JPH05116942A - Production of lead-containing perovskite type multiple oxide powder - Google Patents

Production of lead-containing perovskite type multiple oxide powder

Info

Publication number
JPH05116942A
JPH05116942A JP27533191A JP27533191A JPH05116942A JP H05116942 A JPH05116942 A JP H05116942A JP 27533191 A JP27533191 A JP 27533191A JP 27533191 A JP27533191 A JP 27533191A JP H05116942 A JPH05116942 A JP H05116942A
Authority
JP
Japan
Prior art keywords
lead
powder
perovskite
raw material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27533191A
Other languages
Japanese (ja)
Inventor
Sakiko Iwamoto
咲子 岩本
Harunobu Sano
晴信 佐野
Yukio Hamachi
幸生 浜地
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP27533191A priority Critical patent/JPH05116942A/en
Publication of JPH05116942A publication Critical patent/JPH05116942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a lead-contg. perovskite type multiple oxide powder having a high dielectric constant, excellent sinterability and uniformity and giving dielectric porcelain of small grain size. CONSTITUTION:Powdery starting materials for a lead-contg. perovskite type multiple oxide represented by a general formula Pb(ByB1-y)O3 [where B and B' are di- to hexavalent metals, B and B' may be the same and the valence of (ByB'1-y) is +4] are mixed in a prescribed ratio and this mixture is calcined and pulverized. The resulting powder having 35-75% rate of perovskite formation and <=0.3mum average particle diameter is calcined again and pulverized to produce powder of the lead-contg. perovskite type multiple oxide having >=95% rate of perovskite formation, <=0.5mum average particle diameter and <=8m<2>/g specific surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子部品、特に、積層コ
ンデンサ用誘電体磁器材料として有用な鉛系ペロブスカ
イト型複合酸化物粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lead-based perovskite type complex oxide powder which is useful as a dielectric ceramic material for electronic parts, particularly for a laminated capacitor.

【0002】[0002]

【従来の技術】従来、鉛系ペロブスカイト型複合酸化物
粉末の製造方法としては、該複合酸化物の各構成元素の
酸化物、水酸化物あるいは炭酸塩を原料として用い、こ
れらの原料粉末を所定の比率で配合し、ボールミルなど
により混合した後、仮焼し、次いで粉砕する方法が採用
されている。しかしながら、この方法では、原料粉末を
分子レベルで均一に分散させることは不可能であり、ミ
クロ的に均一な組成の粉末を得ることができないだけで
なく、粒子内部まで完全に反応させるためには1000
℃以上の高温で仮焼しなければならないため、粒子が粗
くなり、また、表面活性が低下して焼結性が阻害される
という問題があった。
2. Description of the Related Art Conventionally, as a method for producing a lead-based perovskite type complex oxide powder, an oxide, hydroxide or carbonate of each constituent element of the complex oxide is used as a raw material, and these raw material powders are prescribed. A method is employed in which the ingredients are blended in a ratio of 1), mixed by a ball mill or the like, calcined, and then pulverized. However, with this method, it is impossible to uniformly disperse the raw material powder at the molecular level, and it is not possible to obtain a powder having a microscopically uniform composition, and in order to completely react even inside the particles, 1000
Since it has to be calcined at a high temperature of ℃ or more, there is a problem that the particles become coarse and the surface activity is lowered and the sinterability is impaired.

【0003】前記乾式法に於ける問題を解決するため、
最近、複合酸化物を構成する金属イオンを含む水溶液
に、カセイソーダ、アンモニア、水酸化テトラメチルア
ンモニウムなどのアルカリ性沈殿剤を加えて前記金属イ
オンを水酸化物混合物として沈殿させ、あるいは前記水
溶液にシュウ酸アンモニウム、シュウ酸、トリクロロ酢
酸、スルファミン酸等を加えて前記金属イオンをシュウ
酸塩、硫酸塩あるいは炭酸塩として沈殿させ、得られた
反応生成物を洗浄、仮焼する、いわゆる湿式法が提案さ
れている。
In order to solve the problems in the dry method,
Recently, an alkaline precipitating agent such as caustic soda, ammonia, or tetramethylammonium hydroxide is added to an aqueous solution containing metal ions forming a complex oxide to precipitate the metal ions as a hydroxide mixture, or oxalic acid is added to the aqueous solution. A so-called wet method is proposed in which ammonium, oxalic acid, trichloroacetic acid, sulfamic acid, etc. are added to precipitate the metal ions as oxalate, sulfate or carbonate, and the obtained reaction product is washed and calcined. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、鉛系複
合酸化物は、磁器内に低誘電率のパイロクロア相が発生
し易く、本来の高誘電率が得にくいという欠点があり、
このパイロクロア相の生成を抑制するためには高温で仮
焼する必要がある。しかしながら、予めペロブスカイト
相の生成率を高めるため高温で仮焼すると、鉛系複合酸
化物の鉛成分が本来的に揮発ないし蒸発し易いため、得
られる磁器の組成に変動を生じ、特性にばらつきが避け
がたいという問題がある。従って、前記湿式法により組
成が均一で微細な反応生成物が得られても、低温で仮焼
すると、パイロクロア相の生成により誘電率の高いもの
が得られず、逆に高温で仮焼すると、鉛成分の揮発ない
し蒸発により組成にばらつきを生じたり、粒子が固くな
り、活性度の高い微細な粒子が得られず、焼結性に劣る
という問題があった。他方、仮焼時若しくは焼成時の鉛
成分の減少を補うため、磁器組成物を調合する際、化学
量論的比率以上の過剰の酸化鉛を添加含有させることが
行われているが、仮焼及び焼成時の雰囲気等による影響
は避けがたく、鉛成分が過剰のまま残ったり、あるいは
不足して、特性のばらつきを防止するという課題は依然
として残されている。
However, the lead-based composite oxide has a drawback that a pyrochlore phase having a low dielectric constant is easily generated in the porcelain, and the original high dielectric constant is difficult to obtain.
In order to suppress the formation of this pyrochlore phase, it is necessary to perform calcination at a high temperature. However, if the calcination is performed at a high temperature in advance to increase the production rate of the perovskite phase, the lead component of the lead-based composite oxide is likely to volatilize or evaporate originally, so that the composition of the obtained porcelain changes and the characteristics vary. There is an unavoidable problem. Therefore, even if a fine reaction product having a uniform composition is obtained by the wet method, if it is calcined at a low temperature, a high dielectric constant cannot be obtained due to the formation of a pyrochlore phase, and conversely if it is calcined at a high temperature, There is a problem that composition is varied due to volatilization or evaporation of the lead component, particles become hard, fine particles with high activity cannot be obtained, and sinterability is poor. On the other hand, in order to compensate for the reduction of the lead component at the time of calcination or firing, when preparing a porcelain composition, it is performed to add and contain an excess of lead oxide in a stoichiometric ratio or more. In addition, the influence of the atmosphere during firing is unavoidable, and the lead component remains excessive or insufficient, and the problem of preventing characteristic variations still remains.

【0005】また、仮焼により粗くなった粒子を細かく
するために、粉砕機によって微粉砕することが行われて
いるが、機械的粉砕では粒径分布の制御が困難であり、
しかも、粉砕処理によって粒子表面の不整化が生じるた
め、焼成時の粒成長が助長され、グレインサイズの小さ
な誘電体磁器を得ることが困難で、積層コンデンサの誘
電体層の薄肉化が困難であった。
Further, in order to make fine particles coarsened by calcination, fine pulverization is carried out by a pulverizer, but it is difficult to control the particle size distribution by mechanical pulverization,
In addition, since the grain surface causes irregularity in the grain surface, grain growth during firing is promoted, it is difficult to obtain a dielectric ceramic with a small grain size, and it is difficult to reduce the thickness of the dielectric layer of the multilayer capacitor. It was

【0006】従って、本発明は、高誘電率で、焼結性及
び均一性に優れ、グレインサイズの小さな誘電体磁器が
得られる鉛系ペロブスカイト型複合酸化物粉末を得るこ
とを目的とするものである。
Therefore, an object of the present invention is to obtain a lead-based perovskite-type composite oxide powder which has a high dielectric constant, is excellent in sinterability and uniformity, and can obtain a dielectric ceramic having a small grain size. is there.

【0007】なお、本明細書において、ペロブスカイト
生成率とは、粉末X線回折パターンに於けるペロブスカ
イト(110)面のメインピークの高さをペロブスカイ
ト面のメインピークの高さとパイロクロア(222)面
のメインピークの高さの和で割り、百分率で表した値を
いい、次式で与えられる。ペロブスカイト生成率(%)
=ペロブスカイトピーク高さ×100/(ペロブスカイ
トピーク高さ+パイロクロアピーク高さ)
In the present specification, the perovskite generation rate means the height of the main peak of the perovskite (110) plane in the powder X-ray diffraction pattern and the height of the main peak of the perovskite plane and the pyrochlore (222) plane. It is the value expressed as a percentage divided by the sum of the heights of the main peaks, and is given by the following formula. Perovskite generation rate (%)
= Perovskite peak height x 100 / (perovskite peak height + pyrochlore peak height)

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、一般式:Pb(ByB'1-y)
3、(式中、B及びB'は同じ又は異なる2〜6価の金
属で、(ByB'1-y)の原子価は+4である)で表される
鉛系ペロブスカイト型複合酸化物粉末の製造方法におい
て、複合酸化物の原料粉末を所定の比率で混合してなる
混合物を仮焼した後、粉砕してペロブスカイト生成率3
5〜75%、平均粒径0.3μm以下の粉末となし、該粉
末を再度仮焼した後、粉砕してペロブスカイト生成率9
5%以上、平均粒径0.5μm以下、比表面積8m2/g以
下の粉末とするようにしたものである。
The present invention provides a general formula: Pb (B y B ' 1-y ) as a means for solving the above problems.
Lead-based perovskite complex oxidation represented by O 3 , (wherein, B and B ′ are the same or different divalent to hexavalent metals, and the valence of (B y B ′ 1-y ) is +4) In the method for producing a material powder, a mixture of raw material powders of a complex oxide is mixed at a predetermined ratio, and then the mixture is calcined and then pulverized to produce a perovskite of 3%.
5 to 75%, a powder having an average particle size of 0.3 μm or less was obtained, and the powder was calcined again and then pulverized to produce a perovskite of 9
This is a powder having an average particle size of 5% or more, an average particle size of 0.5 μm or less, and a specific surface area of 8 m 2 / g or less.

【0009】前記原料粉末の混合物としては、従来の乾
式法において使用される原料粉末、即ち、複合酸化物を
構成する金属元素の酸化物、水酸化物及び/又は炭酸塩
からなる混合物を用いても良く、また、湿式法により得
られる仮焼前の反応生成物でも良い。さらに、鉛系複合
酸化物を構成する金属元素のうち鉛及びチタン以外の金
属の無機酸塩を所定の配合比率で含む溶液に、アルカリ
の存在下、チタンアルコキシド溶液を加え、その反応生
成物に酸化鉛を添加してなる混合物を使用しても良い。
この場合、鉛及びチタン以外の金属の無機酸塩として
は、硝酸塩、水酸化物、アンモニウム塩など水溶性無機
酸塩を使用すれば良く、また、チタンアルコキシドとし
ては、テトラ-n-ブトキシチタン、テトラ-sec-ブトキシ
チタン、テトライソプロポキシチタン、テトラ-t-ブト
キシチタン、テトラエトキシチタン、テトラメトキシチ
タン、ジブトキシージトリエタノールーアミネートチタ
ンなどのテトラアルコキシチタン化合物が挙げられる
が、これらのものに限定されるものではない。また、こ
れらのチタンアルコキシドは単体で若しくは2種以上を
組み合わせて使用することができる。
As the mixture of the raw material powders, a raw material powder used in a conventional dry method, that is, a mixture of oxides, hydroxides and / or carbonates of metal elements constituting a composite oxide is used. It may be a reaction product before calcination obtained by a wet method. Further, among the metal elements constituting the lead-based composite oxide, a solution containing inorganic acid salts of metals other than lead and titanium in a predetermined mixing ratio, in the presence of alkali, a titanium alkoxide solution is added to the reaction product. You may use the mixture which adds lead oxide.
In this case, as the inorganic acid salt of a metal other than lead and titanium, nitrates, hydroxides, water-soluble inorganic acid salts such as ammonium salts may be used, and as the titanium alkoxide, tetra-n-butoxy titanium, Tetra-alkoxytitanium compounds such as tetra-sec-butoxytitanium, tetraisopropoxytitanium, tetra-t-butoxytitanium, tetraethoxytitanium, tetramethoxytitanium, dibutoxyditriethanol-aminate titanium, etc. It is not limited. Further, these titanium alkoxides can be used alone or in combination of two or more kinds.

【0010】[0010]

【作用】即ち、本発明は、複合酸化物粉末を製造する方
法として、原料粉末を所定比率で配合してなる混合物の
仮焼及び粉砕を2段階に分けて行うようにしたもので、
仮焼を比較的低い温度、800℃以下で行うことにより
鉛成分の減少を抑制して組成のずれを防止し、一次仮焼
により固くならず、かつ、粗くならない程度に生成され
たペロブスカイト相を含む仮焼物を粉砕することにより
粒径分布を調整して2回目の仮焼時の粒子成長を抑制
し、また、低温での仮焼を2回繰り返すことにより粉末
の活性度を失わせることなくペロブスカイト生成率を高
め、これが低温での焼成を可能にし、従って、組成のず
れを防止を可能にする一方、焼成時のパイロクロア相の
生成を防止し誘電率の低下を阻止するのに寄与してい
る。
In other words, the present invention is a method for producing a composite oxide powder, in which calcination and pulverization of a mixture prepared by mixing raw material powders in a predetermined ratio are carried out in two steps.
By performing the calcination at a relatively low temperature of 800 ° C. or less, the reduction of the lead component is suppressed to prevent the composition shift, and the perovskite phase generated by the primary calcination to the extent that it does not become hard and does not become rough is obtained. The particle size distribution is adjusted by crushing the calcined product containing it to suppress the particle growth during the second calcination, and the activity of the powder is not lost by repeating the calcination at low temperature twice. It increases the perovskite formation rate, which enables firing at low temperature, thus preventing compositional deviation, while contributing to the prevention of pyrochlore phase formation during firing and the reduction of the dielectric constant. There is.

【0011】本発明において、各工程でのペロブスカイ
ト生成率、平均粒径及び比表面積を限定したのは、次の
理由による。即ち、最初の仮焼工程において、ペロブス
カイト生成率を35〜75%としたのは、ペロブスカイ
ト生成率が35%未満では、2回目の仮焼工程で目標と
するペロブスカイト生成率を達成しようとすると、2回
目の仮焼工程での仮焼温度を高くしなければならず、粒
子が固く、被粉砕性が悪くなり、誘電損失が増大すると
共に、グレインサイズも大きくなり、ペロブスカイト生
成率が75%を超えると、最初の仮焼温度を高温にしな
ければならず、被粉砕性が悪くなると共に、最終的なグ
レインサイズが大きくなると共に、誘電率が低下し、ま
た、鉛成分の揮発ないし蒸発により組成のずれを生じる
からである。前記範囲のペロブスカイト生成率は、原料
粉末の混合物を800℃以上の温度で短時間仮焼するこ
とによっても得られるが、鉛成分の減少による組成のず
れを生じるので、800℃以下の温度で仮焼するのが好
適である。また、1回目の粉砕工程後の仮焼粉末の平均
粒径を0.3μm以下としたのは、その平均粒径がその
値を超えると、2回目の仮焼工程でペロブスカイト生成
率を95%以上にするためには仮焼温度を高温にしなけ
ればならず、その結果、粉末の粒子が粗く、粉砕性が悪
くなり、その粉末から得られる磁器はグレインサイズが
大きく、誘電損失が大きくなるからである。
In the present invention, the perovskite formation rate, average particle size and specific surface area in each step are limited for the following reasons. That is, in the first calcination step, the perovskite formation rate is set to 35 to 75% because when the perovskite formation rate is less than 35%, the target perovskite formation rate is to be achieved in the second calcination step. The calcination temperature in the second calcination step must be raised, the particles are hard, the grindability deteriorates, the dielectric loss increases, the grain size increases, and the perovskite formation rate increases to 75%. If it exceeds, the initial calcination temperature must be raised, the pulverizability deteriorates, the final grain size increases, the dielectric constant decreases, and the lead component volatilizes or evaporates. This is because the deviation of The perovskite formation rate in the above range can be obtained by calcining the mixture of the raw material powders at a temperature of 800 ° C. or higher for a short time, but since the composition shift occurs due to the decrease of the lead component, the temperature is 800 ° C. or lower. Baking is preferred. The average particle size of the calcined powder after the first crushing step is set to 0.3 μm or less because the perovskite formation rate in the second calcination step is 95% when the average particle size exceeds that value. In order to achieve the above, the calcination temperature must be raised, resulting in coarse powder particles and poor pulverizability, and the porcelain obtained from the powder has large grain size and large dielectric loss. Is.

【0012】他方、2回目の仮焼工程において、ペロブ
スカイト生成率を95%以上としたのは、その値未満で
は、焼成後の磁器内にパイロクロア相が生成し、誘電率
が低くなると共に、製品の信頼性が低下するからであ
る。また、2回目の粉砕工程後の平均粒径を0.5μm以
下としたのは、これを超えると、焼結性が低下すると共
に、磁器のグレインサイズが大きくなるからである。更
に、比表面積を8m2/g以下としたのは、比表面積が
それよりも大きくなると、粉末の取り扱いが困難とな
り、異常成長を生じるので好ましくないからである。
On the other hand, in the second calcination step, the perovskite production rate is set to 95% or more. If the perovskite production rate is less than that value, a pyrochlore phase is produced in the porcelain after firing, the dielectric constant becomes low, and This reduces the reliability of. The reason why the average particle size after the second crushing step is 0.5 μm or less is that if it exceeds this value, the sinterability decreases and the grain size of the porcelain increases. Furthermore, the specific surface area is set to 8 m 2 / g or less because if the specific surface area is larger than that, handling of the powder becomes difficult and abnormal growth occurs, which is not preferable.

【0013】以下、本発明の実施例について説明する。The embodiments of the present invention will be described below.

【0014】[0014]

【実施例】【Example】

(実施例1)出発原料として、PbO、MgO、Nb25
TiO2、ZnO、MnCO3を用意し、これらの出発原料
を秤量して予め(Pb(Mg1/3Nb2/3)O30.8、(P
b(Zn1/3Nb2/3)O30.15、(PbTiO30.05となる
ように配合し、その混合物にMgOとMnO2をそれぞれ
0.5重量%、0.1重量%添加し、ボールミルで混合
した後、表1に示す温度で2時間仮焼し、ライカイ機で
粉砕した。粉砕して得た粉末を、表1に示す温度で1時
間、再度仮焼し、ライカイ機で粉砕し、試料番号1〜7
の鉛系ペロブスカイト型複合酸化物粉末を得た。
(Example 1) As starting materials, PbO, MgO, Nb 2 O 5 ,
TiO 2 , ZnO, and MnCO 3 were prepared, and these starting materials were weighed to obtain (Pb (Mg 1/3 Nb 2/3 ) O 3 ) 0.8 , (Pb (Mg 1/3 Nb 2/3 ) O 3 ) 0.8 ,
b (Zn 1/3 Nb 2/3 ) O 3 ) 0.15 and (PbTiO 3 ) 0.05, and MgO and MnO 2 were added to the mixture at 0.5% by weight and 0.1% by weight, respectively. After mixing with a ball mill, the mixture was calcined at the temperature shown in Table 1 for 2 hours and pulverized with a liquor machine. The powder obtained by crushing was again calcined at the temperature shown in Table 1 for 1 hour and crushed by a liquor machine to obtain sample numbers 1 to 7.
A lead-based perovskite-type composite oxide powder was obtained.

【0015】各試料について、各粉砕工程後のペロブス
カイト生成率及び平均粒径を測定した。その結果を後述
の比較例で得た粉末についての結果と共に表1に示す。
表中、*印は本発明の範囲外の方法に係る試料であるこ
とを示す(以下、同じ)。
For each sample, the perovskite formation rate and average particle size after each grinding step were measured. The results are shown in Table 1 together with the results for the powders obtained in Comparative Examples described below.
In the table, the mark * indicates that the sample is a method outside the scope of the present invention (hereinafter the same).

【0016】比較例として、実施例1と同じ出発原料、
PbO、MgO、Nb25、TiO2、ZnOを用い、これら
の出発原料を組成式:(Pb(Mg1/3Nb2/3)O3)0.8(P
b(Zn1/3Nb2/3)O3)0.15(PbTiO3)0.05に対応するモ
ル比で配合し、その配合原料をボールミルで混合した
後、表1に示す温度で2時間仮焼し、ライカイ機で粉砕
した後、蒸発乾燥させ、整粒して試料粉末(試料番号
8)を得た。
As a comparative example, the same starting material as in Example 1,
Using PbO, MgO, Nb 2 O 5 , TiO 2 , and ZnO, these starting materials have the composition formula: (Pb (Mg 1/3 Nb 2/3 ) O 3 ) 0.8 (P
b (Zn 1/3 Nb 2/3 ) O 3 ) 0.15 (PbTiO 3 ) 0.05 in a molar ratio, and the raw materials were mixed in a ball mill and calcined at the temperature shown in Table 1 for 2 hours. After crushing with a liquor machine, evaporation and drying, and sizing, a sample powder (Sample No. 8) was obtained.

【0017】[0017]

【表1】 試料 一次仮焼・粉砕 二次仮焼・粉砕 番号 仮焼温度 ヘ゜ロフ゛スカイト 粒径 仮焼温度 ヘ゜ロフ゛スカイト 粒径 比表面積 (℃) 生成率(%) (μm) (℃) 生成率(%) (μm) (g/m2 1 700 45 0.18 700 96 0.29 6.1 *2 720 53 1.20 850 95 1.90 1.5 3 790 75 0.30 770 95 0.50 4.4 *4 630 20 0.20 850 96 1.19 1.9 5 660 35 0.10 720 98 0.18 7.5 *6 830 85 0.30 930 92 2.70 1.0 *7 710 51 0.22 670 70 0.40 5.2*8 750 55 0.24 − − − 7.8 [Table 1] Sample Primary calcination / grinding Secondary calcination / grinding number Calcining temperature perovskite particle size Calcining temperature perovskite particle size Specific surface area (° C) Generation rate (%) (μm) (° C) Generation rate (%) (μm) ( g / m 2 ) 1 700 45 45 0.18 700 96 0.29 6.1 * 2 720 53 1.20 850 95 1.90 1.5 3 790 75 0.30 770 95 0.50 4.4 * 4 630 20 0.20 850 950 96 1.19 1.9 5 660 35 0.10 720 98 0.18 7.5 * 6 830 85 0.30 930 92 2.70 1.0 * 7 710 51 0.22 670 70 0.40 5.2 * 8 750 55 0.24 − − − 7.8

【0018】前記実施例及び比較例で得た各試料粉末1
00重量部に、結合剤として酢酸ビニル系バインダを5
重量部加え、ボールミルにて10〜20時間湿式混合し
た後、蒸発乾燥させ、整粒して粉末状にし、これを1.
5t/cm2の圧力で直径10mm、厚さ1.0mmの円板
状に成形した。得られたグリーン円板を焼成して、磁器
円板を得た。
Each sample powder 1 obtained in the above Examples and Comparative Examples
5 parts vinyl acetate type binder as a binder in
1 part by weight was added, and the mixture was wet-mixed in a ball mill for 10 to 20 hours, then evaporated to dryness, and sized to a powder.
It was molded into a disc having a diameter of 10 mm and a thickness of 1.0 mm at a pressure of 5 t / cm 2 . The obtained green disc was fired to obtain a porcelain disc.

【0019】各磁器円板の両面に銀ペーストを塗布し、
650℃で焼き付けて電極を形成し、誘電率(ε)、誘
電損失(tan δ)、125℃に於ける絶縁抵抗(I
R)、平均の粒子径と最大の粒子径を測定した。それら
の結果を焼成温度及び誘電率のばらつきと共に表2に示
す。
Apply silver paste on both sides of each porcelain disc,
Electrodes are formed by baking at 650 ° C., dielectric constant (ε), dielectric loss (tan δ), insulation resistance at 125 ° C. (I
R), the average particle diameter and the maximum particle diameter were measured. The results are shown in Table 2 together with variations in firing temperature and dielectric constant.

【0020】なお、誘電率及び誘電損失は、温度25
℃、周波数1KHz、電圧1Vrmsで測定し、絶縁抵抗
は、絶縁抵抗計を用い、500Vの電圧を2分間印加し
て測定した。また、平均及び最大グレインサイズは透過
型電子顕微鏡写真から画像解析によって求め、誘電率の
ばらつきは、各試料について100個づつ誘電率を測定
し、次式により求めた。 誘電率のばらつき=(誘電率の標準偏差/誘電率の平均
値)×100
The dielectric constant and the dielectric loss are measured at a temperature of 25.
The measurement was performed at a temperature of 1 ° C., a frequency of 1 KHz, and a voltage of 1 V rms . The insulation resistance was measured by applying a voltage of 500 V for 2 minutes using an insulation resistance meter. The average and maximum grain sizes were determined by image analysis from transmission electron micrographs, and the variation in permittivity was determined by measuring the permittivity of 100 pieces for each sample and using the following equation. Variation in permittivity = (standard deviation of permittivity / average value of permittivity) × 100

【0021】[0021]

【表2】 試料 焼成温度 ε tan δ IR グレインサイズ εばらつき番号 (℃) (%) (Ω・cm) 平均(μm) 最大(μm) (%) 1 930 18500 0.6 1.7×1013 2.8 3.5 3.5 *2 1090 14100 1.7 2.3×1012 3.9 5.8 5.0 3 950 18800 0.7 2.1×1013 3.0 3.6 3.9 *4 1050 16100 1.4 1.0×1013 3.2 6.4 4.3 5 910 17900 0.7 2.0×1013 2.6 3.3 2.8 *6 1160 9200 2.0 7.8×1011 4.1 8.5 10.3 *7 1000 15500 1.3 9.9×1012 3.0 3.7 9.2*8 1000 15000 1.3 8.2×1012 3.6 6.0 11.2 [Table 2] Sample firing temperature ε tan δ IR grain size ε variation number (℃) (%) (Ω · cm) average (μm) maximum (μm) (%) 1 930 18500 0.6 1.7 × 10 13 2.8 3.5 3.5 * 2 1090 14100 1.7 2.3 x 10 12 3.9 5.8 5.0 3 950 18800 0.7 2.1 x 10 13 3.0 3.6 3.9 * 4 1050 16100 1.4 1.0 x 10 13 3.2 6.4 4.3 5 910 17900 0.7 2.0 x 10 13 2.6 3.3 2.8 * 6 1160 9200 2.0 7.8 x 10 11 4.1 8.5 10.3 * 7 1000 15500 1.3 9.9 x 10 12 3.0 3.7 9.2 * 8 1000 15000 1.3 8.2 x 10 12 3.6 6.0 11.2

【0022】表2に示す結果から明らかなように、本発
明方法で製造した粉末を用いた誘電体磁器は、いずれも
950℃以下の低温で焼結が可能であり、17000以
上と高い誘電率と、1.0%以下の低い誘電損失を示す
だけでなく、高温での絶縁抵抗が高く、グレインサイズ
も小さく、誘電率のばらつきも少ない。
As is clear from the results shown in Table 2, each of the dielectric ceramics using the powder produced by the method of the present invention can be sintered at a low temperature of 950 ° C. or lower, and has a high dielectric constant of 17,000 or higher. Shows not only a low dielectric loss of 1.0% or less, but also high insulation resistance at high temperatures, a small grain size, and a small variation in dielectric constant.

【0023】これに対して、試料番号2の粉末は、第一
粉砕工程後の粒径が0.3μmを越えているため、第二
仮焼工程での仮焼温度を高くしなければならず、その結
果、原料の被粉砕性が低下して粒径が大きくなり、誘電
体磁器の焼成温度が高くなり、誘電損失が大きく、グレ
インサイズも大きいことが判る。
On the other hand, since the powder of sample No. 2 has a particle size of more than 0.3 μm after the first crushing step, the calcination temperature in the second calcination step must be raised. As a result, it can be seen that the pulverizability of the raw material is reduced, the particle size is increased, the firing temperature of the dielectric ceramic is increased, the dielectric loss is large, and the grain size is large.

【0024】また、試料番号4の粉末では、第一仮焼工
程でのペロブスカイト生成率が35%に満たないため、
第二仮焼工程での仮焼温度が高くなり、その結果、二次
粉砕後の粒径が大きくなって、焼成温度が1050℃と
高くなり、グレインサイズが大きくなると共に、誘電損
失も大きくなる。
Further, with the powder of sample No. 4, since the perovskite formation rate in the first calcination step is less than 35%,
The calcination temperature in the second calcination step becomes high, and as a result, the particle size after secondary pulverization becomes large, the calcination temperature becomes as high as 1050 ° C., the grain size becomes large, and the dielectric loss becomes large. ..

【0025】さらに、試料番号6のように、第一仮焼工
程でのペロブスカイト生成率が75%を越えている場
合、第二仮焼工程において高い温度で仮焼しても、ペロ
ブスカイト生成率が92%しか得られず、原料粉末の粒
径も大きいため、電気的特性に劣る誘電体磁器しか得ら
れない。
Further, when the perovskite formation rate in the first calcination step exceeds 75% as in sample No. 6, even if the perovskite formation rate is high in the second calcination step, the perovskite formation rate is high. Since only 92% is obtained and the particle size of the raw material powder is large, only a dielectric ceramic having inferior electric characteristics can be obtained.

【0026】また、試料番号7の粉末では、第二仮焼後
のペロブスカイト生成率が70%に抑えられているた
め、焼成温度が高くなり、得られる誘電体磁器は誘電率
が低く、誘電損失が大きくなり、誘電率のばらつきも大
きくなる。
Further, in the powder of sample No. 7, since the production rate of perovskite after the second calcination is suppressed to 70%, the firing temperature becomes high, and the obtained dielectric ceramic has a low dielectric constant and a dielectric loss. Becomes larger, and the variation in dielectric constant also becomes larger.

【0027】さらに、従来法と同様に、原料の仮焼、粉
砕を一回だけ行った試料番号8の粉末では、得られる磁
器は誘電損失が大きく、グレインサイズがばらついてお
り、誘電率のばらつきも大きい。
Further, similarly to the conventional method, in the powder of sample No. 8 in which the raw material was calcined and crushed only once, the obtained porcelain had a large dielectric loss, the grain size varied, and the dielectric constant varied. Is also big.

【0028】(実施例2) 組成式:(Pb(Ni1/3Nb2/3)
3)0.65(PbTiO3)0.25(Pb(Zn1/32/3)O3)0.10
表される誘電体磁器の構成成分のうち、酸化鉛と酸化チ
タン以外の各成分の元素が所定のモル比になるように、
Ni(NO3)2・6H2O、Zn(NO3)2・6H2O、Nb(O
H)5、及び(NH4)WO4・2H2Oを正確に秤量し、そ
れらを純水に溶解して、A液とした。
Example 2 Compositional formula: (Pb (Ni 1/3 Nb 2/3 )
O 3 ) 0.65 (PbTiO 3 ) 0.25 (Pb (Zn 1/3 W 2/3 ) O 3 ) 0.10 out of the constituent components of the dielectric ceramics other than lead oxide and titanium oxide So that the desired molar ratio is achieved,
Ni (NO 3) 2 · 6H 2 O, Zn (NO 3) 2 · 6H 2 O, Nb (O
H) 5 and (NH 4 ) WO 4 .2H 2 O were accurately weighed and dissolved in pure water to obtain a solution A.

【0029】これとは別に、Ti(OC37)4を所定のモ
ル比になるように正確に秤量し、これをエチルアルコー
ルに添加し、少量のH22を加えた後、さらにHNO3
を加えてチタンの沈殿物を完全に溶解して、B液を調製
した。
Separately from this, Ti (OC 3 H 7 ) 4 was accurately weighed so as to have a predetermined molar ratio, this was added to ethyl alcohol, and a small amount of H 2 O 2 was added, and then further. HNO 3
Was added to completely dissolve the titanium precipitate to prepare solution B.

【0030】次に、前記A液とB液を混合し、その混合
液を撹拌しながら所定量のH22を加え、さらにアンモ
ニア水を加えてpHを9〜10に調整した後、30分間
撹拌し続け反応させた。生成した沈殿物を蒸発乾燥させ
て、酸化鉛以外の成分からなる乾燥粉末を得た。
Next, the solutions A and B are mixed, a predetermined amount of H 2 O 2 is added to the mixed solution while stirring, and ammonia water is further added to adjust the pH to 9 to 10, and then 30 The reaction was continued by stirring for 1 minute. The produced precipitate was evaporated and dried to obtain a dry powder composed of components other than lead oxide.

【0031】この乾燥粉末を前記組成式に対応する所定
のモル比になるようにPb34粉末と配合し、その混合
物をボールミルで湿式混合、粉砕した後、蒸発乾燥さ
せ、表3に示す温度で2時間仮焼し、ライカイ機を用い
て粉砕した。更に、粉砕して得た粉末を表3に示す温度
で再度1時間仮焼し、ライカイ機で粉砕して、表3に示
す試料番号9〜14の鉛系ペロブスカイト型複合酸化物
粉末を得た。なお、試料番号14は、仮焼及び粉砕を一
回だけ行ったものである。
This dry powder was blended with Pb 3 O 4 powder in a predetermined molar ratio corresponding to the above composition formula, and the mixture was wet-mixed by a ball mill, pulverized, evaporated and dried, and shown in Table 3. It was calcined at a temperature for 2 hours and crushed using a raikai machine. Further, the powder obtained by pulverization was calcined again at the temperature shown in Table 3 for 1 hour and pulverized by a liquor machine to obtain lead-based perovskite complex oxide powders of sample numbers 9 to 14 shown in Table 3. .. The sample No. 14 was obtained by calcination and crushing only once.

【0032】各試料について、各粉砕工程後の粉末のペ
ロブスカイト生成率及び平均粒径を求めた。その結果を
表3に示す。
For each sample, the perovskite formation rate and the average particle size of the powder after each grinding step were determined. The results are shown in Table 3.

【0033】[0033]

【表3】 試料 一次仮焼・粉砕 二次仮焼・粉砕 番号 仮焼温度 ヘ゜ロフ゛スカイト 粒径 仮焼温度 ヘ゜ロフ゛スカイト 粒径 比表面積 (℃) 生成率(%) (μm) (℃) 生成率(%) (μm) (g/m2 9 710 75 0.26 710 96 0.35 5.6 10 670 62 0.18 700 98 0.23 6.6 11 650 40 0.12 700 96 0.12 8.0 *12 610 21 0.15 700 82 0.39 5.0 13 660 56 0.11 700 95 0.09 9.4*14 850 95 2.5 − − − 1.1 [Table 3] Sample Primary calcination / grinding Secondary calcination / grinding number Calcining temperature perovskite particle size Calcining temperature perovskite particle size Specific surface area (° C) Generation rate (%) (μm) (° C) Generation rate (%) (μm) ( g / m 2 ) 9 710 75 0.26 710 96 0.35 5.6 10 670 62 0.18 700 98 983 6.6 11 11 650 40 0.12 700 96 0.12 8.0 * 12 610 21 0.15 700 82 0.39 5.0 13 660 56 0.11 700 95 0.09 9.4 * 14 850 95 2.5 --- 1.1

【0034】前記各試料の粉末100重量部に酢酸ビニ
ル系バインダを5重量部加え、ボールミルにて10〜2
0時間湿式混合した後、蒸発乾燥させ、整粒して粉末を
得、これを1.5t/cm2の圧力で直径10mm、厚さ1.
0mmの円板状に成形した後、焼成して、誘電体磁器円
板を得た。
5 parts by weight of a vinyl acetate binder was added to 100 parts by weight of the powder of each sample, and the mixture was mixed with a ball mill for 10 to 2 parts.
After wet-mixing for 0 hours, it was evaporated to dryness and sized to obtain a powder, which had a diameter of 10 mm and a thickness of 1. at a pressure of 1.5 t / cm 2 .
After being formed into a disk shape of 0 mm, it was fired to obtain a dielectric ceramic disk.

【0035】各試料について、実施例1と同様にして、
前記磁器円板の両面に銀電極を形成し、誘電率(ε)、
誘電損失(tan δ)、125℃に於ける絶縁抵抗(I
R)、平均の粒子径と最大の粒子径を測定した。それら
の結果を焼成温度及び誘電率のばらつきと共に表4に示
す。
For each sample, in the same manner as in Example 1,
Forming silver electrodes on both sides of the porcelain disk, permittivity (ε),
Dielectric loss (tan δ), insulation resistance at 125 ° C (I
R), the average particle diameter and the maximum particle diameter were measured. The results are shown in Table 4 together with variations in firing temperature and dielectric constant.

【0036】[0036]

【表4】 試料 焼成温度 ε tan δ IR グレインサイズ εばらつき番号 (℃) (%) (Ω・cm) 平均(μm) 最大(μm) (%) 9 910 15600 0.7 2.0×1013 2.3 2.8 2.8 10 900 15800 0.7 1.5×1012 2.3 3.0 2.8 11 880 15200 0.8 1.3×1013 2.1 2.9 2.6 *12 910 9800 0.9 9.9×1012 1.7 2.3 4.0 *13 焼結せず*14 1100 12300 1.0 2.7×1012 3.9 6.6 12.1 [Table 4] Sample firing temperature ε tan δ IR grain size ε variation number (℃) (%) (Ωcm) average (μm) maximum (μm) (%) 9 910 15600 0.7 2.0 × 10 13 2.3 2.8 2.8 10 900 15800 0.7 1.5 × 10 12 2.3 3.0 2.8 11 880 15200 0.8 1.3 × 10 13 2.1 2.9 2.6 * 12 910 9800 0.9 9.9 × 10 12 1.7 2.3 4.0 * 13 Not sintered * 14 1100 12300 1.0 2.7 × 10 12 3.9 6.6 12.1

【0037】表4に示す結果から明らかなように、本発
明方法に製造した粉末を用いた誘電体磁器は、いずれも
950℃以下の低温で焼結が可能であり、17000以
上と高い誘電率と、1.0%以下の低い誘電損失を示す
だけでなく、高温での絶縁抵抗が高く、グレインサイズ
も小さく、誘電率のばらつきも少ない。
As is clear from the results shown in Table 4, all of the dielectric porcelains using the powder produced by the method of the present invention can be sintered at a low temperature of 950 ° C. or less, and have a high dielectric constant of 17,000 or more. Shows not only a low dielectric loss of 1.0% or less, but also high insulation resistance at high temperatures, a small grain size, and a small variation in dielectric constant.

【0038】これに対して、試料番号12の粉末は、第
一仮焼工程でのペロブスカイト生成率が30%以下であ
るにも拘わらず、第二仮焼工程での仮焼温度が高くしな
ければペロブスカイト生成率が95%以上にならず、そ
の結果、誘電率も低い。また、試料番号13の粉末は、
比表面積が大きいため、成形密度が上がらず、焼結しな
かった。さらに、試料番号14の粉末は、原料の仮焼、
粉砕を一回だけ行ったものであるが、誘電率が低く、グ
レインサイズが大きく、誘電率のばらつきも大きい。
On the other hand, in the case of the powder of sample No. 12, the calcination temperature in the second calcination step must be high even though the perovskite formation rate in the first calcination step is 30% or less. For example, the perovskite generation rate does not exceed 95%, and as a result, the dielectric constant is low. Also, the powder of sample No. 13 is
Since the specific surface area was large, the molding density did not increase, and sintering did not occur. Furthermore, the powder of sample No. 14 is the calcination of the raw material,
Although it was crushed only once, it has a low dielectric constant, a large grain size, and a large variation in dielectric constant.

【0039】(実施例3) 実施例1で調製した試料番号
1と8の鉛系ペロブスカイト型複合酸化物粉末を原料と
して用い、次のようにして積層セラミックコンデンサを
製造した。まず、原料粉末にポリビニルブチラール系バ
インダとエチルアルコールとを加え、ボールミルで湿式
混合してスラリーを調製し、これをドクターブレード法
によりシート状に成形して20μm厚のセラミックグリ
ーンシートを得た。次に、各セラミックグリーンシート
上に、Agを主成分とする導電ペーストをスクリーン印
刷して、内部電極形成層を形成した。前記セラミックグ
リーンシートを内部電極形成層の引き出されている側が
互い違いとなるように10枚積層した後、その上下両面
に内部電極形成層のないセラミックグリーンシートを積
層して、積層体を得、これを所定寸法にカットしてコン
デンサグリーンチップを得た。このグリーンチップチッ
プを空気中、表5に示す温度で2時間焼成し、コンデン
サチップを得た。各コンデンサチップの両端面にAgペ
ーストを塗布し、大気中、750℃で焼き付けて、内部
電極に接続された外部電極を形成し、積層コンデンサを
得た。
Example 3 Using the lead-based perovskite type complex oxide powders of Sample Nos. 1 and 8 prepared in Example 1 as raw materials, a laminated ceramic capacitor was manufactured as follows. First, a polyvinyl butyral binder and ethyl alcohol were added to the raw material powder and wet mixed by a ball mill to prepare a slurry, which was formed into a sheet by the doctor blade method to obtain a ceramic green sheet having a thickness of 20 μm. Next, a conductive paste containing Ag as a main component was screen-printed on each ceramic green sheet to form an internal electrode forming layer. After stacking 10 sheets of the ceramic green sheets so that the drawn out sides of the internal electrode forming layers are staggered, the ceramic green sheets without the internal electrode forming layers are laminated on the upper and lower surfaces thereof to obtain a laminated body. Was cut into a predetermined size to obtain a capacitor green chip. This green chip chip was fired in air at the temperature shown in Table 5 for 2 hours to obtain a capacitor chip. Ag paste was applied to both end faces of each capacitor chip and baked at 750 ° C. in the atmosphere to form external electrodes connected to internal electrodes to obtain a multilayer capacitor.

【0040】この積層コンデンサの外寸は、幅1.6m
m、長さ3.2mm、厚さ1.6mmで、内部電極間に介在す
る誘電体セラミック層の厚さは13μmである。また、
有効誘電体セラミック層の総数は10で、1層当たりの
対向面積は2.1mm2である。
The outer size of this multilayer capacitor is 1.6 m wide.
The thickness of the dielectric ceramic layer is m, the length is 3.2 mm and the thickness is 1.6 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 13 μm. Also,
The total number of effective dielectric ceramic layers is 10, and the facing area per layer is 2.1 mm 2 .

【0041】各積層コンデンサについて、電気的特性を
測定した。その結果を表5に示す。なお、静電容量
(C)及び誘電損失(tan δ)は、自動ブリッジ式測定
器を用い、1KHz、1Vrmsの電圧を印加して測定し
た。また、CR積、即ち、静電容量(C)と絶縁抵抗
(R)との積は、耐湿試験前後の絶縁抵抗(R)を測定
して求めた。耐湿試験は、温度80℃、湿度95%の雰
囲気中に積層コンデンサを1000時間保持することに
より行い、絶縁抵抗は、絶縁抵抗計を用い、各積層コン
デンサに16Vの電圧を2分間印加して測定した。さら
に、抗折強度は、抗折強度測定装置を用いて測定した。
The electrical characteristics of each laminated capacitor were measured. The results are shown in Table 5. The capacitance (C) and the dielectric loss (tan δ) were measured by using an automatic bridge type measuring device and applying a voltage of 1 KHz and 1 Vrms. The CR product, that is, the product of the electrostatic capacity (C) and the insulation resistance (R) was obtained by measuring the insulation resistance (R) before and after the humidity resistance test. The humidity resistance test is performed by holding the laminated capacitor for 1000 hours in an atmosphere of a temperature of 80 ° C. and a humidity of 95%, and the insulation resistance is measured by applying a voltage of 16 V to each laminated capacitor for 2 minutes using an insulation resistance tester. did. Further, the bending strength was measured using a bending strength measuring device.

【0042】[0042]

【表5】 試料 焼成温度 C tan δ 抗折力 CR積 容量のばら番号 (℃) (nF) (%) (Kg) 試験前 試験後 つき(%) 1 930 300 3.1 9.7 85000 82000 5.0*8 950 254 3.5 7.2 43000 200 12.5 [Table 5] Sample Firing temperature C tan δ Transverse rupture strength CR Product capacity rose number (℃) (nF) (%) (Kg) Before test After test (%) 1 930 300 3.1 9.7 85000 82000 5.0 * 8 950 254 3.5 3.5 7.2 43000 200 12.5

【0043】表5の結果から明らかなように、本発明方
法により製造した粉末を用いた積層コンデンサは、従来
法により製造した粉末を用いたものより抗折強度が高
く、耐湿試験によっても絶縁抵抗の低下がみられず、高
い信頼性を示す。
As is clear from the results shown in Table 5, the multilayer capacitor using the powder manufactured by the method of the present invention has a higher bending strength than the one using the powder manufactured by the conventional method, and has an insulation resistance by the moisture resistance test. Shows no deterioration, and shows high reliability.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
は、原料粉末の仮焼、粉砕を2段階に分けて低温で行う
ようにしたので、微細で反応性に富むペロブスカイト生
成率の高い鉛系ペロブスカイト型複合酸化物粉末を得る
ことができ、従って、従来法により製造されたものに比
べて200℃以上も低い温度での焼成が可能で、焼結時
にパイロクロア相を生成しないため、高誘電率の誘電体
磁器を得ることできる。また、PbOの融点より低い温
度で仮焼及び焼成を行えるため、鉛成分の揮発ないし蒸
発が抑制され、組成の変動が少なく、特性のばらつきが
小さく、しかも、信頼性の高い誘電体磁器の製造を行う
ことができる。さらに、本発明方法により製造された粉
末を用いて製造した誘電体磁器は、グレインサイズが小
さく、かつ、分布幅が狭いため、誘電体磁器の薄膜化を
図ることができるなど優れた効果を奏する。
As is clear from the above description, according to the present invention, the calcination and the pulverization of the raw material powder are performed in two steps at a low temperature, so that the perovskite production rate is fine and highly reactive. It is possible to obtain a lead-based perovskite type complex oxide powder, and therefore, it is possible to perform firing at a temperature as low as 200 ° C. or more lower than that produced by the conventional method, and a pyrochlore phase is not generated at the time of sintering. It is possible to obtain a dielectric porcelain having a dielectric constant. Further, since the calcination and firing can be performed at a temperature lower than the melting point of PbO, the volatilization or evaporation of the lead component is suppressed, the composition variation is small, the characteristic variation is small, and the dielectric ceramic is highly reliable. It can be performed. Furthermore, the dielectric ceramics produced by using the powder produced by the method of the present invention have a small grain size and a narrow distribution width, so that they have an excellent effect such that the dielectric ceramics can be thinned. ..

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂部 行雄 京都府長岡京市天神2丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Sakabe 2 26-10 Tenjin Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式:Pb(ByB'1-y)O3、(式中、B
及びB'は同じ又は異なる2〜6価の金属で、(ByB'
1-y)の原子価は+4である)で表される鉛系ペロブスカ
イト型複合酸化物粉末の製造方法において、前記複合酸
化物の原料粉末を所定の比率で混合してなる混合物を仮
焼した後、粉砕してペロブスカイト生成率35〜75
%、平均粒径0.3μm以下の粉末となし、該粉末を再度
仮焼した後、粉砕してペロブスカイト生成率95%以
上、平均粒径0.5μm以下、比表面積8m2/g以下の粉
末とすることを特徴とする鉛系ペロブスカイト型複合酸
化物粉末の製造方法。
1. A general formula: Pb (B y B ′ 1-y ) O 3 , (wherein B
And B ′ are the same or different divalent to hexavalent metals, and (B y B ′
1-y ) has a valence of +4). In the method for producing a lead-based perovskite-type composite oxide powder represented by the formula ( 1 ), a mixture obtained by mixing the raw material powders of the composite oxide in a predetermined ratio is calcined. After that, crush and perovskite formation rate 35-75
%, Powder having an average particle size of 0.3 μm or less, calcinated again, and then pulverized to have a perovskite generation rate of 95% or more, an average particle size of 0.5 μm or less, and a specific surface area of 8 m 2 / g or less A method for producing a lead-based perovskite-type composite oxide powder, comprising:
【請求項2】 前記複合酸化物の原料粉末が、複合酸化
物の各構成元素の酸化物及び/又は炭酸塩からなる請求
項1の製造方法。
2. The production method according to claim 1, wherein the raw material powder of the complex oxide comprises an oxide and / or a carbonate of each constituent element of the complex oxide.
【請求項3】 前記複合酸化物の原料粉末のうち鉛以外
の構成元素の原料粉末が、液相反応により得られる複合
沈殿物からなり、鉛の原料粉末が酸化鉛である請求項1
の製造方法。
3. The raw material powder of the complex oxide, wherein the raw material powder of constituent elements other than lead is composed of a complex precipitate obtained by liquid phase reaction, and the raw material powder of lead is lead oxide.
Manufacturing method.
JP27533191A 1991-10-23 1991-10-23 Production of lead-containing perovskite type multiple oxide powder Pending JPH05116942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27533191A JPH05116942A (en) 1991-10-23 1991-10-23 Production of lead-containing perovskite type multiple oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27533191A JPH05116942A (en) 1991-10-23 1991-10-23 Production of lead-containing perovskite type multiple oxide powder

Publications (1)

Publication Number Publication Date
JPH05116942A true JPH05116942A (en) 1993-05-14

Family

ID=17553976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27533191A Pending JPH05116942A (en) 1991-10-23 1991-10-23 Production of lead-containing perovskite type multiple oxide powder

Country Status (1)

Country Link
JP (1) JPH05116942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944888B1 (en) * 2007-10-18 2010-03-03 티디케이가부시기가이샤 Piezoelectric porcelain composition and oscillator
CN112520784A (en) * 2020-12-11 2021-03-19 福建江夏学院 Grinding preparation of NH4PbIxCl3-xMethod for preparing perovskite photoelectric material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944888B1 (en) * 2007-10-18 2010-03-03 티디케이가부시기가이샤 Piezoelectric porcelain composition and oscillator
CN112520784A (en) * 2020-12-11 2021-03-19 福建江夏学院 Grinding preparation of NH4PbIxCl3-xMethod for preparing perovskite photoelectric material

Similar Documents

Publication Publication Date Title
EP0988637B1 (en) Ceramic multilayer capacitor
US8507395B2 (en) Dielectric ceramic composition and ceramic electronic device
JP4165893B2 (en) Semiconductor ceramic, multilayer semiconductor ceramic capacitor, and method of manufacturing semiconductor ceramic
US11066332B2 (en) Dielectric ceramic composition and ceramic electronic component
CN107851513B (en) Dielectric composition, dielectric element, electronic component and multi-layered electronic parts
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
CN103443050A (en) Derivative ceramics and laminated ceramic capacitor
CN107836029A (en) Dielectric composition, dielectric element, electronic unit and lamination electronic unit
CN109553406A (en) Dielectric ceramic composition and electronic component
US20210155547A1 (en) Dielectric ceramic composition and ceramic electronic components
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
JP2003124049A (en) Laminated ceramic capacitor
JP2012206890A (en) Semiconductor ceramic, and multilayer semiconductor ceramic capacitor
KR101318855B1 (en) Method for manufacturing composite oxide powder
JP2022088409A (en) Ceramic capacitor
JPH05116942A (en) Production of lead-containing perovskite type multiple oxide powder
JPH0612917A (en) Dielectric porcelain and its manufacture
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2001316176A (en) Dielectric ceramic, laminated ceramic capacitor and manufacturing method of dielectric ceramic
JP3752812B2 (en) Method for producing barium titanate
KR100355933B1 (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JPH0867562A (en) Grain boundary insulating type semiconductor porcelain
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2521859B2 (en) Dielectric ceramic composition and method for producing the same