JPH0512310B2 - - Google Patents

Info

Publication number
JPH0512310B2
JPH0512310B2 JP22397782A JP22397782A JPH0512310B2 JP H0512310 B2 JPH0512310 B2 JP H0512310B2 JP 22397782 A JP22397782 A JP 22397782A JP 22397782 A JP22397782 A JP 22397782A JP H0512310 B2 JPH0512310 B2 JP H0512310B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
diameter
shape
shoulder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22397782A
Other languages
Japanese (ja)
Other versions
JPS59116189A (en
Inventor
Shoichi Washitsuka
Sadao Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22397782A priority Critical patent/JPS59116189A/en
Publication of JPS59116189A publication Critical patent/JPS59116189A/en
Publication of JPH0512310B2 publication Critical patent/JPH0512310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [発明の属する技術分野] この発明は閃亜鉛構造を有する−族化合物
半導体の単結晶例えばInSb単結晶の育成におけ
る形状制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for controlling the shape of a - group compound semiconductor single crystal having a zincblende structure, such as an InSb single crystal.

[従来技術とその問題点] チヨコラルスキー法による単結晶の育成におい
て、結晶形状を制御することは結晶の高品質化、
育成歩留りの向上等に関して、重要な問題であ
る。従来、結晶形状の制御としては、胴体部の直
径を一定に保つ直径制御に重点がおかれており、
重量法あるいは光学法などにより検出した直径偏
差をルツボの加熱電流や引上げ速度などにフイー
ドバツクして直径制御する方法が広く行なわれて
いるが、特に結晶の肩部は結晶の歪や転位および
双晶の発生・伝播を防止するうえで、その形状の
制御は重要である。例えば、閃亜鉛構造を有する
−族化合物半導体である例えばInSb単結晶
を育成する場合、その結晶の肩部の形状により、
双晶発生頻度が異なり、<111>引上げ結晶では第
1図に示すθで表わされる肩部の広がり角度が
30°以上になると急激に双晶が発生しやすくなる。
[Prior art and its problems] In growing single crystals using the Czyochoralski method, controlling the crystal shape improves the quality of the crystal,
This is an important issue in terms of improving growth yield, etc. Conventionally, in controlling the crystal shape, emphasis has been placed on diameter control to keep the diameter of the body constant.
A widely used method is to control the diameter by feeding back the diameter deviation detected by gravimetric or optical methods to the crucible's heating current, pulling speed, etc. However, the shoulder area of the crystal is particularly sensitive to crystal distortion, dislocations, and twin crystals. Controlling its shape is important in preventing the generation and propagation of For example, when growing an InSb single crystal, which is a − group compound semiconductor having a zinc blend structure, the shape of the shoulder of the crystal causes
The frequency of twin occurrence is different, and in the <111> pulled crystal, the spread angle of the shoulders, represented by θ shown in Figure 1, is
When the temperature exceeds 30°, twinning becomes more likely to occur.

そこで、結晶の肩部の形状を制御する場合、肩
部における結晶直径は時間と伴に変化することか
ら、例えば、酸化物単結晶では基準直径信号を所
定の形状に合せて、時間に対してプログラムし、
胴体部の直径制御方法をそのまま適用して行なわ
れていた。例えばA・E・Zinnes etal.,J・
Cryst.Growth 19(1973)187に記載されてい
る。しかしInSb単結晶においてこの方法を適用
したところ、育成された結晶は所定の形状からの
オフセツトが大きく、肩部の広がり角度も所定の
値以下に保つことは困難であつた。そのため、肩
部の広がり角度を必要以上に小さく設定してお
き、所定の形状からのオフセツトが生じても所定
の角度を越えないようにする等の方法が行なわれ
ているが、単結晶の育成時間の増大、原料の損失
を招く欠点がある。
Therefore, when controlling the shape of the shoulder of a crystal, since the crystal diameter at the shoulder changes with time, for example, in the case of an oxide single crystal, the reference diameter signal is adjusted to a predetermined shape, and program and
This was done by applying the same method of controlling the diameter of the fuselage. For example, A.E. Zinnes et al., J.
Cryst. Growth 19 (1973) 187. However, when this method was applied to InSb single crystals, the grown crystal had a large offset from the predetermined shape, and it was difficult to keep the shoulder spread angle below a predetermined value. Therefore, methods such as setting the spread angle of the shoulder part smaller than necessary so that even if an offset from the predetermined shape occurs, the predetermined angle is not exceeded are used, but this method is difficult to grow single crystals. This method has the disadvantage of increasing time and loss of raw materials.

[発明の目的] 本発明は上述した従来の肩部の形状制御の欠点
を改良したもので、肩部を精度よく所定の形状に
制御できる方法を提供するものである。
[Object of the Invention] The present invention improves the drawbacks of the conventional shoulder shape control described above, and provides a method that can accurately control the shoulder into a predetermined shape.

[発明の概要] 本発明者は従来の制御方法の欠点を検討した結
果、−族化合物半導体単結晶における結晶の
上部より放熱する熱量は結晶の長さの変化では、
あまり大きく変わらないが、結晶の断面積の変化
に伴い大きく変わり従つて固液界面付近の温度も
影響を受けて変化し、結晶直径が不安定になると
考えた。実験的に熱輻射計により育成中の結晶の
ネツクから肩部にかけて放熱量Qを測定したとこ
ろ、ほぼ次式(1)で近似できることが分かつた。
[Summary of the Invention] As a result of examining the shortcomings of conventional control methods, the present inventor found that the amount of heat dissipated from the upper part of the - group compound semiconductor single crystal varies depending on the length of the crystal.
Although it does not change much, it changes significantly as the cross-sectional area of the crystal changes, and the temperature near the solid-liquid interface also changes, making the crystal diameter unstable. When we experimentally measured the heat radiation amount Q from the neck to the shoulder of the growing crystal using a thermal radiometer, we found that it can be approximately approximated by the following equation (1).

Q=Q0+Q1D2 ……(1) ここでQ0,Q1は育成条件、すなわち引上げ速
度、保温筒やルツボの大きさ、雰囲気ガスの流量
などによつて決まる定数、Dは結晶直径である。
Q=Q 0 +Q 1 D 2 ...(1) Here, Q 0 and Q 1 are constants determined by the growth conditions, i.e., the pulling speed, the size of the heat-insulating tube and crucible, the flow rate of the atmospheric gas, etc., and D is the crystal It is the diameter.

これから、ルツボの温度を(1)式と同様の形で直
径の変化に伴つて変化させれば固液界面附近の温
度を一定に保つことができ、従つて結晶成長を定
常態に保つことができる。このことから、ルツボ
の温度を(1)式に従つて変化させながらInSb単結
晶の肩部の形状制御を行なつたところ、精度よく
制御でき、双晶の発生を抑えるのに効果があるこ
とが分つた。
From this, we can see that if the temperature of the crucible is changed as the diameter changes in the same manner as in equation (1), the temperature near the solid-liquid interface can be kept constant, and therefore the crystal growth can be kept in a steady state. can. From this, it was found that controlling the shape of the shoulder of the InSb single crystal while changing the temperature of the crucible according to equation (1) enabled accurate control and was effective in suppressing the occurrence of twins. I understood.

そこで本発明の形状制御方法では、単結晶の直
径を検出する装置と直径の2乗に比例する信号を
発生する装置とを備え、ルツボの温度を少くとも
前記信号発生装置の出力に比例する成分を含むよ
うに設定して形状制御することを特徴とするもの
である。さらに、前記信号発生装置を含む回路が
直径制御ループにおいてフイードフオワードルー
プを構成するように接続することを特徴とするも
のである。
Therefore, the shape control method of the present invention includes a device for detecting the diameter of a single crystal and a device for generating a signal proportional to the square of the diameter, and the temperature of the crucible is controlled by at least a component proportional to the output of the signal generating device. This feature is characterized in that the shape is controlled by setting it to include. Furthermore, the present invention is characterized in that the circuit including the signal generator is connected to form a feedforward loop in the diameter control loop.

[発明の効果] 以上説明したように本発明の方法によれば、
InSb単結晶の育成において、(1)従来の直径制御
方法と併用することにより肩部を所定の形状に精
度よく制御することができ、双晶発生のない高品
質単結晶を再現性よく安定して育成することがで
きる。(2)従来方法に比べて、結晶育成時間の短
縮、原料損失の減少ができ、結晶作成歩留りが約
20%向上する。(3)本発明を工業的に適用すること
により生産性が向上する等の効果がある。
[Effect of the invention] As explained above, according to the method of the present invention,
When growing InSb single crystals, (1) By using it in conjunction with the conventional diameter control method, it is possible to accurately control the shoulder part into a predetermined shape, and to produce stable high-quality single crystals without twin crystals with good reproducibility. can be cultivated. (2) Compared to conventional methods, crystal growth time can be shortened, raw material loss can be reduced, and crystal production yield can be reduced to approximately
Improve by 20%. (3) Industrial application of the present invention has effects such as improved productivity.

[発明の実施例] 以下本発明の一実施例を図面に基づき詳細に説
明する。
[Embodiment of the Invention] An embodiment of the present invention will be described in detail below based on the drawings.

第2図は本発明の機能を具備した単結晶製造装
置の一例である。図において、1は容器、2は加
熱ヒータ、3はルツボ、4は融液、5は結晶、6
は引上げ軸、7は重量検出器、8は基準重量信号
発生器、9は調節計、10は信号発生装置、11
は温調器、12は加熱装置、13はスイツチであ
る。ここで結晶5の直径の検出は重量検出器7の
出力を用いて行なつている。すなわち重量検出器
7の出力Wを時間微分すると次式(2)となる。
FIG. 2 shows an example of a single crystal manufacturing apparatus equipped with the functions of the present invention. In the figure, 1 is a container, 2 is a heater, 3 is a crucible, 4 is a melt, 5 is a crystal, 6
is a pulling shaft, 7 is a weight detector, 8 is a reference weight signal generator, 9 is a controller, 10 is a signal generator, 11
1 is a temperature controller, 12 is a heating device, and 13 is a switch. Here, the diameter of the crystal 5 is detected using the output of the weight detector 7. That is, when the output W of the weight detector 7 is differentiated with respect to time, the following equation (2) is obtained.

