifold 4, and forms a closed space together with the manifold 4 and a hatch 7 attached to the lower portion thereof.
The quartz inner tube 2 is provided therein so as to be concentric with the quartz outer tube 1. A plurality of wafers 10 are provided in the quartz inner tube 2.
The boat 3 on which the vehicle is mounted is accommodated. The boat 3 is fixed on the heat insulation cylinder 8 and is rotationally driven by the motor 11. A gas introduction pipe 6 for supplying a raw material gas for vapor phase growth is attached to a lower side surface of the manifold 4 so as to penetrate a side wall of the manifold 4, and supplies the raw material gas into the inner quartz tube 2. On the other hand, on the upper side surface of the manifold 4, a gas discharge pipe 5 for discharging the generated gas generated after the vapor phase growth reaction and the unreacted gas is attached so as to penetrate the sidewall of the manifold 4. A heater 9 is provided outside the quartz outer tube 1 to heat the closed space to a predetermined temperature.

【0004】次に、この装置を用いてウエハ10上に例
えば多結晶シリコン膜を形成する場合の工程について説
明する。まず、ウエハ10をボート3に搭載し、これを
石英内管2内に収容する。次に、ヒータ9により前記密
閉空間を所定の温度に加熱するとともに、石英内管2内
にガス導入管6からシランを供給する。シランは加熱さ
れたウエハ10の表面上で熱分解反応を起こし、多結晶
シリコンとなってウエハ10上に堆積し、多結晶シリコ
ン膜を形成する。反応によって生じた生成ガス及び未反
応ガスは、石英内管2と石英外管1との間を通り、図示
しない真空ポンプによりガス排出管5から外部へ排出さ
れる。
Next, steps for forming, for example, a polycrystalline silicon film on the wafer 10 using this apparatus will be described. First, the wafer 10 is mounted on the boat 3 and housed in the quartz inner tube 2. Next, the enclosed space is heated to a predetermined temperature by the heater 9, and silane is supplied from the gas introduction pipe 6 into the quartz inner pipe 2. Silane causes a thermal decomposition reaction on the surface of the heated wafer 10 to become polycrystalline silicon, which is deposited on the wafer 10 to form a polycrystalline silicon film. The generated gas and unreacted gas generated by the reaction pass between the inner quartz tube 2 and the outer quartz tube 1, and are discharged to the outside from the gas discharge pipe 5 by a vacuum pump (not shown).

【0005】なお、形成する膜の厚さを均一にするた
め、必要に応じてボート3をボート回転モータ11によ
り回転させながら気相成長を行う場合もある。
Incidentally, in order to make the thickness of the film to be formed uniform, vapor phase growth may be carried out while rotating the boat 3 by the boat rotation motor 11 if necessary.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の縦型減
圧気相成長装置は、ガス導入管の導入口及びガス排出管
の排出口がいずれも一つづつしか設けられてなかったの
で、形成する膜の厚さがウエハ面内で不均一となるとい
う問題があった。図6は、シランと亜酸化窒素を用いて
6インチウエハ上に二酸化シリコン膜を形成する場合の
膜厚分布を示し、一点鎖線Aがボートを回転させずに気
相成長を行った場合を示す。これから分かるように、ウ
エハの周辺部において膜厚分布の偏りが生じている。こ
れは、シランと亜酸化窒素による二酸化シリコン膜形成
の反応系が、ウエハ上に供給される反応ガス量に大きく
依存するためと考えられる。すなわち、前述のように従
来の縦型減圧気相成長装置では、ガス導入管の導入口及
びガス排出管の排出口が一つづつしかないので、石英内
管2内を流れるガス量に偏りが生じる。そのためウエハ
上に供給されるガス量も不均一となり、膜厚の均一性が
悪くなっていたものである。
However, in the conventional vertical decompression vapor phase growth apparatus, only one inlet for the gas inlet pipe and one outlet for the gas outlet pipe are provided, so that it is formed. There is a problem that the film thickness becomes non-uniform on the wafer surface. FIG. 6 shows a film thickness distribution when a silicon dioxide film is formed on a 6-inch wafer using silane and nitrous oxide, and a dashed line A shows a case where vapor phase growth is performed without rotating the boat. .. As can be seen from this, the film thickness distribution is biased in the peripheral portion of the wafer. It is considered that this is because the reaction system for forming a silicon dioxide film with silane and nitrous oxide largely depends on the amount of reaction gas supplied onto the wafer. That is, as described above, in the conventional vertical reduced pressure vapor phase growth apparatus, since there is only one inlet for the gas inlet pipe and one outlet for the gas outlet pipe, the amount of gas flowing in the inner quartz tube 2 is uneven. .. Therefore, the amount of gas supplied onto the wafer becomes non-uniform, and the uniformity of the film thickness deteriorates.

【0007】一方、上述した膜厚分布の偏りを是正する
ため、ウエハ10を載置したボート3をボート回転モー
タ11により回転させながら気相成長を行った場合、ウ
エハ直径方向の膜厚分布は図6の破線Bに示すような分
布となり、ボートを回転しない場合と比較すると膜厚の
偏りは是正される。しかし、ボートを回転させた場合、
石英内管2内にゴミが多く発生する恐れがある。図7
は、ボートを回転させた場合と回転させない場合のゴミ
の発生数を示し、ボートを回転させながら気相成長を行
った場合には、気相成長を繰り返すに従ってゴミが急増
することが分かる。これは、ボート回転時に振動が発生
し、ウエハ10とボート3が擦れ、そこからゴミが発生
するためと考えられる。
On the other hand, in order to correct the above-mentioned deviation of the film thickness distribution, when vapor phase growth is performed while the boat 3 on which the wafer 10 is mounted is rotated by the boat rotation motor 11, the film thickness distribution in the wafer diameter direction is The distribution is as shown by the broken line B in FIG. 6, and the deviation of the film thickness is corrected as compared with the case where the boat is not rotated. But if you spin the boat,
A lot of dust may be generated in the quartz inner tube 2. Figure 7
Indicates the number of dusts generated when the boat was rotated and when the boat was not rotated, and it can be seen that when vapor phase growth is performed while the boat is rotated, the dust increases rapidly as vapor phase growth is repeated. It is considered that this is because vibration is generated when the boat rotates and the wafer 10 and the boat 3 rub against each other, and dust is generated from there.

【0008】[0008]

【発明の目的】そこで本発明の目的は、ゴミの発生を増
加させることなくウエハ上で均一な厚さの膜を形成する
ことができる縦型減圧気相成長装置を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vertical vacuum vapor deposition apparatus capable of forming a film having a uniform thickness on a wafer without increasing dust generation.

【0009】[0009]

【課題を解決するための手段】本発明の縦型減圧気相成
長装置は、ガス導入管の導入口及びガス排出管の排出口
をそれぞれマニホールドの内壁に複数個形成することに
より上記課題を解決した。これらのガス導入管の複数の
導入口及びガス排出管の複数の排出口は、マニホールド
の内壁の同一平面上に等間隔で形成されていてもよい。
また、ガス導入管の導入口は、マニホールドの内壁に対
して所定の角度を有するようにしてもよい。
The vertical decompression vapor phase growth apparatus of the present invention solves the above-mentioned problems by forming a plurality of gas inlet pipe inlets and gas outlet pipe outlets on the inner wall of the manifold. did. The plurality of inlets of the gas inlet pipe and the plurality of outlets of the gas outlet pipe may be formed at equal intervals on the same plane of the inner wall of the manifold.
Further, the introduction port of the gas introduction pipe may have a predetermined angle with respect to the inner wall of the manifold.

【0010】[0010]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の一実施例を示す断面図であ
り、図2(A)、(B)はそれぞれ図1中のA−A断
面、B−B断面を示す。本実施例の縦型減圧気相成長装
置の基本構造は、図1に示した従来の縦型減圧気相成長
装置とほぼ同じであるが、マニホールド4に形成された
ガス導入口及びガス排出口の構成が異なっている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention, and FIGS. 2 (A) and 2 (B) show an AA section and a BB section in FIG. 1, respectively. The basic structure of the vertical reduced pressure vapor phase growth apparatus of this embodiment is almost the same as that of the conventional vertical reduced pressure vapor phase growth apparatus shown in FIG. 1, except that the gas inlet and the gas outlet formed in the manifold 4 are formed. The configurations are different.

【0011】すなわち、図2(A)に示すように、マニ
ホールド4内には、ガス排出管5と連通した円輪状空間
12が設けられ、さらにこの円輪状空間12とチャンバ
内とを連通する複数の排出口13が設けられている。一
方、図2(B)に示すように、マニホールド4内には、
ガス導入管6と連通した円輪状空間14が設けられ、さ
らにこの円輪状空間14とチャンバ内とを連通する複数
の導入口15が設けられている。これらの複数の排出口
13及び導入口15は、それぞれ同一平面上に等間隔に
設けられている。
That is, as shown in FIG. 2A, a circular ring-shaped space 12 communicating with the gas discharge pipe 5 is provided in the manifold 4, and a plurality of circular ring-shaped spaces 12 communicate with the chamber. A discharge port 13 is provided. On the other hand, as shown in FIG.
An annular space 14 communicating with the gas introducing pipe 6 is provided, and further a plurality of introducing ports 15 communicating the annular space 14 with the inside of the chamber are provided. The plurality of outlets 13 and the plurality of inlets 15 are provided at equal intervals on the same plane.

【0012】次に、本実施例の装置を用いて気相成長を
行う場合のガスの流れについて説明する。図2(B)に
示すように、ガス導入管6から導入された反応ガスは、
円輪状空間14をほぼ均等に満たし、導入口15から万
遍なくチャンバー内の石英内管2の内側に供給される。
気相成長後、生成ガス及び未反応ガスはチャンバー内石
英外管1と石英内管2の間を通り、図2(A)に示すよ
うに排出口13から万遍なく円輪状空間12へと排出さ
れ、さらに円輪状空間12と連通したガス排出管5を通
って外部に排出される。このように、供給ガス及び排出
ガスがウエハの外周から万遍なく供給又は排出されるの
で、図6の実線Cに示す通り、均一な気相成長が行われ
る。
Next, the flow of gas when vapor phase growth is performed using the apparatus of this embodiment will be described. As shown in FIG. 2B, the reaction gas introduced from the gas introduction pipe 6 is
The annular space 14 is almost evenly filled, and is uniformly supplied from the inlet 15 to the inside of the quartz inner tube 2 in the chamber.
After the vapor phase growth, the generated gas and the unreacted gas pass between the quartz outer tube 1 and the quartz inner tube 2 in the chamber, and as shown in FIG. The gas is discharged and further discharged to the outside through the gas discharge pipe 5 communicating with the annular space 12. In this way, since the supply gas and the discharge gas are evenly supplied or discharged from the outer periphery of the wafer, uniform vapor phase growth is performed as shown by the solid line C in FIG.

【0013】図3は、本発明の他の実施例を示す断面図
である。本実施例の縦型減圧気相成長装置の構成は第一
に示した実施例とほぼ同じであるが、ガス導入口がマニ
ホールド4の内壁に対して一定の角度を持っている点が
異なる。本実施例の装置において2種類以上のガスを使
用する場合には、ガスの混ざり具合の調整をガス導入口
の角度により変化させることができる。
FIG. 3 is a sectional view showing another embodiment of the present invention. The configuration of the vertical decompression vapor phase growth apparatus of this embodiment is almost the same as that of the first embodiment, except that the gas inlet has a certain angle with the inner wall of the manifold 4. When two or more kinds of gases are used in the apparatus of this embodiment, the degree of mixing of the gases can be adjusted by changing the angle of the gas inlet.

【0014】[0014]

【発明の効果】以上説明したように本発明は、ゴミの発
生量を増加させずにウエハの周辺部においてガスの供給
量を均一にすることが可能となる。よって、生成膜のウ
エハ面内膜厚の均一性が向上する。
As described above, according to the present invention, it is possible to make the gas supply amount uniform in the peripheral portion of the wafer without increasing the generation amount of dust. Therefore, the uniformity of the film thickness of the generated film on the wafer surface is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の横断面を示し、(A)はA−A断面を、
(B)はB−B断面を示す。
FIG. 2 shows a cross section of FIG. 1, (A) shows a cross section taken along line AA,
(B) shows a BB cross section.

【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】従来の縦型減圧気相成長装置を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a conventional vertical reduced pressure vapor phase growth apparatus.

【図5】図4の横断面を示し、(A)はA−A断面を、
(B)はB−B断面を示す。
5 shows a cross section of FIG. 4, (A) showing a cross section taken along line AA, FIG.
(B) shows a BB cross section.

【図6】ウエハ上に形成した膜の膜厚分布を示す図であ
る。
FIG. 6 is a diagram showing a film thickness distribution of a film formed on a wafer.

【図7】ボートの回転と発生量の関係を示す図である。FIG. 7 is a diagram showing the relationship between the rotation of the boat and the amount generated.

【符号の説明】[Explanation of symbols]

1 石英外管 2 石英内管 3 ボート 4 マニホールド 5 ガス排出管 6 ガス導入管 7 ハッチ 8 保温筒 9 ヒータ 10 ウエハ 11 モータ 12,14 円輪状空間 13 排出口 15 導入口 1 Quartz Outer Tube 2 Quartz Inner Tube 3 Boat 4 Manifold 5 Gas Discharge Pipe 6 Gas Inlet Pipe 7 Hatch 8 Heat Retaining Cylinder 9 Heater 10 Wafer 11 Motor 12, 14 Ring-shaped Space 13 Exhaust Port 15 Inlet Port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ボートに載置したウエハを収容する内管
と、前記内管を収容する外管と、前記外管を支持すると
ともに前記外管とで密閉空間を形成し、気相成長の原料
ガスを導入するためのガス導入管及び気相成長後の残留
ガスを排出するためのガス排出管とを有するマニホール
ドとを備え、前記ウエハ上に所定の気相成長膜を形成す
る縦型減圧気相成長装置において、 前記ガス導入管の導入口及び前記ガス排出管の排出口が
それぞれ前記マニホールドの内壁に複数個形成されてい
ることを特徴とする縦型減圧気相成長装置。
1. An inner tube for accommodating a wafer mounted on a boat, an outer tube for accommodating the inner tube, and an outer tube that supports the outer tube and forms a closed space for vapor phase growth. A vertical decompression for forming a predetermined vapor-phase growth film on the wafer, comprising a manifold having a gas introduction pipe for introducing a source gas and a gas discharge pipe for discharging a residual gas after vapor-phase growth In the vapor phase growth apparatus, a plurality of inlets of the gas inlet pipe and a plurality of outlets of the gas outlet pipe are formed on the inner wall of the manifold, respectively.
【請求項2】 前記マニホールドの内壁に形成された前
記ガス導入管の複数の導入口及び前記ガス排出管の複数
の排出口は、前記マニホールドの内壁の同一平面上に等
間隔で形成されている、請求項1に記載の縦型減圧気相
成長装置。
2. The plurality of inlets of the gas inlet pipe and the plurality of outlets of the gas outlet pipe formed on the inner wall of the manifold are formed at equal intervals on the same plane of the inner wall of the manifold. The vertical reduced pressure vapor phase growth apparatus according to claim 1.
【請求項3】 前記ガス導入管の導入口は前記マニホー
ルドの内壁に対して所定の角度を有するものである、請
求項1又は請求項2に記載の縦型減圧気相成長装置。
3. The vertical depressurized vapor phase growth apparatus according to claim 1, wherein the inlet of the gas inlet pipe has a predetermined angle with respect to the inner wall of the manifold.
JP3313896A 1991-10-31 1991-10-31 Vertical vacuum deposition equipment Expired - Lifetime JP3072664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3313896A JP3072664B2 (en) 1991-10-31 1991-10-31 Vertical vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3313896A JP3072664B2 (en) 1991-10-31 1991-10-31 Vertical vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JPH05129211A true JPH05129211A (en) 1993-05-25
JP3072664B2 JP3072664B2 (en) 2000-07-31

Family

ID=18046820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3313896A Expired - Lifetime JP3072664B2 (en) 1991-10-31 1991-10-31 Vertical vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP3072664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056232A (en) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 Gas introduction mechanism and processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056232A (en) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 Gas introduction mechanism and processing device

Also Published As

Publication number Publication date
JP3072664B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US5895530A (en) Method and apparatus for directing fluid through a semiconductor processing chamber
US5246500A (en) Vapor phase epitaxial growth apparatus
US6352594B2 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
KR100604019B1 (en) Film-forming processing method, thermal processing unit and thermal processing method
US4926793A (en) Method of forming thin film and apparatus therefor
TWI438300B (en) Atomic layer deposition systems and methods
JP2003045864A (en) Substrate processing system
JP2001520321A (en) Lid assembly for process chamber using asymmetric flow geometry
US10604845B2 (en) Substrate processing apparatus and substrate processing method
JP3297288B2 (en) Apparatus and method for manufacturing semiconductor device
JPH021116A (en) Heat treatment apparatus
JP3072664B2 (en) Vertical vacuum deposition equipment
TW202334492A (en) Device, method and showerhead for chemical vapor deposition
JP3056241B2 (en) Heat treatment equipment
US11339472B2 (en) Substrate processing apparatus
JP3057744B2 (en) Low pressure CVD equipment
JP7342719B2 (en) Film forming equipment
JPS6343315A (en) Reduced pressure cvd equipment
WO1999036588A1 (en) Method and apparatus for improved chemical vapor deposition processes using tunable temperature controlled gas injectors
JP4620288B2 (en) Batch heat treatment equipment
JP7371510B2 (en) Film formation method and substrate manufacturing method
JPH10247645A (en) Semiconductor manufacturing method and device
JP2773683B2 (en) Semiconductor manufacturing equipment
JPH0722319A (en) Low pressure cvd device
JPH1050615A (en) Single wafer processing gas-phase growth device