JP2001124798A - Contacting type micro prober - Google Patents

Contacting type micro prober

Info

Publication number
JP2001124798A
JP2001124798A JP30380499A JP30380499A JP2001124798A JP 2001124798 A JP2001124798 A JP 2001124798A JP 30380499 A JP30380499 A JP 30380499A JP 30380499 A JP30380499 A JP 30380499A JP 2001124798 A JP2001124798 A JP 2001124798A
Authority
JP
Japan
Prior art keywords
contact
cantilever
prober
probe
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30380499A
Other languages
Japanese (ja)
Other versions
JP4260310B2 (en
Inventor
Masatoshi Yasutake
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP30380499A priority Critical patent/JP4260310B2/en
Publication of JP2001124798A publication Critical patent/JP2001124798A/en
Application granted granted Critical
Publication of JP4260310B2 publication Critical patent/JP4260310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a contacting type micro prober which can make electrical evaluation while the prober is directly brought into contact with individual refined cells with a controlled pressing force so that the prober may not cause defective contact due to insufficient pressing nor give damages to the thin films of the cells due to excessive pressing. SOLUTION: A contacting type micro prober is formed by using the silicon which is used in atomic force microscopes, etc., and manufactured through a micro fabrication process as a base material instead of a metal. The probe has a cantilever c2 for measurement on which a plurality of contactors 3 are provided for simultaneously measuring a plurality of the measuring terminals of a specimen and longer cantilevers c1 for controlling the Z-distances between the surfaces of the terminals and the contactors 3 on both sides of the cantilever c2 in its cantilever section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、接触式の回路試
験用プローバーのプローブとプローブの位置制御、押し
込み力制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for a contact-type circuit test prober, and to position control and push-in force control of the probe.

【0002】[0002]

【従来の技術】従来技術としては、接触式の回路試験用
プローバーのプローブは、図11に示すように金属製の
弾性を有する片持ち梁[112]の先端に探針状の接触子[11
3]を1ヶ取り付け、LSI回路の任意の測定点にプローブ
を位置合わせさせるためにプローブの根元部 にXYZステ
ージ等の移動機構[111]を有していた。また多点を同時
に測定するために、図12に示すように前記プローブを
アレー状に並べ等間隔で並ぶ測定端子から、複数個の電
気信号を得ていた。また位置合わせの方法として、被検
体の測定端子と前記プローブを長焦点の対物レンズ[11
5]の同一視野下におさめ、被検体の測定端子ある いは
前記プローブをステージ等の移動機構で移動させた後、
プローブを測定端子に押し付け電気測定を行なってい
た。
2. Description of the Related Art As a prior art, as shown in FIG. 11, a probe of a contact-type circuit test prober has a probe-like contact [11] at the tip of a metal elastic cantilever [112].
3] was attached, and a moving mechanism [111] such as an XYZ stage was provided at the base of the probe to align the probe with an arbitrary measurement point of the LSI circuit. Further, in order to measure multiple points at the same time, a plurality of electric signals are obtained from measurement terminals in which the probes are arranged in an array as shown in FIG. As a method of alignment, a measurement terminal of the subject and the probe are connected to a long-focus objective lens [11].
After moving the measurement terminal of the subject or the probe with a moving mechanism such as a stage,
The probe was pressed against the measurement terminal to perform electrical measurement.

【0003】[0003]

【発明が解決しようとする課題】被検体の回路が微細化
し、検査するメモリー等のセルサイズが1μmx1μm
以下になってくると、前記金属製の片持ち張りでは、片
持ち梁の加工と接触子の加工が困難になってきた。また
前記セルが2〜5μmの等間隔で並んだメモリーセルの
検査の場合、複数個の金属製のプローブを隣あって並べ
ることが、空間的に難しくなった。
The circuit of a subject is miniaturized, and the cell size of a memory or the like to be inspected is 1 μm × 1 μm.
In the following, it has become difficult to process the cantilever and the contact with the metal cantilever. In the case of testing a memory cell in which the cells are arranged at equal intervals of 2 to 5 μm, it is spatially difficult to arrange a plurality of metal probes next to each other.

【0004】また現在使用しているプローブは、被検体
面の押し付け圧力は、セルの微細化により探針が鋭利に
なるため、押し付け力を制御しないと増加してしまう。
たとえばFeRAMのように電極下に強誘電体の薄膜を堆積
させ作成したメモリーセルの場合や 、TFT液晶のよ
うに電極の下に有機薄膜を配した構造体では、プローブ
の押し付け圧力の増加により、薄膜にダメージを与える
可能性が高まり、微小な押し付け力の制御が必要にな
る。また複数のプローブを隣あって並べるた場合、接触
子の先端高さが揃っていないとプローブの押し付け込み
深さがばらばらになり、各のプローブの押し付け力が変
動し、押し込み不足による接触不良や、押し込みすぎに
よる薄膜ダメージが生じる。
In the currently used probe, the pressing pressure on the surface of the test object increases unless the pressing force is controlled because the probe becomes sharp due to the miniaturization of the cell.
For example, in the case of a memory cell made by depositing a ferroelectric thin film under an electrode such as FeRAM, or in a structure in which an organic thin film is arranged under an electrode such as a TFT liquid crystal, an increase in the pressing pressure of the probe causes The possibility of damaging the thin film is increased, and it is necessary to control a minute pressing force. Also, when multiple probes are arranged side by side, if the tips of the contacts are not aligned, the pressing depth of the probes will vary, and the pressing force of each probe will fluctuate. In this case, excessive thinning causes thin film damage.