dW/dt=π/4D2ρsH1/1−ρsD2/ρlD0 2……(2
) ここで、DおよびD0はそれぞれ結晶5および
ルツボ3の直径、ρsおよびρlはそれぞれ固体およ
び液体の密度、Hは引上げ速度である。(2)式より
dW/dtには近似的に直径の2乗に比例するので、
これを制御信号としている。第3図はこの信号発
生装置10の一構成例を示したもので、前置増幅
器、微分器および抵抗分割器から成つている。こ
の出力信号はスイツチ13を通して直径制御の調
節計9の出力と加算されて温調器11に入力され
る。これにより加熱装置12を駆動し、ルツボ3
の温度を制御して結晶5の形状を制御する。この
信号発生装置10を含む回路は制御ループにおい
てフイードフオワードループを形成している。次
に具体的な例として、この装置によりInSb単結
晶を製造する場合について説明する。第2図にお
いて直径75mmのルツボ3にInSb単結晶原料を500
gを入れ、〜650℃まで加熱融解した。次に
(111)軸の種結晶を10rpmで回転させながら融液
4に接解させたのち、10mm/hの速度で結晶引上
げを開始し、ネツクを形成した。次に融液温度を
約1℃下げると結晶はゆつくり太りだしたので肩
部形成を行なつた。ここで、あらかじめ肩部の広
がり角度が30°になるように調節計9を動作させ、
肩部の直径制御を開始した。同時にスイツチ13
を閉じて信号発生装置10を動作させ、検出直径
の2乗に比例する信号を加えてルツボの温度を制
御し、所定直径35mmになるまで引上げを続行し
た。この時第3図の微分器の出力dW/dtは0〜
1.1g/minまで増加するが、実験の結果第3図
の抵抗分割器R5,R6はKが5〜10℃・min/
gになるように設定すれば良い結果が得られるこ
とが分つた。所定直径になつたところでスイツチ
13を開いて信号発生装置10の動作を止め、調
節計9により胴体部の育成を行つた。このように
したInSb単結晶は肩部の広がり角度は26〜28°附
近になつており、所定角度30°を越えないことが
分つた。一方、信号発生装置10を動作させない
場合は肩部の広がり角度は26°〜35°まで変化し、
特に結晶直径が15〜20mmのところで所定角度30°
を大きく越え、そこで双晶の発生が見られるなど
良好な結果を得ることはできなかつた。
dW/dt=π/4D 2 ρ s H1/1−ρsD 2 /ρlD 0 2 ……(2
) Here, D and D 0 are the diameters of the crystal 5 and crucible 3, respectively, ρ s and ρ l are the solid and liquid densities, respectively, and H is the pulling rate. From equation (2)
Since dW/dt is approximately proportional to the square of the diameter,
This is used as a control signal. FIG. 3 shows an example of the configuration of this signal generating device 10, which consists of a preamplifier, a differentiator, and a resistor divider. This output signal is added to the output of the diameter control controller 9 through the switch 13 and input to the temperature controller 11 . This drives the heating device 12 and the crucible 3
The shape of the crystal 5 is controlled by controlling the temperature. A circuit including this signal generator 10 forms a feedforward loop in the control loop. Next, as a specific example, a case where an InSb single crystal is manufactured using this apparatus will be described. In Figure 2, 500 InSb single crystal raw materials are placed in crucible 3 with a diameter of 75 mm.
g and heated to ~650°C to melt. Next, the seed crystal with the (111) axis was fused with the melt 4 while being rotated at 10 rpm, and crystal pulling was started at a speed of 10 mm/h to form a net. Next, when the temperature of the melt was lowered by about 1° C., the crystal slowly became thicker and a shoulder was formed. Here, operate the controller 9 in advance so that the shoulder spread angle is 30°,
Started controlling the diameter of the shoulder. switch 13 at the same time
was closed, the signal generator 10 was operated, and a signal proportional to the square of the detected diameter was applied to control the temperature of the crucible, and pulling was continued until the predetermined diameter was 35 mm. At this time, the output dW/dt of the differentiator in Figure 3 is 0~
However, as a result of experiments, the resistance dividers R5 and R6 in Figure 3 have a K of 5 to 10°C/min.
It has been found that good results can be obtained by setting it so that g is obtained. When the diameter reached a predetermined value, the switch 13 was opened to stop the operation of the signal generator 10, and the controller 9 was used to grow the torso. It was found that the shoulder spread angle of the InSb single crystal thus produced was around 26 to 28 degrees, and did not exceed the predetermined angle of 30 degrees. On the other hand, when the signal generator 10 is not operated, the shoulder spread angle changes from 26° to 35°.
Especially when the crystal diameter is 15 to 20 mm, the specified angle is 30°.
However, it was not possible to obtain good results, as the occurrence of twin crystals was observed.

種結晶の方位を<211>に変え、肩部の広がり
角度20°に設定して引上げを行なつた場合でも同
様であり、双晶発生のないInSb単結晶が得られ
た。
The same result was obtained when the seed crystal orientation was changed to <211> and the shoulder spread angle was set to 20°, and an InSb single crystal without twin crystals was obtained.

なお、本発明の上記した実施例に限定されるも
のではなく、たとえば結晶直径の検出はTVカメ
ラや一次元光センサー等によつてもよいし、制御
動作をコンピユーターにより実行しても何等差支
えない。
Note that the present invention is not limited to the above-described embodiments; for example, the crystal diameter may be detected by a TV camera, a one-dimensional optical sensor, etc., or the control operation may be executed by a computer. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単結晶の形状、肩部の広がり角度を説
明するための図、第2図は本発明の一実施例を説
明するための図、第3図は信号発生装置10の一
構成例を説明するための図である。 1……容器、2……加熱ヒーター、3……ルツ
ボ、4……融液、5……結晶、6……引上げ軸、
7……重量検出器、8……基準重量信号発生器、
9……調節計、10……信号発生装置、11……
温調器、12……加熱装置、13……スイツチ。
FIG. 1 is a diagram for explaining the shape of a single crystal and the spread angle of the shoulder portion, FIG. 2 is a diagram for explaining an embodiment of the present invention, and FIG. 3 is an example of the configuration of a signal generator 10. FIG. 1... Container, 2... Heater, 3... Crucible, 4... Melt, 5... Crystal, 6... Pulling shaft,
7... Weight detector, 8... Reference weight signal generator,
9...Controller, 10...Signal generator, 11...
Temperature controller, 12... heating device, 13... switch.

Claims (1)

【特許請求の範囲】 1 ルツボ内の融液から閃亜鉛構造を有する−
族化合物半導体単結晶を育成するに際し、前記
単結晶の直径を検出する装置と直径の2乗に比例
する信号を発生する信号発生装置とを備え、前記
単結晶の肩部育成時における前記ルツボの温度を
少なくとも前記直径の2乗に比例する信号を含む
ように設定して単結晶の形状を制御することを特
徴とする単結晶形状制御方法。 2 前記信号発生装置を含む回路が制御ループに
おいてフイードフオワードループを構成するよう
に接続されていることを特徴とする前記特許請求
の範囲第1項記載の単結晶形状制御方法。 3 前記単結晶はInSb単結晶であることを特徴
とする前記特許請求の範囲第1項記載の単結晶形
状制御方法。
[Claims] 1. Having a zincblende structure from the melt in the crucible.
When growing a group compound semiconductor single crystal, a device for detecting the diameter of the single crystal and a signal generating device for generating a signal proportional to the square of the diameter are provided, A method for controlling the shape of a single crystal, characterized in that the shape of the single crystal is controlled by setting the temperature to include a signal proportional to at least the square of the diameter. 2. The single crystal shape control method according to claim 1, wherein the circuit including the signal generator is connected in a control loop so as to form a feedforward loop. 3. The single crystal shape control method according to claim 1, wherein the single crystal is an InSb single crystal.
JP22397782A 1982-12-22 1982-12-22 Method for controlling shape of single crystal Granted JPS59116189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22397782A JPS59116189A (en) 1982-12-22 1982-12-22 Method for controlling shape of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22397782A JPS59116189A (en) 1982-12-22 1982-12-22 Method for controlling shape of single crystal

Publications (2)

Publication Number Publication Date
JPS59116189A JPS59116189A (en) 1984-07-04
JPH0512310B2 true JPH0512310B2 (en) 1993-02-17

Family

ID=16806636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22397782A Granted JPS59116189A (en) 1982-12-22 1982-12-22 Method for controlling shape of single crystal

Country Status (1)

Country Link
JP (1) JPS59116189A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242991A (en) * 1987-03-31 1988-10-07 Shin Etsu Handotai Co Ltd Method for controlling crystal diameter

Also Published As

Publication number Publication date
JPS59116189A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
WO2010048790A1 (en) A method for controlling czochralski crystal growth
US4591994A (en) Method and apparatus for controlling shape of single crystal
JPS6046998A (en) Pulling up of single crystal and its device
JPS63242991A (en) Method for controlling crystal diameter
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JPS6337078B2 (en)
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
JPH0512310B2 (en)
JPH04104988A (en) Growth of single crystal
JPS6054994A (en) Production of compound semiconductor crystal
JPS5930795A (en) Apparatus for pulling up single crystal
JP3134415B2 (en) Single crystal growth method
JP2622274B2 (en) Single crystal growth method
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JPS6011297A (en) Method and device for controlling growth of crystal
JPS644998B2 (en)
JP3154351B2 (en) Single crystal growth method
JPH05319973A (en) Single crystal production unit
Robertson et al. Observations on the unrestrained growth of germanium crystals
JPH03137091A (en) Production of semiconductor single crystal
JPH0379319B2 (en)
JPS60180993A (en) Pulling method of gaas single crystal
JPH01126294A (en) Production of single crystal
JPS63270391A (en) Method for pulling up single crystal by lec process
JPS63159288A (en) Production of single crystal