JPH05116B2 - - Google Patents

Info

Publication number
JPH05116B2
JPH05116B2 JP58211911A JP21191183A JPH05116B2 JP H05116 B2 JPH05116 B2 JP H05116B2 JP 58211911 A JP58211911 A JP 58211911A JP 21191183 A JP21191183 A JP 21191183A JP H05116 B2 JPH05116 B2 JP H05116B2
Authority
JP
Japan
Prior art keywords
waste liquid
tank
water
liquid
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58211911A
Other languages
Japanese (ja)
Other versions
JPS60102905A (en
Inventor
Nobumasa Kamyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21191183A priority Critical patent/JPS60102905A/en
Publication of JPS60102905A publication Critical patent/JPS60102905A/en
Publication of JPH05116B2 publication Critical patent/JPH05116B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は廃液の処理方法、特には、廃液からの
澄水の回収率を増加させて処分すべき廃液量を顕
著に減らすことができる廃液の処理方法に関す
る。従来、廃液を処理して再利用可能な水に還元
するために、限外ロ過器(以下、UFという)や
逆浸透ロ過器(以下、ROという)を使用する方
式が採用されている。UFは、一般に20Å以上の
大きさの廃液成分を分離し、ROは一般に5〜20
Åの大きさの廃液成分を分離できるものである。
廃液中に含まれるイオン化物質、界面活性剤、着
色成分、臭気成分などはROで分離される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating waste liquid, and more particularly to a method for treating waste liquid, which can increase the recovery rate of clear water from waste liquid and significantly reduce the amount of waste liquid to be disposed of. Conventionally, methods using ultrafilters (hereinafter referred to as UF) and reverse osmosis filters (hereinafter referred to as RO) have been adopted to treat waste liquid and reduce it to reusable water. . UF generally separates waste liquid components with a size of 20 Å or larger, and RO generally separates effluent components with a size of 5 to 20 Å.
It is capable of separating waste liquid components with a size of Å.
Ionized substances, surfactants, coloring components, odor components, etc. contained in the waste liquid are separated by RO.

ここで、UFとは、ロ過しようとする廃液に圧
力をかけ、高分子物質やコロイド状物質を半透膜
によつて阻止し、水および水に含まれる低分子物
質を半透膜の膜面に無数に存在する微細な孔を通
して透過させるロ過技術である。
Here, UF refers to applying pressure to the waste liquid to be filtered, blocking high molecular substances and colloidal substances with a semi-permeable membrane, and removing water and low molecular substances contained in water through the semi-permeable membrane. This is a filtration technology that allows water to pass through the countless microscopic pores that exist on the surface.

また、ROはロ過しようとする濃厚溶液(廃
液)と濃厚溶液より希薄な希薄溶液を半透膜で仕
切り、濃厚溶液側に浸透圧より大きい圧力をかけ
ることにより、浸透現像とは逆に溶媒が濃厚溶液
側から希薄溶液側に移動することを利用したロ過
技術である。これによつて、バクテリア、コロイ
ドなどの他、溶解塩類(イオン)、低分子有機物
などもロ過できるものである。
In addition, in RO, the concentrated solution (waste liquid) to be filtered and the dilute solution, which is more dilute than the concentrated solution, are separated by a semi-permeable membrane, and a pressure greater than the osmotic pressure is applied to the concentrated solution side. This is a filtration technology that utilizes the movement of water from the concentrated solution side to the dilute solution side. This makes it possible to filter out bacteria, colloids, and other substances such as dissolved salts (ions) and low-molecular organic matter.

ところで、本発明者は、廃液処理によつて、で
きるだけ多く再利用可能な水を還元するために
ROの前処理としてUF処理を行うことを試みた。
しかし、廃液をUFで処理し、次いでROで処理
するだけのものであつたために、廃液から回収さ
れる再利用可能な水量は少なく、従つて濃縮水が
多くなり、廃液処理コストが高いものになつてい
た。また、水資源の効率的利用も図られないもの
であつた。
By the way, the present inventor has developed a method to reduce as much reusable water as possible through waste liquid treatment.
We attempted to perform UF treatment as a pretreatment for RO.
However, since the waste liquid was simply treated with UF and then treated with RO, the amount of reusable water recovered from the waste liquid was small, resulting in a large amount of concentrated water, resulting in high waste liquid treatment costs. I was getting used to it. Furthermore, efficient use of water resources was not possible.

而して本発明は、廃液から回収される再利用可
能な水量を大幅に増すことができる廃液処理方法
を提供することを主たる目的とする。
Therefore, the main object of the present invention is to provide a waste liquid treatment method that can significantly increase the amount of reusable water recovered from waste liquid.

本発明による廃液処理方法は廃液をUFにより
ロ過する第1工程、第1工程のロ過液をROによ
りロ過する第2工程、および第2工程の濃縮液を
冷却処理後再度UFとROでロ過する第3工程を
有することを特徴とするものである。
The waste liquid treatment method according to the present invention includes a first step in which the waste liquid is filtered through UF, a second step in which the filtrate from the first step is filtered through RO, and a concentrated liquid in the second step is cooled and then re-filtered with UF and RO. This method is characterized by having a third step of filtering through the filter.

本発明による廃液処理方法においては、ROで
濃縮された濃縮液をそのまま廃棄しないで再度
UFとROでロ過処理するものであるが、再度UF
とROでロ過処理する前にUFの濃縮液を冷却処
理する。この冷却処理によつて、濃縮液中に含有
する溶解成分が析出し、この析出物は再度のUF
により分離されることができる。このため、再度
のUFのロ過液には一度ROで濃縮された濃縮液
であるにも拘らず溶解成分は濃縮液よりずつと少
なくなつており、再度のROによるロ過において
再利用可能な水分を効率よく再度ロ過することが
できるようになるものである。即ち、ROは処理
しようとする液中の溶解成分の濃度が一定以上に
なるとロ過液中に溶解成分が混入してロ過機能を
失う。これは、処理しようとする液を高圧(例え
ば40Kg/cm2〜60Kg/cm2)にしてROによるロ過を
行うため、処理しようとする液中にあまり多くの
溶解成分を含むと、その溶解成分まで半透膜から
押し出されてしまうからである。また、ROの半
透膜は非常に小さい多数の穴があるが、処理しよ
うとする液中にあまり多くの溶解成分を含むとロ
過中に穴が溶解成分の析出で塞がれてROのロ過
機能を短期間に失つてしまうが、本発明では冷却
処理によつて処理しようとする液中の溶解成分は
低く押えられているので、ROの使用可能期間を
著しく長くすることができるものである。
In the waste liquid treatment method according to the present invention, the concentrated liquid concentrated by RO is not discarded as it is, but is recycled again.
UF and RO process RO, but UF again
The UF concentrate is then cooled before being filtered through RO. By this cooling process, the dissolved components contained in the concentrate precipitate, and this precipitate is re-treated with UF.
can be separated by Therefore, even though the UF filtrate has been concentrated by RO once, the amount of dissolved components in the UF filtrate is gradually decreasing compared to the concentrated solution, and it can be reused in the second RO filtration. This allows moisture to be filtered out again efficiently. That is, when the concentration of dissolved components in the liquid to be treated exceeds a certain level, the dissolved components are mixed into the filtrate and the RO loses its filtration function. This is because the liquid to be treated is subjected to high pressure (e.g. 40Kg/cm 2 - 60Kg/cm 2 ) and filtration is performed using RO, so if the liquid to be treated contains too many dissolved components, they will dissolve. This is because even the components are pushed out through the semipermeable membrane. In addition, the semipermeable membrane of RO has many very small holes, but if the liquid to be treated contains too many dissolved components, the holes will become clogged with precipitation of dissolved components during filtration, and the RO However, in the present invention, the dissolved components in the liquid to be treated are suppressed to a low level through the cooling process, so the usable period of the RO can be significantly extended. It is.

冷却処理によるROの濃縮液からの溶解成分の
析出は、温度差による溶解度の違いを利用したも
のであり、具体的には、UFおよびROは処理し
ようとする液の加圧下で用いられるため処理液の
温度が上昇し、それに伴いROからの濃縮水には
より多くの溶解成分が含まれることになる。これ
を冷却することによつて、溶解成分の一部を析出
させることができるものである。この冷却温度
は、溶解成分の析出を生じさせることができる範
囲に適宜設定されるが、一般には25℃以下、特に
は20℃以下が好適である。
Precipitation of dissolved components from the concentrated liquid of RO by cooling treatment takes advantage of the difference in solubility due to temperature difference. Specifically, since UF and RO are used under pressure of the liquid to be treated, As the temperature of the liquid increases, the concentrated water from RO will contain more dissolved components. By cooling this, a part of the dissolved components can be precipitated. This cooling temperature is appropriately set within a range that allows precipitation of dissolved components, but is generally preferably 25°C or lower, particularly 20°C or lower.

このようにして、本発明による廃液処理方法に
よれば、単にUFとORとを組合せた方法に較べ
数倍以上の再利用可能な水分を廃液から回収で
き、さらに廃液処理装置、特にROの寿命を大幅
に長くすることができるものである。また、本発
明による廃液処理方法は自動化処理に適するよう
に循環方式として実施することができる。即ち、
ROの濃縮水を冷却後、はじめに用いたUFおよ
びROに導びくことによつて廃液を循環させなが
らROから継続的にロ過液として再使用可能な水
分を回収することができる。このときROからの
濃縮水の一部は除去されてもよい。また、本発明
による廃液処理方法は、一般に工場から廃出され
る液の処理として広く利用できるものである。即
ち、一般の工場廃液には、Pb,As,Zn,Ba,
Na,Fe,BおよびLaなどの金属イオン、SO4 2-
OH-,Cl-などの非金属イオン、ベンゼン、塩化
エチレン、多価アルコールなどの溶剤および各種
オイル、界面活性剤などを溶解成分として又は微
粒子として含有しており、本発明では、UFと
ROを併用することによつてこれらの工場廃液を
処理できるものである。
In this way, according to the waste liquid treatment method of the present invention, several times more reusable water can be recovered from the waste liquid compared to a method that simply combines UF and OR, and the waste liquid treatment equipment, especially RO, can have a long lifespan. can be significantly lengthened. Further, the waste liquid treatment method according to the present invention can be implemented as a circulation method so as to be suitable for automated treatment. That is,
After the concentrated water from the RO is cooled, it is guided to the UF and RO that were used initially, thereby allowing the waste liquid to be circulated and water that can be reused as a filtrate to be continuously recovered from the RO. At this time, part of the concentrated water from the RO may be removed. Furthermore, the waste liquid treatment method according to the present invention can be widely used for treating liquid generally discharged from factories. In other words, general factory waste liquid contains Pb, As, Zn, Ba,
Metal ions such as Na, Fe, B and La, SO 4 2- ,
It contains nonmetallic ions such as OH - and Cl -, solvents such as benzene, ethylene chloride, and polyhydric alcohols, various oils, and surfactants as dissolved components or as fine particles.
These factory waste liquids can be treated by using RO together.

実施例 第1図に本実施例で用いた廃水処理装置を示
す。レンズ洗浄研摩廃液の上澄液である廃液1を
タンク2に収容する。この廃液はタンクからポン
プ3によつてパイプ4を通つてUF(商品名:
AEC6050,旭化成製)5,6,7,8および9
に1.5Kg/cm2の圧力でかけられる。UFにより分離
された濃縮液はパイプ10および11を通つてタ
ンク12に収容される。この濃縮液は廃棄物とし
て処理される。UFからのロ過液はパイプ13を
通つてタンク14およびさらにパイプ16を通つ
てタンク15に収容される。タンク15は予備タ
ンクであると同時に、UFの半透膜が目詰まりを
生じてロ過作用が低下したときにポンプ17によ
りタンク15に収容されているロ過液をパイプ3
1を通してタンク14に還流させ、さらにパイプ
13を逆流させてUFを洗浄するものである。タ
ンク14に収容されたロ過液はパイプ18を通つ
て50Kg/cm2の圧力でRO(商品名:SP110,東レ
製)19および20にかけられる。RO19およ
び20からのロ過液はパイプ26,27および2
5を通つて再利用可能な水分としてタンク28に
収容される。RO19および20からの濃縮液は
再度RO23にかけられ、そのロ過液はパイプ2
4および25を通つてタンク28に収容される。
RO23からの濃縮液はパイプ29を通つて冷却
器30により冷却されてからタンク2に戻され、
再度UFおよびROに循環してかけられる。
Example FIG. 1 shows the wastewater treatment equipment used in this example. A waste liquid 1, which is a supernatant liquid of lens cleaning and polishing waste liquid, is stored in a tank 2. This waste liquid is passed from the tank through a pipe 4 by a pump 3 to UF (product name:
AEC6050, manufactured by Asahi Kasei) 5, 6, 7, 8 and 9
is applied at a pressure of 1.5Kg/cm 2 . The concentrated liquid separated by the UF is stored in a tank 12 through pipes 10 and 11. This concentrated liquid is treated as waste. The filtrate from the UF is received through pipe 13 into tank 14 and further through pipe 16 into tank 15. The tank 15 is a reserve tank, and at the same time, when the semi-permeable membrane of the UF becomes clogged and the filtration effect decreases, the pump 17 pumps the filtrate stored in the tank 15 to the pipe 3.
1 to the tank 14, and further flows back through the pipe 13 to wash the UF. The filtrate contained in the tank 14 passes through a pipe 18 and is applied to RO (trade name: SP110, manufactured by Toray) 19 and 20 at a pressure of 50 kg/cm 2 . The filtrate from RO19 and 20 is passed through pipes 26, 27 and 2.
5 and is stored in a tank 28 as reusable water. The concentrated liquid from RO19 and 20 is passed through RO23 again, and the filtrate is passed through pipe 2.
4 and 25, and is stored in tank 28.
The concentrate from the RO 23 passes through the pipe 29 and is cooled by the cooler 30 before being returned to the tank 2.
It is cycled through UF and RO again.

このようにして、8トンの廃水を処理した結果
タンク28に回収された再利用可能な水量は5.12
トンであつた。また、ROからの濃縮液の20%は
再度UFにかけないで廃棄した。なお、UFでのロ
過温度は27℃、ROでのロ過温度は42℃、および
冷却温度は18℃であつた。またROの耐久使用期
間は1年以上であつた。また、比較として廃液を
UFとROで順次1回処理した場合には、回収さ
れた再使用可能な水量は1.5トンに過ぎなかつた。
また、冷却処理をしないで廃液処理を連続的に2
週間行つた場合には、タンク28に回収された水
量は2トンになつてしまい、回収水の電導度の初
期10μから150μと増大しており、再利用可能
な水分とならなかつた。冷却処理をした場合に
は、10μと不変であつた。また、冷却処理をし
なかつた場合にはROの耐久使用時間は2週間に
過ぎなかつた。
As a result of treating 8 tons of wastewater in this way, the amount of reusable water recovered in tank 28 is 5.12
It was a ton. Additionally, 20% of the concentrate from RO was discarded without being subjected to UF again. The filtration temperature in UF was 27°C, the filtration temperature in RO was 42°C, and the cooling temperature was 18°C. Moreover, the durable use period of RO was more than one year. Also, for comparison, waste liquid
In one sequential treatment with UF and RO, only 1.5 tons of reusable water was recovered.
In addition, waste liquid treatment can be carried out continuously without cooling treatment.
When the process was carried out for a week, the amount of water collected in the tank 28 was 2 tons, and the electrical conductivity of the collected water had increased from the initial 10μ to 150μ, and the water could not be reused. When subjected to cooling treatment, it remained unchanged at 10μ. Moreover, when no cooling treatment was performed, the durable use time of RO was only two weeks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による廃液処理方法を実施する
に用いた処理装置のフローチヤート図である。 1……廃液、2……タンク、5〜9……UF、
14……タンク、15……タンク、19,20お
よび23……RO。
FIG. 1 is a flowchart of a treatment apparatus used to carry out the waste liquid treatment method according to the present invention. 1...Waste liquid, 2...Tank, 5-9...UF,
14...tank, 15...tank, 19, 20 and 23...RO.

Claims (1)

【特許請求の範囲】 1 廃液を限外ロ過器によりロ過する第1工程、
第1工程のロ過液を逆浸透ロ過器によりロ過する
第2工程、および第2工程の濃縮液を冷却処理後
再度限外ロ過器と逆浸透ロ過器でロ過する第3工
程を有することを特徴とする廃液処理方法。 2 第2工程の濃縮液のロ過を第1工程の限外ロ
過器を用いて循環させて第3工程を行う特許請求
の範囲第1項記載の廃液処理方法。
[Claims] 1. A first step of filtering the waste liquid using an ultrafilter;
A second step in which the filtrate from the first step is filtered through a reverse osmosis filter, and a third step in which the concentrated liquid from the second step is filtered again through an ultrafilter and a reverse osmosis filter after being cooled. A waste liquid treatment method characterized by comprising a step. 2. The waste liquid treatment method according to claim 1, wherein the third step is carried out by circulating the filtration of the concentrated liquid in the second step using an ultrafilter in the first step.
JP21191183A 1983-11-11 1983-11-11 Treatment of waste liquid Granted JPS60102905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21191183A JPS60102905A (en) 1983-11-11 1983-11-11 Treatment of waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21191183A JPS60102905A (en) 1983-11-11 1983-11-11 Treatment of waste liquid

Publications (2)

Publication Number Publication Date
JPS60102905A JPS60102905A (en) 1985-06-07
JPH05116B2 true JPH05116B2 (en) 1993-01-05

Family

ID=16613692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21191183A Granted JPS60102905A (en) 1983-11-11 1983-11-11 Treatment of waste liquid

Country Status (1)

Country Link
JP (1) JPS60102905A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19517473A1 (en) * 1995-05-12 1996-11-14 Henkel Ecolab Gmbh & Co Ohg Process for wastewater treatment with recovery of drinking water in high product yields
JP3379512B2 (en) 1999-06-30 2003-02-24 セイコーエプソン株式会社 Cleaning apparatus, cleaning method, and method of manufacturing liquid crystal device
KR20020097102A (en) * 2002-11-16 2002-12-31 서영석 Ultrafiltration Reverse Osmosis Compound Purifier
KR100705612B1 (en) * 2004-09-24 2007-04-11 (주)비룡 Rinsing water recovery apparatus of an electro deposit process and recovery method thereof
WO2021078681A1 (en) * 2019-10-24 2021-04-29 Baxter Healthcare Sa A water purification apparatus, and a method for cooling a ro-membrane in a water purification apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152984A (en) * 1974-05-31 1975-12-09
JPS52125476A (en) * 1975-02-28 1977-10-21 Ebara Infilco Co Ltd Treatment of suspension
JPS5325265A (en) * 1976-08-23 1978-03-08 Nippon Abukoo Kk Method of treating solution containing metal ions by using combined superr filter membrane and reverse osmosis membrane
JPS57167786A (en) * 1981-04-08 1982-10-15 Hajime Nakato Treating device for industrial waste water containing colloidal materials
JPS58205501A (en) * 1982-05-26 1983-11-30 Japan Organo Co Ltd Depositing method of electrolyte salts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152984A (en) * 1974-05-31 1975-12-09
JPS52125476A (en) * 1975-02-28 1977-10-21 Ebara Infilco Co Ltd Treatment of suspension
JPS5325265A (en) * 1976-08-23 1978-03-08 Nippon Abukoo Kk Method of treating solution containing metal ions by using combined superr filter membrane and reverse osmosis membrane
JPS57167786A (en) * 1981-04-08 1982-10-15 Hajime Nakato Treating device for industrial waste water containing colloidal materials
JPS58205501A (en) * 1982-05-26 1983-11-30 Japan Organo Co Ltd Depositing method of electrolyte salts

Also Published As

Publication number Publication date
JPS60102905A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
JP4241684B2 (en) Membrane module cleaning method
US6372143B1 (en) Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
JP2007130523A (en) Membrane washing method for water treatment system
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JP2873095B2 (en) Treatment method of waste water in final washing tank in cationic electrodeposition coating
JPH03196802A (en) Removal of acid impurity in process for solvent extraction of aromatics from non-aromatics
JP2001149950A (en) Water treating method and water treating device
JPH05116B2 (en)
JPH05131191A (en) Treatment of drained cleaning water
JPH084728B2 (en) Membrane module cleaning method
JP3622227B2 (en) Method for concentrating waste liquid containing photoresist
JP4490565B2 (en) Method for recovering treatment agent components in metal surface treated rinse water
JPH11253968A (en) Water recovering apparatus
JP2010046562A (en) Resource recovery type water treatment method and system
JP3028391B2 (en) Treatment of plating waste solution
JPH1015356A (en) Water treatment
JP2002085942A (en) Recovery process of liquid chemical component in water used for washing metal surface treatment
JP4635414B2 (en) Cleaning method for reverse osmosis membrane device
RU2048453C1 (en) Method for treatment of sewage water to remove heavy metal ions
JP3128250B2 (en) Rinse water circulation treatment method
Schoeman et al. Evaluation of reverse osmosis for electroplating effluent treatment
CN101684025A (en) Process for treating waste water containing alkali and oil
JP3202506B2 (en) Cleaning wastewater treatment equipment
JPH10137755A (en) Membrane treating device of waste water
KR19980083856A (en) Recycling method of wastewater by electrodialysis and reverse osmosis membrane and its device