JPS644998B2 - - Google Patents

Info

Publication number
JPS644998B2
JPS644998B2 JP17282082A JP17282082A JPS644998B2 JP S644998 B2 JPS644998 B2 JP S644998B2 JP 17282082 A JP17282082 A JP 17282082A JP 17282082 A JP17282082 A JP 17282082A JP S644998 B2 JPS644998 B2 JP S644998B2
Authority
JP
Japan
Prior art keywords
heater
single crystal
crystal
melt
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17282082A
Other languages
Japanese (ja)
Other versions
JPS5964591A (en
Inventor
Ryusuke Nakai
Masao Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17282082A priority Critical patent/JPS5964591A/en
Publication of JPS5964591A publication Critical patent/JPS5964591A/en
Publication of JPS644998B2 publication Critical patent/JPS644998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、液体カプセルチヨクラルスキー法
(以下、LEC法と称す)により単結晶を引上げる
装置に関するものである。 (背景技術) LEC法により単結晶を引上げる装置は、第1
図に例を示すようにるつぼ3に原料融液4(例、
GaAs)を収容し、その表面をB2O3融液でおお
い、融液4表面に引上軸8に取付けた種結晶6を
浸漬し、なじませた後、種結晶6を引上げて単結
晶7(例、GaAs)を引上げる装置である。1は
炉内加熱ヒーター、2はサセプター、9はるつぼ
支持軸である。 この場合、炉内を右図に示すような温度分布に
保つため、従来は1個のヒーターを用いていた。
しかしこれでは下記に示す理由により高品質の単
結晶は得られない。 1個のヒーターでできるのは、せいぜい原料融
液4の温度変化による結晶の径制御程度であり、
高品質単結晶を得るのに重要な役割を有する炉内
の温度分布は、るつぼの位置、B2O3融液の厚さ、
断熱材形状で決つてしまい、外部からのコントロ
ールができない。 結晶を安定に成長させるのには適切な温度勾配
があり、低転位単結晶を成長させるためには、こ
のような温度勾配の部分が広い範囲にわたつて存
在しなくてはならないが、1個のヒーターでは温
度分布をうまく制御できないので、理想的な温度
勾配の範囲を広くすることは難かしい。 そのため、種付け直後は、単結晶7はB2O3
液5中にあり、B2O3は保温材で、B2O3融液中で
温度勾配は比較的低勾配になつており、かつ、結
晶内温度勾配の小さい(転位の入りにくい)るつ
ぼ位置(通常、低いるつぼ位置である)で成長さ
せることができても、単結晶7がB2O3融液5か
ら出た時は、結晶中の温度勾配が急に大きくな
り、転位が増加する。 そこで、B2O3融液5から出ても低転位にする
ためには、B2O3融液から出てきた単結晶7を効
果的にあたためなければならないが、1個のヒー
ターではそれが難かしい。右図の点線は必要な温
度勾配である。 又B2O3融液5より上での温度勾配を小さくで
きるよう、さらにるつぼ位置を低くしておくと、
B2O3融液内での温度勾配が小さくなり過ぎ、う
まく成長しないし、又上方へ逃げる熱が減つて固
液界面が下に凹になり、リネージからの多結晶化
が起こる。 このように、1個のヒーターでは単結晶の種付
は直後から単結晶後端部(パツク部)まで低転位
密度に保つことができない。 (発明の開示) 本発明は、上述の問題点を解決するため成され
たもので、単結晶を安定に成長させるのに適切な
温度勾配となるよう、温度勾配の調節を容易に
し、かつその範囲が長くとれることによつて、低
転位の単結晶が安定して得られる単結晶引上装置
を提供するものである。 本発明は、チヨクラルスキー法により単結晶を
引上げる装置において、炉内加熱ヒーターは2段
のヒーターより成り、該ヒーターのうち主として
引上単結晶部を加熱する上部のヒーターが、上方
に開いた形状のものか、又はヒーター上部の抵抗
をヒーター下部より小さくしたものであることを
特徴とする単結晶引上装置である。 本発明装置により引上げる単結晶は、周期律表
の−族化合物(例、GaAs、InAs、GaP、
InP等)、−族化合物(例、ZnSe等)もしく
はそれらの混晶、又はSi、Ge等の半導体、酸化
物、窒化物、炭化物などの単結晶である。 以下、本発明を図面を用いて実施例により説明
する。第2図は本発明装置の実施例を示す縦断面
図および温度分布図である。図において第1図と
同一の符号はそれぞれ同一の部分を示す。図にお
いて第1図と異なる点は、炉内加熱ヒーター10
を2段の上部ヒーター11、下部ヒーター12に
分けた点である。下部ヒーター12は主として原
料融液4を加熱する。上部ヒーター11は理想的
な単結晶内温度分布を作るためのものである。上
部ヒーター11は、例えば上方に開いた円錘台側
面の形状をしている。 この上部ヒーター11の電力を上げれば第3図
の実線(本発明)に示すように単結晶内の温度
勾配を結晶成長に最低限必要な値に広範囲にわた
つて保つことができる。因みに上部ヒーターが第
3図の点線のように円筒状であると、右図の点線
で示すように最も熱くなる部分は上部ヒーター
中心に近づき、結晶成長をさまたげる温度分布を
作り、固液界面を下に凹にしてしまい、多結晶化
の原因になる。本発明のように上方に開いた形状
にすることにより、上部ヒーターを十分長くして
もこのようなことは起らない。又第3図の鎖線
は従来の1個のヒーターの場合の温度分布を示
す。14はB2O3融液表面を示す。 又上部ヒーター11は、第2図に示す円錘状で
なくても良く、第4図に示すように上方の抵抗が
下方より小さくなるように上方の肉厚を厚くした
円筒状のものであつても良い。この場合も第3図
の実線で示す温度分布が容易に得られる。 なお上部ヒーター11の長さは長ければ長い程
良いが、第3図の点線で示すような温度勾配が
起きないように注意する必要がある。又温度分布
の細かい調節には、第2図に示すように、本発明
においては結晶成長条件で引上げるために、原料
融液4と封止剤B2O3融液5との界面で上下分割
されるヒーター配置が最適である。また、シール
ド13を用い、その形状、寸法、位置等を変化し
て行なつても良い。 (試験例) 第2図に示すような本発明装置を用いてGaAs
単結晶を引上げた。 内径150mmの石英るつぼを用い、GaAs多結晶
原料のチヤージ量は約4Kg、B2O3量は約500gと
し、炉内圧力15atm、引上速度10mm/時、引上軸
回転8rpm、るつぼ支持軸回転9rpm、引上方位<
100>として引上げた。 単結晶の径制御は上部、下部ヒーター11,1
2のパワーを細かく調整して行なわれた。(普通
は下部ヒーター12のみを調整し、下部ヒーター
12が良く効かない時は上部ヒーター11を調節
した。) 得られた単結晶の直径は約70mm、長さは約200
mmであつた。 その結果、直径が大きくなるとリネージから多
結晶化し易いにも拘わらず、直径がこのように大
きくしても全部単結晶であつた。 単結晶のフロント部とバツク部から切り出した
<100>ウエハを溶解KOHでエツチングし、エツ
チピツト密度(EPD)を求めた結果は表1に示
す通りである。 比較のため、従来の1個のみのヒーターより成
る引上装置を用いて作成した単結晶のEPDを求
めた。
(Technical Field) The present invention relates to an apparatus for pulling a single crystal using the liquid capsule Czyochralski method (hereinafter referred to as LEC method). (Background technology) The device for pulling single crystals using the LEC method is
As shown in the example in the figure, the raw material melt 4 (for example,
A seed crystal 6 attached to a pulling shaft 8 is immersed in the surface of the melt 4, and after blending, the seed crystal 6 is pulled up and a single crystal 7 (eg, GaAs). 1 is an in-furnace heater, 2 is a susceptor, and 9 is a crucible support shaft. In this case, conventionally, one heater was used to maintain the temperature distribution inside the furnace as shown in the figure on the right.
However, this method does not allow high quality single crystals to be obtained for the reasons described below. At most, one heater can only control the diameter of the crystal by changing the temperature of the raw material melt 4.
The temperature distribution in the furnace, which has an important role in obtaining high quality single crystals, depends on the position of the crucible, the thickness of the B2O3 melt,
It is determined by the shape of the insulation material and cannot be controlled from the outside. There is an appropriate temperature gradient for stable crystal growth, and in order to grow a low-dislocation single crystal, areas with such a temperature gradient must exist over a wide range. It is difficult to widen the range of the ideal temperature gradient because the temperature distribution cannot be well controlled with this heater. Therefore, immediately after seeding, the single crystal 7 is in the B 2 O 3 melt 5, B 2 O 3 is a heat insulator, and the temperature gradient in the B 2 O 3 melt is relatively low. In addition, even if the single crystal 7 can be grown at a crucible position (usually a low crucible position) where the internal temperature gradient is small (dislocations are difficult to enter), when the single crystal 7 comes out of the B 2 O 3 melt 5, , the temperature gradient in the crystal suddenly increases and dislocations increase. Therefore, in order to make the single crystal 7 that comes out of the B 2 O 3 melt 5 have low dislocations, it is necessary to effectively heat the single crystal 7 that comes out of the B 2 O 3 melt, but one heater cannot do that. is difficult. The dotted line in the figure on the right is the required temperature gradient. In addition, if the crucible position is further lowered to reduce the temperature gradient above the B 2 O 3 melt 5,
The temperature gradient within the B 2 O 3 melt becomes too small, resulting in poor growth, and the heat escaping upwards decreases, causing the solid-liquid interface to become concave, causing polycrystalization from the lineage. As described above, with one heater, it is not possible to maintain a low dislocation density from immediately after the seeding of the single crystal to the rear end (pack part) of the single crystal. (Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems, and it facilitates the adjustment of the temperature gradient so that the temperature gradient is suitable for stable growth of a single crystal. The object of the present invention is to provide a single crystal pulling device that can stably obtain a single crystal with low dislocations by having a long range. The present invention provides an apparatus for pulling single crystals by the Czyochralski method, in which the furnace heating heater consists of two stages of heaters, and the upper heater, which mainly heats the pulled single crystal part, opens upward. This single crystal pulling device is characterized in that the resistance of the upper part of the heater is smaller than that of the lower part of the heater. The single crystal pulled by the device of the present invention is a compound of group - of the periodic table (e.g., GaAs, InAs, GaP,
InP, etc.), - group compounds (e.g., ZnSe, etc.) or mixed crystals thereof, or semiconductors such as Si, Ge, etc., and single crystals of oxides, nitrides, carbides, etc. Hereinafter, the present invention will be explained by examples using the drawings. FIG. 2 is a longitudinal sectional view and a temperature distribution diagram showing an embodiment of the device of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. The difference between the diagram and FIG. 1 is that the furnace heater 10
is divided into two stages, an upper heater 11 and a lower heater 12. The lower heater 12 mainly heats the raw material melt 4 . The upper heater 11 is for creating an ideal temperature distribution within the single crystal. The upper heater 11 has, for example, a conical side surface shape that is open upward. By increasing the power of this upper heater 11, the temperature gradient within the single crystal can be maintained over a wide range at the minimum value necessary for crystal growth, as shown by the solid line in FIG. 3 (invention). By the way, if the upper heater is cylindrical as shown by the dotted line in Figure 3, the hottest part will be closer to the center of the upper heater as shown by the dotted line in the figure on the right, creating a temperature distribution that hinders crystal growth and causing the solid-liquid interface to This will make it concave downward and cause polycrystalization. By forming the heater into an upwardly open shape as in the present invention, this problem will not occur even if the upper heater is sufficiently long. Furthermore, the chain line in FIG. 3 shows the temperature distribution in the case of one conventional heater. 14 indicates the surface of the B 2 O 3 melt. Further, the upper heater 11 does not have to be conical as shown in FIG. 2, but may be cylindrical with a thicker upper wall so that the upper resistance is smaller than the lower resistance as shown in FIG. 4. It's okay. In this case as well, the temperature distribution shown by the solid line in FIG. 3 can be easily obtained. Note that the longer the length of the upper heater 11 is, the better, but care must be taken to prevent a temperature gradient as shown by the dotted line in FIG. 3 from occurring. In addition, in order to finely adjust the temperature distribution, as shown in FIG . A split heater arrangement is optimal. Alternatively, the shield 13 may be used and its shape, dimensions, position, etc. may be changed. (Test example) GaAs was tested using the device of the present invention as shown in Figure 2.
A single crystal was pulled. A quartz crucible with an inner diameter of 150 mm was used, the charge amount of GaAs polycrystalline raw material was approximately 4 kg, the amount of B 2 O 3 was approximately 500 g, the furnace pressure was 15 atm, the pulling speed was 10 mm/hour, the pulling shaft rotation was 8 rpm, and the crucible support shaft was Rotation 9rpm, pulling direction <
100>. The diameter of the single crystal is controlled by the upper and lower heaters 11, 1.
This was done by finely adjusting the power of 2. (Usually, only the lower heater 12 was adjusted, and when the lower heater 12 did not work well, the upper heater 11 was adjusted.) The diameter of the obtained single crystal was about 70 mm, and the length was about 200 mm.
It was warm in mm. As a result, even though the lineage tends to become polycrystalline as the diameter increases, all of the specimens were single crystals even when the diameter was increased in this way. <100> wafers cut from the front and back parts of a single crystal were etched with dissolved KOH, and the etching pit density (EPD) was determined as shown in Table 1. For comparison, the EPD of a single crystal produced using a conventional pulling device consisting of only one heater was determined.

【表】 表1より、本発明装置によるものは、従来例に
比べEPDが非常に低くなり、かつフロント部か
らバツク部までほとんど変化がないことが分る。 (発明の効果) 上述のように構成された本発明の単結晶引上装
置は次のような効果がある。 炉内の加熱ヒーターは上下2段ヒーターより成
り、該ヒーターのうち引上単結晶部を加熱する上
部のヒーターが上方に開いた形状のものか、又は
ヒーター上部の抵抗をヒーター下部より小さくし
たものであるから、上部ヒーターの輻射で単結晶
をあたため、単結晶がB2O3融液中にある時も
B2O3融液の外へ出てきた時も単結晶中の温度勾
配を低くできると同時に、上部ヒーターが上方に
開いているか、又は上部ヒーターの上部の電器抵
抗が小さくなつているために、単結晶上部の温度
を適当に低くできるので、単結晶全体にわたつて
結晶成長に必要な温度勾配を維持できる。又これ
らのヒーターは外部から容易に調節できる。 すなわち、単結晶成長の全過程にわたつて、単
結晶内の温度勾配を小さく、かつ成長に十分な値
に、容易に、保つ事ができるので、単結晶のフロ
ント部からバツク部まで低転位密度の単結晶が安
定して得られる。
[Table] From Table 1, it can be seen that the EPD of the device of the present invention is much lower than that of the conventional example, and there is almost no change from the front part to the back part. (Effects of the Invention) The single crystal pulling apparatus of the present invention configured as described above has the following effects. The heater in the furnace consists of an upper and lower two-stage heater, and the upper heater that heats the pulled single crystal part has an upwardly opened shape, or the resistance of the upper part of the heater is smaller than that of the lower part of the heater. Therefore, when the single crystal is heated by radiation from the upper heater, even when the single crystal is in the B 2 O 3 melt,
The temperature gradient in the single crystal can be lowered even when the B 2 O 3 comes out of the melt, and at the same time, the upper heater is open upwards or the electric resistance above the upper heater is small. Since the temperature in the upper part of the single crystal can be appropriately lowered, the temperature gradient necessary for crystal growth can be maintained throughout the single crystal. Also, these heaters can be easily adjusted externally. In other words, throughout the entire process of single crystal growth, the temperature gradient within the single crystal can be easily kept small and at a value sufficient for growth, resulting in a low dislocation density from the front to the back of the single crystal. Single crystals can be stably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶引上装置の例を示す縦断
面図および温度分布図である、第2図は本発明装
置の実施例を示す縦断面図および温度分布図であ
る、第3図は2段ヒーター、上部ヒーターが円筒
状、1個のヒーターのそれぞれの場合の温度分布
を示す図である。第4図は本発明装置の他の実施
例における上部ヒーターの例を示す縦断面図であ
る。 1,10……炉内加熱ヒーター、2……サセプ
ター、3……るつぼ、4……原料融液、5……
B2O3融液、6……種結晶、7……単結晶、8…
…引上軸、9……るつぼ支持軸、11……上部ヒ
ーター、12……下部ヒーター、13……シール
ド、14……B2O3融液表面。
FIG. 1 is a vertical cross-sectional view and a temperature distribution diagram showing an example of a conventional single crystal pulling apparatus. FIG. 2 is a vertical cross-sectional view and a temperature distribution diagram showing an example of the apparatus of the present invention. FIG. is a diagram showing the temperature distribution in the case of a two-stage heater, a cylindrical upper heater, and a single heater. FIG. 4 is a longitudinal sectional view showing an example of an upper heater in another embodiment of the device of the present invention. 1, 10... Furnace heater, 2... Susceptor, 3... Crucible, 4... Raw material melt, 5...
B 2 O 3 melt, 6... Seed crystal, 7... Single crystal, 8...
... Pulling shaft, 9 ... Crucible support shaft, 11 ... Upper heater, 12 ... Lower heater, 13 ... Shield, 14 ... B 2 O 3 melt surface.

Claims (1)

【特許請求の範囲】[Claims] 1 液体カプセルチヨクラルスキー法により単結
晶を引上げる装置において、炉内加熱ヒーター
は、主として原料融液を加熱する下部ヒーター
と、主として引上げ結晶部を加熱する上部ヒータ
ーよりなり、該上部ヒーターは前記引上げ結晶部
を囲んで上方に開いた形状のものか、または上部
の抵抗を下部の抵抗より小さくした円筒形状のも
のであることを特徴とする単結晶引上装置。
1. In an apparatus for pulling a single crystal by the liquid capsule Czochralski method, the in-furnace heater consists of a lower heater that mainly heats the raw material melt and an upper heater that mainly heats the pulled crystal part. 1. A single-crystal pulling device characterized by having a shape that surrounds a pulling crystal part and opens upward, or a cylindrical shape in which the resistance of the upper part is lower than the resistance of the lower part.
JP17282082A 1982-09-30 1982-09-30 Apparatus for pulling up single crystal Granted JPS5964591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17282082A JPS5964591A (en) 1982-09-30 1982-09-30 Apparatus for pulling up single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17282082A JPS5964591A (en) 1982-09-30 1982-09-30 Apparatus for pulling up single crystal

Publications (2)

Publication Number Publication Date
JPS5964591A JPS5964591A (en) 1984-04-12
JPS644998B2 true JPS644998B2 (en) 1989-01-27

Family

ID=15948973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17282082A Granted JPS5964591A (en) 1982-09-30 1982-09-30 Apparatus for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPS5964591A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046993A (en) * 1983-08-23 1985-03-14 Sumitomo Electric Ind Ltd Device for pulling up single crystal
JPS6046998A (en) * 1983-08-26 1985-03-14 Sumitomo Electric Ind Ltd Pulling up of single crystal and its device
JPS6153187A (en) * 1984-08-24 1986-03-17 Sony Corp Device for growing single crystal
DE19959416C1 (en) * 1999-12-09 2001-03-15 Freiberger Compound Mat Gmbh Heating element for heating a melt crucible in the production of gallium arsenide single crystals has a hollow body comprising first hollow cylindrical section and a second section

Also Published As

Publication number Publication date
JPS5964591A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US5487355A (en) Semiconductor crystal growth method
US4863554A (en) Process for pulling a single crystal
JPS6046998A (en) Pulling up of single crystal and its device
US5951758A (en) Method and apparatus for the growth of a single crystal
EP0219966B1 (en) Process for pulling a crystal
JPS5957986A (en) Method for pulling up single crystal
JPS644998B2 (en)
EP0141649B1 (en) An apparatus for pulling a single crystal
EP1538242A1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
JPH04104988A (en) Growth of single crystal
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
US6045767A (en) Charge for vertical boat growth process and use thereof
JPS58130195A (en) Pulling apparatus for single crystalline silicon
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPS60180993A (en) Pulling method of gaas single crystal
JPS59232996A (en) Method and device for pulling up single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0699228B2 (en) Single crystal pulling method
JPH02283693A (en) Method and device for preparing silicon single crystal