【0005】またセルサイズが0.5μmx0.5μm以下に
減少すると、現行の光学顕微鏡では分解能不足で位置合
わせは困難になる。
If the cell size is reduced to 0.5 μm × 0.5 μm or less, the current optical microscope has insufficient resolution and alignment becomes difficult.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、従来の金属製のプローブをやめ、原子
間力顕微鏡(AFM)等で使用されているマイクロファ
ブリケーションプロセスによるシリコンをベース材料と
した微小プローブを使用した。このプローブ (カンチ
レバー部)は複数個の被検体測定端子の同時測定用に、
一つのカンチレバー上に複数個の接触子を作成してある
計測用カンチレバーと、またこのカンチレバーの両側に
被検体測定端子面と接触子間のZ距離制御用に長めのカ
ンチレバーを有する構造とした。
In order to solve the above-mentioned problems, in the present invention, a conventional metal probe is eliminated, and silicon produced by a microfabrication process used in an atomic force microscope (AFM) or the like is used. A micro probe as a base material was used. This probe (cantilever part) is used for simultaneous measurement of multiple analyte measurement terminals.
The structure has a measurement cantilever in which a plurality of contacts are formed on one cantilever, and a long cantilever on both sides of the cantilever for controlling the Z distance between the subject measurement terminal surface and the contact.

【0007】Z距離制御用カンチレバーを用い被検体測
定端子への接触子の移動速度を制御し、押し付け力制御
には計測用カンチレバーのたわみ量が一定になるように
制御をおこなった。接触子と測定端子との位置合わせ用
に、計測用カンチレバーに位置合わせマークを作成し、
そのマークを光学顕微鏡で合わせることにより各接触子
が測定端子の直上にくるように接触子とマークの位置関
係を配した。さらに光学顕微鏡以上の分解能で位置合わ
せするために、一方の端にあるZ距離制御用カンチレバ
ーをAFMのプローブと同様の動作をさせてセルの形状
測定を行ないセルの位置を確認し、このカンチレバーの
探針と計測用のカンチレバーの接触子との位置関係が既
知なことより、セルの直上に接触子を位置合わせできる
ようにした。
[0007] The movement speed of the contact to the subject measurement terminal is controlled by using the Z-distance control cantilever, and the control of the pressing force is performed so that the amount of deflection of the measurement cantilever becomes constant. Create a positioning mark on the measuring cantilever to align the contact with the measuring terminal.
By aligning the mark with an optical microscope, the positional relationship between the contact and the mark was arranged such that each contact was directly above the measurement terminal. Further, in order to perform alignment with a resolution higher than that of the optical microscope, the Z-distance control cantilever at one end is operated in the same manner as the AFM probe to measure the shape of the cell, and the position of the cell is confirmed. Since the positional relationship between the probe and the contact of the measurement cantilever is known, the contact can be positioned directly above the cell.

【0008】次に、確実な接触を行なうために、接触子
として複数本の林立するカーボンナノチューブを採用し
た。
Next, in order to make reliable contact, a plurality of standing carbon nanotubes were employed as contacts.

【0009】[0009]

【作用】前記のZ距離制御用のカンチレバーは導電性を
もたせ、計測用カンチレバーより 長くし、例えば図1
に示すように同一チップ上に複数個のカンチレバーを作
成する。これらのカンチレバーの変位検出は、M.Torto
nese,R.C.Barrett,C.F.Quate Appl.Phys. Let
t. 62(8) 1993,834の論文にあるようにピエゾレジシテ
ィブ抵 抗を用いた自己変位型でも良く、あるいは光て
こ検出器のような外部変位検出器を用いても良い。
[Function] The cantilever for controlling the Z distance has conductivity and is longer than the cantilever for measurement.
A plurality of cantilevers are formed on the same chip as shown in FIG. The detection of displacement of these cantilevers is described in M. Torto
nese, R. C. Barrett, C.W. F. Quate Appl. Phys. Let
t. 62 (8) 1993, 834, a self-displacement type using piezoresistive resistance may be used, or an external displacement detector such as an optical lever detector may be used.

【0010】これらのカンチレバー部は、当初被検体測
定端子より数mmの距離が離れている。これらのカンチ
レバー部を高速で被検体測定端子面に接近させる。初め
に長さの長いZ距離制御用カンチレバーが被検体測定端
子面と接触し、たわみを信号を発生 する。このたわみ
信号によりZ粗動の送り速度を低速に切り替える。次に
接触子のある計測用のカンチレバーを、被検体測定端子
面に接触させ、その後押し込み力が設定量域にはいるま
で低速送りを行う。ここで接触子と測定端子の接触を電
気的に確認し、各被検体の動作確認を行なう。以下発明
の実施形態でより詳しく説明する。
[0010] These cantilever portions are initially several mm apart from the subject measurement terminal. These cantilever portions are brought close to the subject measurement terminal surface at high speed. First, the long Z-distance control cantilever comes into contact with the test object measurement terminal surface and generates a signal indicating deflection. The feed rate of the Z coarse movement is switched to a low speed by the deflection signal. Next, the measurement cantilever having the contact is brought into contact with the surface of the test object measurement terminal, and then the low-speed feeding is performed until the pushing force is within the set amount range. Here, the contact between the contact and the measuring terminal is electrically confirmed, and the operation of each subject is confirmed. Hereinafter, embodiments of the present invention will be described in more detail.

【0011】[0011]

【発明の実施の形態】以下図3、図4、図9、図10に
よりこの発明の実施の形態を図面に基づいて説明する。
図3は、微小プローバーのプローブ(カンチレバー部)
部分の模式図である。図5は、プローブの詳細説明の摸
式図であり、図9は微小プローバー装置のプローブとそ
の位置制御機構(XYZ走査スキャナー)とその制御系
の模式図である。図10は動作のタイムチートである。 <カンチレバー部の構成>図1、2、3、4、5、6、
7、8に示すカンチレバー部の構成を説明する。図1、
2は、カンチレバーの変位検 出を外部のたとえば光て
こ検出器を使用するカンチレバー部であり、図3は、カ
ンチレバーの外形は図1と同様であるが、変位検出をカ
ンチレバー内部に埋め込まれているピエゾ抵抗体[72]に
よって行う自己検知のカンチレバーを用いた別実施形態
である。ピエゾ抵抗体[72]に一定の電流を流し、カンチ
レバーの変位による歪みをピエゾ抵抗の変化として捕ら
え、ブリッジ回路により電流変化として検出している。
図4は、3ヶ以上のカンチレバーを持つカンチレバー部
の別実施形態である。両端に前記距離制御用のカンチレ
バーを有し中央部に複数個の計測用のカンチレバーがあ
り、それぞれの計測用カンチレバーには、複数個の接触
子がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3, 4, 9 and 10. FIG.
Fig. 3 shows the probe of the micro prober (cantilever part)
It is a schematic diagram of a part. FIG. 5 is a schematic diagram for explaining the probe in detail, and FIG. 9 is a schematic diagram of the probe of the microprober device, its position control mechanism (XYZ scanning scanner) and its control system. FIG. 10 is a time cheat of the operation. <Structure of cantilever part> FIGS. 1, 2, 3, 4, 5, 6,
The configuration of the cantilever shown in FIGS. Figure 1,
Numeral 2 denotes a cantilever unit for detecting displacement of the cantilever using an external optical lever detector, for example, and FIG. 3 shows an external shape of the cantilever similar to that of FIG. 1, but the displacement detection is embedded inside the cantilever. This is another embodiment using a cantilever for self-detection performed by a piezoresistor [72]. A constant current is passed through the piezoresistor [72], and the distortion due to the displacement of the cantilever is captured as a change in the piezoresistance, and detected as a current change by a bridge circuit.
FIG. 4 shows another embodiment of a cantilever portion having three or more cantilevers. At both ends, the distance control cantilevers are provided, and a plurality of measurement cantilevers are provided at the center, and each measurement cantilever has a plurality of contacts.

【0012】また隣合うのカンチレバー上の接触子の間
隔は、測定するセル間隔の整数倍になるように配置され
ている。また計測用カンチレバーが複数個で構成されて
いる訳は、カンチレバーのばね定数の低減とカンチレバ
ー部が測定するセルに対して傾いていた場合個々のカン
チレバーで押し込み量を調整し、押し込み力を調整する
ためである。
The distance between the contacts on adjacent cantilevers is arranged to be an integral multiple of the cell distance to be measured. The reason why the measuring cantilever is composed of a plurality of parts is that the spring constant of the cantilever is reduced, and when the cantilever part is inclined with respect to the cell to be measured, the pushing amount is adjusted by each cantilever and the pushing force is adjusted. That's why.

【0013】以下図1、2をもちいて説明する。カンチ
レバー部は、長さの長いZ距離制御用のカンチレバー[c
1](長さl1:400〜1000μm)と接触子のある長さ の短い
計測用のカンチレバー[c2](長さl2:100〜500μm)が隣
あって並ぶ(カンチレバーの探針[40]と接触子[3]の距
離はセルピッチの整数倍)ように構成されている。また
Z距離制御用のカンチレバーは、金等の導電性の金属で
針先までコートされ導電性を持たせてある。
A description will be given below with reference to FIGS. The cantilever section is a long cantilever for Z distance control [c
1] (length l1: 400 to 1000 μm) and a short measuring cantilever [c2] (length l2: 100 to 500 μm) with a contact are arranged side by side (with the cantilever probe [40]). The distance of the contact [3] is an integral multiple of the cell pitch). Also
The cantilever for controlling the Z distance is coated with a conductive metal such as gold to the tip of the needle to have conductivity.

【0014】今図2に示すようにカンチレバーを横方向
から眺めると、Z距離制御用のカンチレバー[c1]が試料
面と接触しているとき、計測用のカンチレバー[c2]
は、Z距離制御用のカンチレバー[c1]より高さh<100−
300μm (h=(l1−l2)sinθ;l1: Z距離制御用のカ
ンチレバーの長さ、l2:計測用のカンチレバー長さ、
θ:カンチレバー取り付け角度)だけ試料面より浮く構
成とする。またZ距離制御用のカンチレバー[c1] の先端
半径100−200nm程度でばね定数は、0.01〜0.1N/mで
ある。 ばね定数が柔らかいため、Z距離制御用のカンチ
レバーを高速で試料面に接触して もカンチレバーの破
損や試料面へのダメージは少ない。次に図5に示す接触
子の配置と構成をを含めた計測用のカンチレバーの詳細
を述べる。接触子[3]は高さ10μm程度の突起であり、
先端半径が100−200nmで この突起部のみ金属コーテ
ィング[31]がほどこされている。この金属コーティング
はカンチレバーベース部[70]まで配線[50]され、ベース
部で接続用のパット[60]に接続されている。このパット
に外部電気試験機(図9[12])が接続されており、接触子
と測定端子間にさまざまな試験信号を印加することがで
きる。また図6の平面図に示すように各接触子間の絶縁
[75]は、酸化シリコンにより分離されている。さらに接
触子の面と接触子の反対側の面とは、図7の断面図に示
すように酸化シリコン膜[75]により分離され、接触子の
反対側のカンチレバー面は、金属でコーティング[76]さ
れおり、アース電位に接続できシールド電極としてはた
らかせることができる。
When the cantilever is viewed from a lateral direction as shown in FIG. 2, when the cantilever [c1] for controlling the Z distance is in contact with the sample surface, the cantilever [c2] for measurement is used.
Is a height h <100− above the cantilever [c1] for Z distance control.
300 μm (h = (l1−l2) sin θ; l1: length of cantilever for Z distance control, l2: length of cantilever for measurement,
θ: cantilever mounting angle). The tip constant radius of the cantilever [c1] for Z distance control is about 100 to 200 nm, and the spring constant is 0.01 to 0.1 N / m. Since the spring constant is soft, even if the cantilever for Z distance control is brought into contact with the sample surface at high speed, there is little damage to the cantilever or damage to the sample surface. Next, the details of the measurement cantilever including the arrangement and configuration of the contacts shown in FIG. 5 will be described. The contact [3] is a protrusion with a height of about 10 μm,
The tip radius is 100-200 nm, and only this protrusion has a metal coating [31]. This metal coating is wired [50] to the cantilever base [70] and connected to the connecting pad [60] at the base. An external electric tester (FIG. 9 [12]) is connected to this pad, and various test signals can be applied between the contact and the measurement terminal. Also, as shown in the plan view of FIG.
[75] are separated by silicon oxide. Further, the surface of the contact and the surface on the opposite side of the contact are separated by a silicon oxide film [75] as shown in the sectional view of FIG. 7, and the cantilever surface on the opposite side of the contact is coated with metal [76]. ], Which can be connected to the ground potential and function as a shield electrode.

【0015】隣合う接触子の間隔は、検査するセルピッ
チと等しくあるいはピッチの整数倍で作成する。また図
8には、カボーンナノチューブ[33]を複数本林立させ、
接触子とした別形態の実施例をしめす。この場合接触子
の作り方は、シリコンカンチレバーの基部[71]に1〜3
μm角の鉄系の触媒をパターニングし[32]、エタン等の
ハイドロカーボン雰囲気中で700〜1000℃で気相成長さ
せると、基板と垂直に長さの揃ったカー ボンナノチュ
ーブが前記鉄系の触媒でパターニングした所から多数成
長する。このカーボンナノチューブは導電性があり、基
部の鉄系触媒とカンチレバーベース部[70]を金属細線[5
0]で配線し、また接触子間の絶縁[75]を酸化シリコンに
より分離すればよい。カボーンナノチューブを接触子と
して使用すると、金属でコーティングした接触子に比較
し、コーティング材が電界蒸発で飛び出すことも無く安
定に電圧を印加できる。またカーボンナノチューブ自身
に弾性があり堅牢なため多数回にわたる接触に耐える。 <装置主要部構成>図9を用いて装置の主要部の構成を
説明する。カンチレバーを試料に近接させる移動機構
(Z粗動機構)[1]にXYZ走査スキャナー[2]が固定されそ
の先端部にカンチレバーベース[70]が取り付けられてい
る。また試料台[5]には被検体 [6]を試料台接触子[4]
で電気的に接続を取り、前記カンチレバー部に対向して
配置している。図9 でカンチレバー[c1],[c2]は、自己
検知のカンチレバーとして描かれている。図9で示す計
測用カンチレバー[c2]の変位信号は、プレアンプ[7]に
より増幅され、Zサーボ 系[8]に入力される。その出力
信号をZ走査コントローラー[11]により増幅され、 結果
としてXYZ走査スキャナー[2]のZ軸が伸縮し、計測用カ
ンチレバーのたわみ量 が一定になるように接触子[3]−
測定端子間[6]の距離が制御される。一方図9で示すZ距
離制御用カンチレバー[c1]からの信号は、同様にプレア
ンプ[7]により増幅 されZ粗動コントローラーに[9]に
入力され、Z粗動メカニズム[1]の制御信号とし て使わ
れている。Z粗動メカニズムは、主に差動ねじ、縮小て
こ等のメカ系で構成 されmm程度を0.1−0.05μm刻み
で移動できる。ここで測定端子面上数mmから0.1−0.3
mmまでは、Z粗動メカ機構[1]で高速に送り、残り0.1
−0.3mm以下を低速で送るように制御する。 <距離制御動作と接触子の押し込み力調整>次に図1と
図10のタイムチャートを使ってZ粗動の動作を説明す
る。最初カンチレバー部は、試料表面から数mm離れて
いる。Z粗動系メカニズム[1]を高速で移動させ図1のよ
うにZ距離制御用のカンチレバー[c1]が試料面と接触す
るとき[図10:t0]、 Z距離制御用のカンチレバーは測
定端子面から力を受けカンチレバーの 変位信号が変化
する。この信号をZ粗動コントローラー[9]に入力し、Z
粗動系メカ ニズム[1]を低速送りに切り替える。この
[図10:t0]の時点で計測用のカンチレバー[c2]は、
およそhだけ試料面より浮いている。次に低速でおよそ
h>100−300μm (h:Z距離制御用カンチレバーと計
測用カンチレバーの被検体面からの高さの差 )だけ押
し込み計測用のカンチレバー[c2]を接触させる。[図1
0:t1]その後接触 子を被検体測定端子面に△hだけ押
し込む[図10:t2]。この時計測用カンチレバーは、
測定端子面から力を受けカンチレバーの変位信号が変化
する。押し付け力は、計測用カンチレバーのばね定数に
△h(カンチレバー押し込み深さ)を乗じたものにな
り、この量は図9の☆印に示す押し付け力設定信号によ
り制御できる。
The interval between adjacent contacts is made equal to the cell pitch to be inspected or an integer multiple of the pitch. FIG. 8 shows that a plurality of caborne nanotubes [33] are established in a main forest.
Another example of a contact is shown. In this case, the method of making the contact is 1 to 3 at the base of the silicon cantilever [71].
When an iron-based catalyst with a square μm square is patterned [32] and vapor-phase grown in a hydrocarbon atmosphere such as ethane at 700 to 1000 ° C, carbon nanotubes having a uniform length perpendicular to the substrate become the iron-based catalyst. Many grow from the place patterned by the catalyst. This carbon nanotube is conductive, and the iron based catalyst and the cantilever base [70] are connected to a thin metal wire [5].
0], and the insulation [75] between the contacts may be separated by silicon oxide. When a carbon nanotube is used as a contact, a voltage can be applied more stably without the coating material jumping out due to electric field evaporation, as compared to a metal-coated contact. Further, since the carbon nanotube itself is elastic and robust, it can withstand many times of contact. <Structure of Main Device> The structure of the main device will be described with reference to FIG. An XYZ scanning scanner [2] is fixed to a movement mechanism (Z coarse movement mechanism) [1] that brings the cantilever closer to the sample, and a cantilever base [70] is attached to the tip thereof. The specimen [6] is placed on the sample stage [5] with the sample stage contact [4].
Are electrically connected to each other, and are arranged to face the cantilever portion. In FIG. 9, the cantilevers [c1] and [c2] are drawn as self-detected cantilevers. The displacement signal of the measurement cantilever [c2] shown in FIG. 9 is amplified by the preamplifier [7] and input to the Z servo system [8]. The output signal is amplified by the Z-scan controller [11], and as a result, the Z-axis of the XYZ scan scanner [2] expands and contracts, and the contact [3]-is adjusted so that the deflection of the measurement cantilever becomes constant.
The distance between the measurement terminals [6] is controlled. On the other hand, the signal from the Z distance control cantilever [c1] shown in FIG. 9 is similarly amplified by the preamplifier [7] and input to the Z coarse motion controller [9] to be used as a control signal for the Z coarse motion mechanism [1]. Used. The Z coarse movement mechanism is mainly composed of a mechanical system such as a differential screw and a reduction lever, and can move about mm in increments of 0.1-0.05 μm. Here, 0.1-0.3
mm, feed at high speed by Z coarse movement mechanism [1]
Control so that -0.3 mm or less is sent at low speed. <Distance Control Operation and Adjustment of Contact Pushing Force> Next, the operation of the Z coarse movement will be described with reference to the time charts of FIGS. Initially, the cantilever part is separated from the sample surface by several mm. When the Z coarse movement mechanism [1] is moved at high speed and the cantilever [c1] for Z distance control comes into contact with the sample surface as shown in Fig. 1 [Fig. 10: t0], the cantilever for Z distance control is a measuring terminal. The displacement signal of the cantilever changes due to the force from the surface. This signal is input to the Z coarse controller [9]
Switch the coarse movement mechanism [1] to low-speed feed. this
At the time of [FIG. 10: t0], the measurement cantilever [c2]
It is floating above the sample surface by about h. Next, at a low speed, the cantilever [c2] for measurement is brought into contact by pushing in by about h> 100-300 μm (h: difference in height between the cantilever for controlling the Z distance and the cantilever for measurement from the subject surface). [Figure 1
0: t1] Then, the contact is pushed into the subject measurement terminal surface by Δh [FIG. 10: t2]. At this time, the measurement cantilever
The force from the measuring terminal surface changes the displacement signal of the cantilever. The pressing force is obtained by multiplying the spring constant of the measuring cantilever by Δh (depth of cantilever pressing), and this amount can be controlled by a pressing force setting signal indicated by a mark in FIG.

【0016】最後に図4に示した複数個の計測用カンチ
レバー有するカンチレバー部を使用する場合は、それぞ
れ両端のZ距離制御用のカンチレバー[c1]と[c1']のOR信
号を取ると、カンチレバーベースが傾いて取り付いてい
ても、どちらか試料面に近い方のZ距離制御用カンチレ
バー信号をZ粗動コントローラー[9]の信号として使用す
ればよい。
Finally, when using a cantilever portion having a plurality of measurement cantilevers shown in FIG. 4, when the OR signals of the cantilever [c1] and [c1 '] for controlling the Z distance at both ends are taken, the cantilever is obtained. Even if the base is tilted, the cantilever signal for controlling the Z distance which is closer to the sample surface may be used as the signal of the Z coarse movement controller [9].

【0017】被検体の測定端子と接触、押し付け力調整
後(t2の後)、前記外部電気試験機[12]より接触子と
測定端子間にさまざまな試験信号を印加し、被検体の電
気 的評価を行なう。 <測定セルとの位置合わせ>ここでは、被検体をメモリ
ーセルのように空間的に同様の形状が二次元的に配列し
たセルを前提に説明する。
After the contact with the measuring terminal of the subject and the adjustment of the pressing force (after t2), various test signals are applied between the contact and the measuring terminal from the external electric tester [12], and the electrical test of the subject is performed. Perform an evaluation. <Positioning with Measurement Cell> Here, a description will be given on the assumption that the subject is a cell in which spatially similar shapes are two-dimensionally arranged like a memory cell.

【0018】セル測定用のカンチレバー各部の寸法は、
以下のように作る。計測用カンチレバー上の接触子は、
セルのピッチと等間隔あるいはピッチの整数倍に配置
し、またZ距 離制御用のカンチレバーの針先と前記接触
子の間隔はセルの整数倍になるように作り込む。また計
測用カンチレバーの背面または側面に、前記接触子と一
定の位置関係をもつ位置合わせマーク[図6:76](大き
さ1μm x 1μm以上)を作成し、顕微鏡での位置合
わせ用のガイドとして使用する。
The dimensions of each part of the cantilever for cell measurement are as follows:
Make as follows. The contact on the measurement cantilever is
The cells are arranged at the same pitch as the cell pitch or at an integer multiple of the pitch, and the distance between the tip of the cantilever for Z distance control and the contact is made to be an integer multiple of the cell. Also, on the back or side of the measurement cantilever, an alignment mark [FIG. 6: 76] (size of 1 μm × 1 μm or more) having a fixed positional relationship with the contact is created and used as a guide for alignment with a microscope. use.

【0019】セルとの微小位置合わせは、計測用カンチ
レバー上の接触子をセルの直上にくるように、光学顕微
鏡で観測しながら、前記XYZ走査スキャナーのXY軸に電
圧を印加しXY位置の微調整を行なう。ここでセルが微小
で光学顕微鏡で見えない場合は、Z距離制御用のカンチ
レバーをXYに走査し、このカンチレバーの変位が一定に
なるようにZスキャナーを制御し、AFMと同様の動作をさ
せセルの形状を得ることができる。このセルの形状をも
とに接触子とセルの位置関係を求め、位置合わせが可能
になる。
The micro alignment with the cell is performed by applying a voltage to the XY axis of the XYZ scanning scanner while observing the contact on the measuring cantilever directly above the cell with an optical microscope and finely adjusting the XY position. Make adjustments. If the cell is too small to be seen with an optical microscope, scan the cantilever for Z distance control in the XY direction, control the Z scanner so that the displacement of the cantilever is constant, and perform the same operation as the AFM. Can be obtained. The positional relationship between the contact and the cell is obtained based on the shape of the cell, and positioning can be performed.

【0020】[0020]

【発明の効果】この発明により、以上説明したような微
小なプローブを用いて、微細化された個々のセルに直接
接触し、電気的評価が行なえるようになった。また押し
付け力が制御されたことにより押し込み不足による接触
不良や、押し込み過ぎによるセルの薄膜へのダメージを
与えること無しに電気的評価が行なえるようになった。
According to the present invention, electrical evaluation can be performed by directly contacting each of the miniaturized cells by using the minute probe as described above. Further, by controlling the pressing force, the electrical evaluation can be performed without causing poor contact due to insufficient pressing or damage to the cell thin film due to excessive pressing.

【0021】また光学顕微鏡の分解能が不足の場合は、
AFMと同様の動作でセルの形状を得ることができ 、セル
上に正確に接触子を位置合わせすることが可能となっ
た。
If the resolution of the optical microscope is insufficient,
The shape of the cell can be obtained by the same operation as that of the AFM, and the contact can be accurately positioned on the cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】外部検出器用プローブ(カンチレバー部)の斜
視図である。
FIG. 1 is a perspective view of an external detector probe (cantilever part).

【図2】外部検出器用プローブ(カンチレバー部)の側
面図である。
FIG. 2 is a side view of an external detector probe (cantilever part).

【図3】(a)は自己検知のカンチレバーを用いたプロ
ーブの斜視図、(b)は(a)におけるA−A’線に沿
った断面図である。
3A is a perspective view of a probe using a self-detecting cantilever, and FIG. 3B is a cross-sectional view taken along line AA ′ in FIG. 3A.

【図4】3ヶ以上のカンチレバーを持つプローブの摸式
図である。
FIG. 4 is a schematic view of a probe having three or more cantilevers.

【図5】(a)は計測用カンチレバーの斜視図、(b)
は(a)においてA方向から見た図である。
5A is a perspective view of a measurement cantilever, and FIG.
FIG. 3A is a diagram viewed from the direction A in FIG.

【図6】計測用カンチレバーの平面図である。FIG. 6 is a plan view of a measurement cantilever.

【図7】計測用カンチレバーの断面図である。FIG. 7 is a sectional view of a measurement cantilever.

【図8】(a)はカーボンナノチューブを接触子に用い
た計測用カンチレバーの斜視図、(b)は(a)におい
てA方向より見た図である。
FIG. 8A is a perspective view of a measurement cantilever using a carbon nanotube as a contact, and FIG. 8B is a view of FIG.

【図9】本発明のプローバー装置の模式図である。FIG. 9 is a schematic view of a prober device of the present invention.

【図10】プローブ近接時のタイムチートである。FIG. 10 is a time cheat at the time of approaching a probe.

【図11】従来のプローバーのプローブの模式図であ
る。
FIG. 11 is a schematic view of a probe of a conventional prober.

【図12】従来のアレー型にプローブを配したプローバ
ーの模式図である。
FIG. 12 is a schematic view of a prober in which probes are arranged in a conventional array type.

【符号の説明】[Explanation of symbols]

1 Z粗動メカニズム 2 XYZ微動スキャナー 3 プローブ(カンチレバー部) 4 試料台の接触子 5 試料台 6 被検体 7 プレアンプ 8 Zサーボ系 9 Z粗動コントローラー 10 XY走査コントローラー 11 Z走査コントローラー 12 外部電気回路 20 制御用コンピュータ ☆印 押し付け力設定信号 DESCRIPTION OF SYMBOLS 1 Z coarse movement mechanism 2 XYZ fine movement scanner 3 Probe (cantilever part) 4 Contact of sample stand 5 Sample stand 6 Subject 7 Preamplifier 8 Z servo system 9 Z coarse movement controller 10 XY scanning controller 11 Z scanning controller 12 External electric circuit 20 Control computer ☆ mark Pressing force setting signal

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電気試験用のプローブとして、導電性の
接触子と片持ち梁(カンチレバー)を有し、同一あるい
は、隣接するカンチレバーのたわみ信号より被検体面測
定端子と接触子の押し込み力を制御し接触を確認し、つ
ぎに接触子を通じて被検体の回路に電気信号を印加し、
LSI回路の動作を確認する微小接触式プローバーにおい
て、前記電気試験用のプローブとして複数個のカンチレ
バーを有し、また同一カンチレバー上に1ケ以上の接触
子を隣りあって配置することを特徴とする微小接触式プ
ローバー。
A probe for an electrical test has a conductive contact and a cantilever, and determines the force of pushing the object-surface measuring terminal and the contact from the bending signal of the same or an adjacent cantilever. Control and confirm contact, then apply an electrical signal to the circuit of the subject through the contact,
A micro-contact prober for checking the operation of an LSI circuit, wherein a plurality of cantilevers are provided as probes for the electrical test, and one or more contacts are arranged adjacently on the same cantilever. Micro contact prober.
【請求項2】 前記カンチレバー上の接触子は導電性と
し、個々の接触子間は、絶 縁し、個々の接触子の間隔
を測定するセルのピッチと等間隔あるいは整数倍とする
ことを特徴とする請求項1記載の微小接触式プローバー
2. The contact on the cantilever is made conductive, the contact between each contact is insulated, and the interval between each contact is equal to or equal to the pitch of a cell for measuring the interval between the contacts, or an integral multiple. The microcontact prober according to claim 1,
【請求項3】 接触子の材質としてカーボンナノチーブ
を使用することを特徴とす る請求項1記載の微小接触式
プローバー。
3. The microcontact prober according to claim 1, wherein carbon nanotube is used as a material of the contact.
【請求項4】 接触子間の絶縁をSOI基板の酸化シリコ
ン層によって行なうことを特徴とする請求項1記載の微
小接触式プローバー。
4. The micro-contact type prober according to claim 1, wherein insulation between the contacts is performed by a silicon oxide layer of the SOI substrate.
【請求項5】 カンチレバーの接触子面と背面とが絶縁
してあり、背面を金属膜でコーティングしてあることを
特徴とする請求項1記載の微小接触式プローバー。
5. The microcontact prober according to claim 1, wherein the contact surface and the back surface of the cantilever are insulated and the back surface is coated with a metal film.
【請求項6】 シリコンあるいはシリコンナイトライド
で作られた微小なカンチレバーに電気測定用の複数個の
導電性接触子を有し、その接触子から配線により電気信
号を取り出す計測用カンチレバーとその両側に被検体面
との距離制御用のカンチレバーを有するプローブを持つ
微小接触式プローバー。
6. A minute cantilever made of silicon or silicon nitride has a plurality of conductive contacts for electrical measurement, and a measuring cantilever for taking out an electrical signal from the contact by wiring, and on both sides thereof. A micro-contact prober with a probe having a cantilever for controlling the distance to the subject surface.
【請求項7】 前記計測用カンチレバーの側面あるい
は、接触子の反対側に接触子と一定位置関係にある顕微
鏡ガイド用のマークを有する請求項6記載の微小接触式
プローバー。
7. The microcontact prober according to claim 6, further comprising a microscope guide mark in a fixed positional relationship with the contact on a side surface of the measurement cantilever or on a side opposite to the contact.
【請求項8】 前記プローブの微小位置制御用にXY方向
に動作するピエゾスキャナーを有することを特徴とする
請求項1または請求項6記載の微小接触式プローバー。
8. The micro-contact type prober according to claim 1, further comprising a piezo scanner that operates in the XY direction for controlling the micro-position of the probe.
【請求項9】 前記プローブの押し込み力制御用にZ方
向に動作するピエゾスキャ ナーを有することを特徴と
する請求項1または2記載の微小接触式プローバー。
9. The micro-contact type prober according to claim 1, further comprising a piezo scanner which operates in a Z direction for controlling a pushing force of the probe.
JP30380499A 1999-10-26 1999-10-26 Micro contact type prober Expired - Fee Related JP4260310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30380499A JP4260310B2 (en) 1999-10-26 1999-10-26 Micro contact type prober

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30380499A JP4260310B2 (en) 1999-10-26 1999-10-26 Micro contact type prober

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006148811A Division JP2006284599A (en) 2006-05-29 2006-05-29 Device for acquiring information on sample face using cantilever
JP2007022966A Division JP4498368B2 (en) 2007-02-01 2007-02-01 Micro contact type prober

Publications (2)

Publication Number Publication Date
JP2001124798A true JP2001124798A (en) 2001-05-11
JP4260310B2 JP4260310B2 (en) 2009-04-30

Family

ID=17925511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30380499A Expired - Fee Related JP4260310B2 (en) 1999-10-26 1999-10-26 Micro contact type prober

Country Status (1)

Country Link
JP (1) JP4260310B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228686A (en) * 2001-01-31 2002-08-14 Mitsubishi Materials Corp Contact probe having breakage prevention function and probe device
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
JP2003090788A (en) * 2001-09-19 2003-03-28 Olympus Optical Co Ltd Spm cantilever and method of manufacturing the same
JP2006162378A (en) * 2004-12-06 2006-06-22 Japan Electronic Materials Corp Probe for probe card and its manufacturing method
JP2006266765A (en) * 2005-03-23 2006-10-05 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP2006525497A (en) * 2003-05-09 2006-11-09 アーテーゲー、テスト、ジステムス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディット、ゲゼルシャフト Non-mounted circuit board test method
JP2007108098A (en) * 2005-10-17 2007-04-26 Seiko Instruments Inc Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics
JP2007121317A (en) * 2007-02-01 2007-05-17 Sii Nanotechnology Inc Microcontact prober
JP2010515010A (en) * 2006-08-21 2010-05-06 フォームファクター, インコーポレイテッド Carbon nanotube contact structure
KR100992144B1 (en) 2003-08-28 2010-11-10 삼성전자주식회사 Automic force microscope
JP2012211911A (en) * 2004-06-21 2012-11-01 Capres A S Method for providing alignment of probe
CN104360107A (en) * 2014-11-12 2015-02-18 苏州大学 Graphene-clad atomic force microscope probe and manufacturing method and application thereof
CN111630648A (en) * 2018-02-06 2020-09-04 株式会社日立高新技术 Probe module and probe

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228686A (en) * 2001-01-31 2002-08-14 Mitsubishi Materials Corp Contact probe having breakage prevention function and probe device
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
JP4598300B2 (en) * 2001-04-26 2010-12-15 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope and physical property measurement method using the same
JP2003090788A (en) * 2001-09-19 2003-03-28 Olympus Optical Co Ltd Spm cantilever and method of manufacturing the same
JP2006525497A (en) * 2003-05-09 2006-11-09 アーテーゲー、テスト、ジステムス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディット、ゲゼルシャフト Non-mounted circuit board test method
KR100992144B1 (en) 2003-08-28 2010-11-10 삼성전자주식회사 Automic force microscope
JP2012211911A (en) * 2004-06-21 2012-11-01 Capres A S Method for providing alignment of probe
JP2017021040A (en) * 2004-06-21 2017-01-26 カプレス・アクティーゼルスカブCapres A/S Probe aligning method
JP2006162378A (en) * 2004-12-06 2006-06-22 Japan Electronic Materials Corp Probe for probe card and its manufacturing method
JP4486486B2 (en) * 2004-12-06 2010-06-23 日本電子材料株式会社 Probe for probe card
JP2006266765A (en) * 2005-03-23 2006-10-05 Totoku Electric Co Ltd Probe needle and its manufacturing method
JP4676224B2 (en) * 2005-03-23 2011-04-27 東京特殊電線株式会社 Probe needle and manufacturing method thereof
JP2007108098A (en) * 2005-10-17 2007-04-26 Seiko Instruments Inc Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics
JP4665704B2 (en) * 2005-10-17 2011-04-06 セイコーインスツル株式会社 Measuring probe, surface characteristic measuring apparatus, and surface characteristic measuring method
JP2010515010A (en) * 2006-08-21 2010-05-06 フォームファクター, インコーポレイテッド Carbon nanotube contact structure
JP4498368B2 (en) * 2007-02-01 2010-07-07 エスアイアイ・ナノテクノロジー株式会社 Micro contact type prober
JP2007121317A (en) * 2007-02-01 2007-05-17 Sii Nanotechnology Inc Microcontact prober
CN104360107A (en) * 2014-11-12 2015-02-18 苏州大学 Graphene-clad atomic force microscope probe and manufacturing method and application thereof
CN111630648A (en) * 2018-02-06 2020-09-04 株式会社日立高新技术 Probe module and probe
CN111630648B (en) * 2018-02-06 2023-12-29 株式会社日立高新技术 Probe module and probe

Also Published As

Publication number Publication date
JP4260310B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US4992728A (en) Electrical probe incorporating scanning proximity microscope
US5235187A (en) Methods of fabricating integrated, aligned tunneling tip pairs
US7520165B2 (en) Micro structure, cantilever, scanning probe microscope and a method of measuring deformation quantity for the fine structure
JP5453664B1 (en) Scanning probe microscope prober using self-detecting cantilever
JP2001124798A (en) Contacting type micro prober
US7945965B2 (en) Sensor for observations in liquid environments and observation apparatus for use in liquid environments
JPH10312592A (en) Information processor and processing method
US6435015B1 (en) Scanning probe microscope
US20120079636A1 (en) Magnetic sensor and scanning microscope
US5929643A (en) Scanning probe microscope for measuring the electrical properties of the surface of an electrically conductive sample
JP4498368B2 (en) Micro contact type prober
EP1045253A2 (en) Prober for electrical measurements and method of measuring electrical characteristics with said prober
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
US6614243B2 (en) Measurement probe for detecting electrical signals in an integrated semiconductor circuit
US7009414B2 (en) Atomic force microscope and method for determining properties of a sample surface using an atomic force microscope
JP2006284599A (en) Device for acquiring information on sample face using cantilever
JP3599880B2 (en) Cantilever tip
JPH1038916A (en) Probe device and electrically connecting method for minute region
JP3076467B2 (en) Surface matching method and tunnel microscope and recording / reproducing apparatus using the same
JPH07134137A (en) Probe microscope device, and method for measuring probe-to-probe distance
JPH11326350A (en) Cantilever type probe, multiple probe and scan type probe microscope constituted of the same
JP3240309B2 (en) Atomic force microscope prober and atomic force microscope
KR100424540B1 (en) Cantilever construction composed of multiple actuators for AFM, AFM system having the cantilever construction and measurement method for properties of material by using the AFM
JP4497665B2 (en) Probe scanning control device, scanning probe microscope using the scanning control device, probe scanning control method, and measurement method using the scanning control method
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070228

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees