JPH05319973A - Single crystal production unit - Google Patents

Single crystal production unit

Info

Publication number
JPH05319973A
JPH05319973A JP13253692A JP13253692A JPH05319973A JP H05319973 A JPH05319973 A JP H05319973A JP 13253692 A JP13253692 A JP 13253692A JP 13253692 A JP13253692 A JP 13253692A JP H05319973 A JPH05319973 A JP H05319973A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crucible
solid
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13253692A
Other languages
Japanese (ja)
Other versions
JP3018738B2 (en
Inventor
Hideo Okada
英夫 岡田
Makoto Saito
真 斉藤
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4132536A priority Critical patent/JP3018738B2/en
Publication of JPH05319973A publication Critical patent/JPH05319973A/en
Application granted granted Critical
Publication of JP3018738B2 publication Critical patent/JP3018738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a single crystal production unit designed to improve the quality of single-crystal by providing a gas flow baffle close to the solid-liquid interface. CONSTITUTION:A seed crystal 6 is put at one end of a crucible 5 held by a susceptor 4. The crucible 5 is then charged with a group III-V compound semiconductor material such as GaAs polycrystal and a sealer 9 such as B2O3 and the material is heated and melted through an exothermic element 3 along with application of electric power on an auxiliary heater 13 in an Ar atmosphere. The heat disturbance near the solid-liquid interface 10 due to the convection of a gas filled is controlled by a gas flow baffle 12 set at the same level as that of the interface 10 between a single crystal 7 and a material melt 8. Also, owing to the set position for the auxiliary heater 13, the temperature gradient on the solid side of the interface 10 is allowed to get gentle, preventing unnecessary heat from being given to the liquid phase and controlling thermal flow disturbance. The seed crystal 6 is grown and pulled up to obtain the objective single crystal 7 with high quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶を製造する装置
に関し、より詳しくはブリッジマン法を用いた半導体製
造に好適な単結晶を製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal, and more particularly to an apparatus for producing a single crystal suitable for semiconductor production using the Bridgman method.

【0002】[0002]

【従来の技術】電界効果トランジスタ、ショットキーバ
リアダイオード、集積回路(IC)等の各種半導体素子
類の基板として用いられる半導体単結晶の製造法として
は融液からの結晶成長法が主力である。融液からの結晶
成長法においては結晶成長面(固液界面)の形状を結晶
成長の開始時から終了時まで精密に制御することが要求
される。
2. Description of the Related Art As a method for producing a semiconductor single crystal used as a substrate for various semiconductor elements such as a field effect transistor, a Schottky barrier diode, and an integrated circuit (IC), a crystal growth method from a melt is the main method. In the crystal growth method from the melt, it is required to precisely control the shape of the crystal growth surface (solid-liquid interface) from the start to the end of crystal growth.

【0003】融液からの結晶成長法の1つである引上法
ではるつぼの回転速度や結晶の回転速度の制御、引上速
度の制御等により結晶成長面の制御を行なっている。し
かし引上法では温度勾配が大きく転移密度が低減できな
い。低温度勾配下で定径な低転位密度結晶作成法として
は直径制御不要なボート法が適している。ボート法には
横型と縦型とあるが、大口径化にはるつぼ内で融液をそ
のまま固化させ、単結晶を得る垂直ボート成長法が有力
である。垂直ボート成長法には垂直ブリッジマン法(V
B法)及び温度勾配凝固法(VGF法)がある。前者の
VB法は主ヒーターと、るつぼとの相対的位置を機械的
に変化させて単結晶を成長させる方法であり、後者のV
GF法はヒーターと、るつぼの位置関係を変化させずに
ヒーターの温度分布を変化させて単結晶を成長させる方
法である。この垂直ブリッジマン法あるいはVGF法は
大口径円形ウエハの製造に適している。しかしながらこ
のボート法は、成長中の結晶を回転させながら融液から
引上げ、固化させるという引上法と比べ、静的な状態変
化を特徴とするため、上記回転速度の制御等による結晶
成長面の制御は不可能であり、ホットゾーン構造の工夫
により結晶成長面の制御を行なっていた。
In the pulling method, which is one of the crystal growing methods from the melt, the crystal growth surface is controlled by controlling the rotation speed of the crucible and the rotation speed of the crystal, and controlling the pulling speed. However, the pulling method has a large temperature gradient and cannot reduce the dislocation density. The boat method, which does not require diameter control, is suitable as a method for producing a low-dislocation-density crystal that has a constant diameter under a low temperature gradient. The boat method includes a horizontal type and a vertical type, and for increasing the diameter, the vertical boat growth method, in which the melt is solidified in the crucible as it is to obtain a single crystal, is effective. The vertical Bridgman method (V
B method) and the temperature gradient coagulation method (VGF method). The former VB method is a method of growing a single crystal by mechanically changing the relative positions of the main heater and the crucible, and the latter VB method.
The GF method is a method of growing a single crystal by changing the temperature distribution of the heater without changing the positional relationship between the heater and the crucible. The vertical Bridgman method or the VGF method is suitable for manufacturing a large-diameter circular wafer. However, this boat method is characterized by a static state change as compared with the pulling-up method in which the growing crystal is pulled from the melt while rotating and is solidified, so that the crystal growth surface of the crystal growth surface is controlled by controlling the rotation speed. Control is impossible, and the crystal growth plane is controlled by devising the hot zone structure.

【0004】第4図にその一例を示す(W.A.Gau
lt et.al.J.C.G74(1986)491
〜506頁)。第4図においてるつぼ5内に原料融液8
を作製し、るつぼ底部に収容した種結晶6より上方に向
かって周期律表IIIb族およびVb族元素からなる無
機化合物半導体(以下「III−V族化合物半導体」と
いう)の単結晶を固化させる(結晶7)結晶成長方法
(例えば垂直ブリッジマン法等)において、るつぼ5を
保持するサセプター4に溝14を形成し、サセプター4
近傍の熱環境および熱流の制御を試みた例である。第5
図(a)、(b)中の矢印はそれぞれ結晶成長の初期お
よび後期の熱流を示したものである。溝14を設けたサ
セプター4を用いることにより、結晶成長の初期におい
て結晶からの熱の散逸を制御することができる。すなわ
ち、サセプターに断熱部となる溝を設けることによりサ
セプターを通る熱流のうち横方向への熱流を抑制し、結
晶の横方向への熱流を制御し得る。しかしながら、溝を
設けたこのようなサセプターで熱流を制御する方法で
は、その効果は当然サセプター近傍にかぎられ、サセプ
ターから離れた場所では著しく小さくなる。第5図
(b)に示すように、サセプターから離れた、結晶成長
の後期においては、第5図(a)と比べ溝を設けたサセ
プターの効果はほとんど無く、横方向にも大きな熱流が
存在し、結晶成長の初期と後期で結晶成長面を通る熱流
に大きな差異が生じている。
An example thereof is shown in FIG. 4 (WA Gau).
lt et. al. J. C. G74 (1986) 491
~ 506). In FIG. 4, the raw material melt 8 is placed in the crucible 5.
And a single crystal of an inorganic compound semiconductor (hereinafter referred to as “III-V group compound semiconductor”) made of elements of Group IIIb and Group Vb of the periodic table is solidified upward from the seed crystal 6 housed in the bottom of the crucible ( Crystal 7) In the crystal growth method (for example, vertical Bridgman method), the groove 14 is formed in the susceptor 4 holding the crucible 5, and the susceptor 4
This is an example of trying to control the thermal environment and heat flow in the vicinity. Fifth
The arrows in the figures (a) and (b) indicate the heat flow in the early and late stages of crystal growth, respectively. By using the susceptor 4 provided with the groove 14, it is possible to control heat dissipation from the crystal in the initial stage of crystal growth. That is, by providing a groove serving as a heat insulating portion in the susceptor, the lateral heat flow of the heat flow passing through the susceptor can be suppressed and the lateral heat flow of the crystal can be controlled. However, in the method of controlling the heat flow with such a grooved susceptor, the effect is naturally limited to the vicinity of the susceptor, and becomes significantly small in a place away from the susceptor. As shown in Fig. 5 (b), in the latter stage of crystal growth, which is far from the susceptor, the susceptor provided with the groove has almost no effect as compared with Fig. 5 (a), and a large heat flow also exists in the lateral direction. However, there is a large difference in the heat flow through the crystal growth surface in the early and late stages of crystal growth.

【0005】ところで、融液からの結晶成長において、
結晶成長面の形状は結晶成長面近傍の熱流に大きく依存
しており、結晶成長面の形状を制御するためには、結晶
成長全体にわたって熱流も制御することが必要である。
上記方法による結晶成長では結晶成長後期における熱流
の制御が困難であり、結晶の品質向上のため結晶成長全
体にわたった熱流の制御方法が強く望まれている。そし
てかかる課題を解決すべく、特開平3−80181号公
報では、補助発熱体を用いることも記載されているが、
依然十分ではなかった。
By the way, in crystal growth from a melt,
The shape of the crystal growth surface largely depends on the heat flow in the vicinity of the crystal growth surface, and in order to control the shape of the crystal growth surface, it is necessary to control the heat flow throughout the crystal growth.
In the crystal growth by the above method, it is difficult to control the heat flow in the latter stage of the crystal growth, and a method of controlling the heat flow over the entire crystal growth is strongly desired in order to improve the crystal quality. In order to solve such a problem, JP-A-3-80181 also describes using an auxiliary heating element.
It was still not enough.

【0006】[0006]

【発明が解決しようとする課題】融液からの結晶成長に
おいては、結晶の成長面を結晶成長全体にわたって精密
に制御することが、均一で高品質な結晶を得るために不
可欠であり、そのためには結晶を通る熱流、特に結晶成
長面(固液界面)近傍を通る熱流を精密に制御すること
が必要である。しかしながら従来の方法では上記問題点
を解決するには十分ではなかった。
In crystal growth from a melt, precise control of the crystal growth plane over the entire crystal growth is essential for obtaining uniform and high quality crystals. It is necessary to precisely control the heat flow through the crystal, especially the heat flow near the crystal growth surface (solid-liquid interface). However, the conventional methods have not been sufficient to solve the above problems.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、か
かる課題を解決すべく鋭意検討の結果、固液界面近傍の
ガスの流れを抑えることにより、かかる課題が解決する
ことを見出し本発明に到達した。すなわち本発明の目的
は、結晶成長中の熱の流れを制御することにより、均一
で高品質な単結晶を得られる単結晶製造装置を提供する
ことにあり、かかる目的は、垂直に配置されたるつぼの
一端に単結晶である種結晶を配置し、るつぼ内部に原料
を充填し、該原料を加熱、溶融し、固化して該種結晶を
成長させ、単結晶を得る単結晶製造装置において、固液
界面近傍にガスフローバッフル板を設けることを特徴と
する単結晶製造装置、により容易に達成される。以下、
本発明をより詳細に説明する。
Therefore, as a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by suppressing the gas flow near the solid-liquid interface. Reached That is, an object of the present invention is to provide a single crystal manufacturing apparatus capable of obtaining a uniform and high-quality single crystal by controlling the flow of heat during crystal growth. A seed crystal, which is a single crystal, is placed at one end of the crucible, the raw material is filled in the crucible, the raw material is heated, melted, and solidified to grow the seed crystal. This is easily achieved by a single crystal production apparatus characterized by providing a gas flow baffle plate near the solid-liquid interface. Less than,
The present invention will be described in more detail.

【0008】図1は本発明の一実施態様を示す図であ
る。装置全体は、外壁として気密容器壁1の中に入って
おり、そのすぐ内側には保温材2がある。そしてその内
側には発熱体3がサセプター4に保持されたるつぼ5の
周囲を囲んで配置されている。るつぼ5の内部には種結
晶6、種結晶6より成長した単結晶7、原料融液8、そ
して封止材9が入れられている。固液界面は10であ
る。サセプター4は支持棒11に接続され、この支持棒
11を上下動させることにより、固液界面10を一定の
位置に保つ。かかる装置は従来用いられている単結晶製
造装置をそのまま用いればよい。本発明の特徴部分はほ
ぼ固液界面と実質的に同じ位置に設けられたガスフロー
バッフル板12にある。このガスフローバッフル板12
により、周囲を充填している気体の対流による、固液界
面10近傍の熱の乱れを抑制する。従ってこのガスフロ
ーバッフル板12は、固液界面10の近傍に配置され
る。特に好ましくは固液界面10と同一の面上にあるこ
とである。サセプター4とガスフローバッフル板の間隔
は狭いほど本発明の効果を得るためには好ましい。しか
しながら実際にはサセプター4を上下動させるために多
少の隙間が必要である。この隙間は装置の精度にもよる
が、2mm以下程度が一般的である。更に好ましくは、
ガスフローバッフル板12から見て固体側に、補助ヒー
ター13を配置することである。これにより、固液界面
10の固体側の温度勾配を、より緩やかにすることがで
き、かつ補助ヒーター13の熱が、液相側に不要な熱を
与えることを防ぐことができ、熱流の乱れを最小限に抑
えられるという効果も期待できる。ガスフローバッフル
板12の厚さは気体の対流を防ぐだけでも効果があるの
で特に限定されないが、補助ヒーター13を用いる場合
は、該ヒーターの熱を断熱できる厚さであればより好ま
しい。また材質は特に限定されないが、使用温度を考慮
すればグラファイトが好ましい。
FIG. 1 is a diagram showing an embodiment of the present invention. The entire apparatus is contained in the airtight container wall 1 as an outer wall, and the heat insulating material 2 is located immediately inside thereof. The heating element 3 is arranged inside the crucible 5 held by the susceptor 4 so as to surround the crucible 5. A seed crystal 6, a single crystal 7 grown from the seed crystal 6, a raw material melt 8, and a sealing material 9 are placed inside the crucible 5. The solid-liquid interface is 10. The susceptor 4 is connected to the support rod 11, and the support rod 11 is moved up and down to keep the solid-liquid interface 10 at a constant position. As such an apparatus, a conventionally used single crystal manufacturing apparatus may be used as it is. The characteristic part of the present invention resides in the gas flow baffle plate 12 provided at substantially the same position as the solid-liquid interface. This gas flow baffle plate 12
This suppresses heat turbulence near the solid-liquid interface 10 due to convection of the gas filling the surroundings. Therefore, the gas flow baffle plate 12 is arranged near the solid-liquid interface 10. Particularly preferably, it is on the same surface as the solid-liquid interface 10. The smaller the distance between the susceptor 4 and the gas flow baffle plate, the more preferable it is to obtain the effects of the present invention. However, in reality, some clearance is required to move the susceptor 4 up and down. This gap is generally about 2 mm or less, though it depends on the accuracy of the device. More preferably,
The auxiliary heater 13 is arranged on the solid side when viewed from the gas flow baffle plate 12. As a result, the temperature gradient on the solid side of the solid-liquid interface 10 can be made gentler, and the heat of the auxiliary heater 13 can be prevented from giving unnecessary heat to the liquid phase side, and the heat flow is disturbed. It can be expected that the effect can be minimized. The thickness of the gas flow baffle plate 12 is not particularly limited because it is effective only by preventing gas convection, but when the auxiliary heater 13 is used, it is more preferable that the heat of the heater can be insulated. The material is not particularly limited, but graphite is preferable in consideration of the operating temperature.

【0009】[0009]

【実施例】【Example】

実施例1 第1図に横型的に示すようにガスフローバッフル板、補
助ヒーターを有する単結晶製造装置を用いて炉内温度分
布を測定した。用いたガスフローバッフル板はグラファ
イト製で内径97mm、厚さ9mm、補助ヒーター内径
130mm、発熱長20mmである。なお、サセプター
外径は94mmである。サセプター中央部がガスフロー
バッフル板の真横になるよう配置し、炉中央部の縦方向
温度分布を測定した。その結果を第2図に示す。線1は
補助ヒーター電力を印加しなかった場合、線2は補助ヒ
ーター0.5kW印加した場合である。比較のためガス
フローバッフル板を用いなかった場合の温度分布を線3
で示す。これから、ガスフローバッフル板があれば、バ
ッフル板の直下に均熱領域ができることがわかる。更
に、補助ヒーターを0.5kW印加すると均熱状態が更
に改良されることがわかる。
Example 1 The temperature distribution in the furnace was measured using a single crystal production apparatus having a gas flow baffle plate and an auxiliary heater as shown in a horizontal form in FIG. The gas flow baffle plate used was made of graphite and had an inner diameter of 97 mm, a thickness of 9 mm, an auxiliary heater inner diameter of 130 mm, and a heat generation length of 20 mm. The outer diameter of the susceptor is 94 mm. The central part of the susceptor was arranged right next to the gas flow baffle plate, and the temperature distribution in the longitudinal direction of the central part of the furnace was measured. The results are shown in FIG. Line 1 is the case where the auxiliary heater power is not applied, and line 2 is the case where the auxiliary heater 0.5 kW is applied. For comparison, the temperature distribution when the gas flow baffle plate is not used is shown in line 3.
Indicate. From this, it can be seen that if there is a gas flow baffle plate, a soaking area can be formed immediately below the baffle plate. Further, it can be seen that the soaking state is further improved by applying 0.5 kW of the auxiliary heater.

【0010】実施例2 第1図に示した単結晶製造装置を用いて本発明のGaA
s単結晶を成長させた。φ3インチpBNルツボにGa
As多結晶1.5kg、B23300gをチャージし、
補助ヒーター0.6kW印加して結晶成長行った。雰囲
気ガスはArで7気圧である。種結晶は<100>方位
を用いた。長さ8cmにわたって単結晶が作成できた。
得られた単結晶を引上げ軸に垂直に(100)で切断し
て390℃でKOHエッチングで10分間処理した。
(100)面内のEPD分布を図3に示す。面内で均一
で平均値4400/cm2と低かった。
Example 2 GaA of the present invention was produced by using the single crystal production apparatus shown in FIG.
s single crystal was grown. Ga in φ3 inch pBN crucible
Charge As polycrystal 1.5kg, B 2 O 3 300g,
Crystal growth was performed by applying an auxiliary heater of 0.6 kW. The atmosphere gas is Ar and the pressure is 7 atm. The seed crystal used <100> orientation. A single crystal could be formed over a length of 8 cm.
The obtained single crystal was cut at (100) perpendicular to the pulling axis and treated by KOH etching at 390 ° C. for 10 minutes.
The EPD distribution in the (100) plane is shown in FIG. It was uniform in the plane and had a low average value of 4400 / cm 2 .

【0011】[0011]

【発明の効果】本発明は次のような顕著な効果を奏する
ので産業上の利用価値は大である。 (1) 転位密度分布が均一でリネージ構造がない。 (2) (100)面内の転位密度がEPDで測定して
従来の単結晶の約1/2以下となった。
INDUSTRIAL APPLICABILITY Since the present invention has the following remarkable effects, it has great industrial utility value. (1) Dislocation density distribution is uniform and there is no lineage structure. (2) The dislocation density in the (100) plane was about 1/2 or less of that of the conventional single crystal as measured by EPD.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の単結晶製造装置の一例を示す
説明図である。
FIG. 1 is an explanatory view showing an example of a single crystal production apparatus of the present invention.

【図2】図2は、本発明の実施例1に用いた装置と、従
来型の装置を用いた場合の炉中央部の温度分布を示す図
である。
FIG. 2 is a diagram showing a temperature distribution in a central portion of the furnace when the apparatus used in Example 1 of the present invention and a conventional apparatus are used.

【図3】図3は、本発明の実施例2によって作製した単
結晶基板の欠陥の状態をEPDによって示した図であ
る。
FIG. 3 is a diagram showing by EPD the state of defects in the single crystal substrate manufactured according to Example 2 of the present invention.

【図4】図4は、従来からある単結晶製造装置の説明図
である。
FIG. 4 is an explanatory diagram of a conventional single crystal manufacturing apparatus.

【図5】図5は、図4の装置を用いた時の熱の流れを示
す説明図である。
5 is an explanatory diagram showing a heat flow when the apparatus of FIG. 4 is used.

【符号の説明】[Explanation of symbols]

1:気密容器 2:保温材 3:発熱体 4:サセプタ
ー 5:るつぼ 6:種結晶 7:結晶 8:原料融液
9:封止材 10:固液界面 11:支持軸12:ガ
スフローバッフル板 13:補助ヒーター 14:溝
1: Airtight container 2: Heat insulating material 3: Heating element 4: Susceptor 5: Crucible 6: Seed crystal 7: Crystal 8: Raw material melt 9: Sealing material 10: Solid-liquid interface 11: Support shaft 12: Gas flow baffle plate 13: Auxiliary heater 14: Groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 垂直に配置されたるつぼの一端に単結
晶である種結晶を配置し、るつぼ内部に原料を充填し、
該原料を加熱、溶融し、固化して該種結晶を成長させ、
単結晶を得る単結晶製造装置において、固液界面近傍に
ガスフローバッフル板を設けることを特徴とする単結晶
製造装置。
1. A seed crystal, which is a single crystal, is arranged at one end of a crucible arranged vertically, and a raw material is filled inside the crucible,
The raw material is heated, melted and solidified to grow the seed crystal,
A single crystal manufacturing apparatus for obtaining a single crystal, wherein a gas flow baffle plate is provided near a solid-liquid interface.
【請求項2】 ガスフローバッフル板から見て固相側
に、該原料を加熱、溶融する主発熱体とるつぼの外壁と
の間に局所加熱ヒーターを設ける請求項1記載の単結晶
製造装置。
2. The single crystal production apparatus according to claim 1, wherein a local heating heater is provided between the main heating element for heating and melting the raw material and the outer wall of the crucible on the solid phase side as seen from the gas flow baffle plate.
JP4132536A 1992-05-25 1992-05-25 Single crystal manufacturing equipment Expired - Fee Related JP3018738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132536A JP3018738B2 (en) 1992-05-25 1992-05-25 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132536A JP3018738B2 (en) 1992-05-25 1992-05-25 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH05319973A true JPH05319973A (en) 1993-12-03
JP3018738B2 JP3018738B2 (en) 2000-03-13

Family

ID=15083576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132536A Expired - Fee Related JP3018738B2 (en) 1992-05-25 1992-05-25 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3018738B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150136A (en) * 2010-03-05 2010-07-08 Nippon Mining & Metals Co Ltd Apparatus for producing compound semiconductor single crystal and method for production thereof
WO2015148181A1 (en) * 2014-03-27 2015-10-01 Varian Semiconductor Equipment Associates, Inc. Apparatus for controlling heat flow within a silicon melt
CN114908424A (en) * 2022-04-29 2022-08-16 合肥天曜新材料科技有限公司 High-resistance tellurium-zinc-cadmium crystal preparation device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150136A (en) * 2010-03-05 2010-07-08 Nippon Mining & Metals Co Ltd Apparatus for producing compound semiconductor single crystal and method for production thereof
WO2015148181A1 (en) * 2014-03-27 2015-10-01 Varian Semiconductor Equipment Associates, Inc. Apparatus for controlling heat flow within a silicon melt
CN106133208A (en) * 2014-03-27 2016-11-16 瓦里安半导体设备公司 Silicon melt controls the device of hot-fluid
US10415151B1 (en) 2014-03-27 2019-09-17 Varian Semiconductor Equipment Associates, Inc Apparatus for controlling heat flow within a silicon melt
CN114908424A (en) * 2022-04-29 2022-08-16 合肥天曜新材料科技有限公司 High-resistance tellurium-zinc-cadmium crystal preparation device and method
CN114908424B (en) * 2022-04-29 2023-10-20 合肥天曜新材料科技有限公司 Preparation device and method for high-resistance tellurium-zinc-cadmium crystal

Also Published As

Publication number Publication date
JP3018738B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JPS6046998A (en) Pulling up of single crystal and its device
KR20000075400A (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
JP3018738B2 (en) Single crystal manufacturing equipment
JP2758038B2 (en) Single crystal manufacturing equipment
JP3042168B2 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0380180A (en) Device for producing single crystal
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JP2977297B2 (en) Crystal manufacturing method
JPH0316988A (en) Production device of single crystal of compound semiconductor
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPH01145395A (en) Production of compound semiconductor single crystal
JPH02248399A (en) Method for growing mixed crystal-type compound semiconductor
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JPS62207799A (en) Method and device for producing iii-v compound semiconductor single crystal
JPS60122793A (en) Device for growing single crystal of compound semiconductor
JPH05170594A (en) Production of single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees